MB86R24 “Triton-C” Graphics Display Controller Third-Generation Advanced 2.5D/3D Graphics Soc

Total Page:16

File Type:pdf, Size:1020Kb

MB86R24 “Triton-C” Graphics Display Controller Third-Generation Advanced 2.5D/3D Graphics Soc MB86R24 “Triton-C” Graphics Display Controller Third-generation Advanced 2.5D/3D Graphics SoC Description Features The high-performance MB86R24 “Triton-C” combines the latest • ARM Cortex-A9, dual-core 533 MHz (600 MHz in restricted ARM® Cortex™-A9 dual CPU core with state-of-the-art, embed- operating conditions) per core ded 2.5D and 3D graphics cores. This third-generation appli- • 2.5D graphics engine cation processor is the first device in Fujitsu’s new “Blueline” • 3D graphics engine: POWERVR, SGX543-MP1 family of high-performance GDCs. — Tile-Based Deferred Rendering (TBDR) The 3D core incorporates Imagination Technologies’ POWERVR™ — Support for OpenGL ES 2.0, OpenVG™ 1.1 and SGX543-MP1, which supports open standard API formats such OpenCL™ 1.0 as OpenGL® ES 2.0. The POWERVR core uses Tile-Based Deferred • Video capture from five independent channels Rendering (TBDR) for render processing, which reduces perfor- • Broad support for standard and automotive-specific mance loads on the CPU and GPU, and increases system capacity. peripherals The high-end SoC also combines six video-capture inputs and • Three independent parallel display controllers for display three independent parallel display outputs. up to 1920x768 • Up to 1GB of graphics memory The chip’s architecture has been optimized for the simultaneous use of all functional blocks, virtually eliminating performance gaps. The device’s harmonized structure permits the simulta- Applications neous rendering of independent 2.5D and 3D graphics, the • Dashboards capturing of multiple video streams, and the display of content • HUD (head-up display) systems to multiple sources. • CID (central information display) systems With its outstanding rendering performance and multiple stan- • RSE (rear seat entertainment) systems dard and automotive-specific peripheral interfaces, this device is appropriate for a wide range of demanding automotive and industrial applications Signage Medical Automotive and Large Vehicles Industrial The "Triton-C" is well-suited for a variety of graphics applications. Specifications Power-supply voltage Internal SRAM • IO: 3.3±0.3 V and core: 1.2±0.1 V and DDR3: 1.5±0.1 V • 3x 32k built-in SRAM (DDR2: 1.8±0.1 V) Central processor cores Package: FCBGA-672 • ARM Cortex-A9, dual-core 533 MHz (600 MHz in restricted • 27mm x 27mm, 1.0 pitch operating conditions) per core • 2.5 DMIPS/MHz External RAM interface • 32 kB instruction cache / 32 kB data cache, • Unified 16/32/64-bit DDR2/3 memory interface 512 kB L2 cache • DDR2: 400/533/800Mbit/s and DDR3: 800/1066Mbit/s • ARM NEON™ SIMD Engine External Flash interface for NOR and NAND • JTAG ICE interface (serial, parallel), managed NAND (eMMC) • Java acceleration (Jazelle technology) • VFP instruction set (VFPv3) Fujitsu Fact Sheet 2 Multi-layer AXI/AHB bus architecture • USB 2.0 host or function – 1 channel • SDIO/MMC – 1 channel External bus (16 bit) • UART – 6 channels Graphics cores • USART – 5 channels • 2.5D graphics engine • I2S – 2 ports • 3D graphics engine: PowerVR SGX543-MP1 • I2C – 4 channels — Tile-Based Deferred Rendering (TBDR) • PWM – 8 channels — OpenGL ES 2.0, OpenVG 1.1 and OpenCL 1.0 • Timer 16/32 bit - 2 channels Display controller • Signature Unit (signature and checksum calculation for display content, intended use: ASIL) • Three independent parallel display controllers up to 1920x768 Automotive interfaces • Display layers per controller: 8 + 4 alpha + cursor (Display0, • CAN (I/O voltage: 3.3 V) – 2 channels Display1), up to 3 display layers (Display2) • MediaLB (MOST150) – 1 channel, support for 3 pin • Gamma correction unit (color LUT) and 6 pin • Dithering unit display resolution up to WUXGA Software support Output formats/channels • Linux Board Support Package (BSP) including: • Up to 3x single-channel DRGB888 or 1x dual-channel — Kernel 3.x (including dual-core support) DRGB888 — U-Boot (boot loader) • 1x single or dual-channel RSDS (replaces one or two — Peripherals drivers DRGB888 output if selected) — Tool chain Embedded TCON • Graphics software stack providing APIs for multiple capture • Support for dual-view display and display units • Support for dual-channel output (for HD resolutions) — 3D graphics: OpenGL ES 2.0, EGL 1.4; OpenGL ES • Warping on the fly (Display2) shading language 1.0 — 2.5D pixel graphics functionality Video capture (including warping-on-the-fly) • 6 independent channels — 2.5D vector graphics: OpenVG 1.1 (special request • MIPI-CSI2, ITU-R BT.656, SMPTE 293M-2003, necessary) SMPTE 296M-2001 — Video and image processing • YCbCr 4:2:2 interlaced, YCbCr 4:2:2 progressive — VXD392 driver support for media decoding • SMPTE 296M-2001, SMPTE 274M-2005 middleware suppliers/integrators • RGB888 – 1 channel — Driver support for OpenCL 1.0 (special request • Color conversion necessary) • Histogram unit, histogram equalization — Tooling — Fujitsu Developer Suite for setup, debugging and Peripherals and more application support • SPI slave host interface – 1 channel — CGI Studio (2.5D and 3D) • SPI master – 2 channels • Ethernet MAC — 10/100/1000 Mbit — IEEE 1588 support Fujitsu Fact Sheet 3 Gen. Purpose 32ch DDR2-800/3-1066 UART Ext. IRQ Bus 16/32-bit DMA x32,x64,2GB USB 2.0 I2C ARM® NeonTM SMID ARM® NeonTM SMID ARM® ARM® PWM CortexTM-A9 CortexTM-A9 533MHz 533MHz SD/MMC I2C L1-Cache L1-Cache 32/32kb 32/32kb HS-SPI Internal L1-Cache PWR Mgmt SPI SRAM 512kb Watchdog GPIO Video capture Display Ctrl MIPI-CSI2 TCON POWERVRTM RGB, Video capture SGX543-MP1 RSDS Video capture Display Ctrl 3D Engine Dithering RGB, Video capture OpenGL ES, VG, CL Gamma RSDS Video capture Video capture Fujitsu Display Ctrl 2.5D Engine RGB, Video capture SIG Unit Warping-on-the fly MOST Ethernet MAC CAN 3/6-Pin IEEE1588 LIN "Triton-C" is a “right-sized” SoC featuring a unique blend of special-purpose functional blocks combined with a high-powered, standards-based GPU. ARM is a registered trademark and Cortex a trademark of ARM. POWERVR is a trademark of Imagination Technologies. OpenGL® is a registered trademark, and OpenVG and OpenCL are trademarks of the Khronos Group. All other company or product names are trademarks or registered trademarks of their respective owners. FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333, Sunnyvale, CA 94085-5401 Tel: (800) 866-8608 Fax: (408) 737-5999 [email protected] | http://us.fujitsu.com/semi Follow Us: @FujitsuSemiUS ©2014 Fujitsu Semiconductor America, Inc. All company and product names are trademarks or registered Connect With Us: https://www.facebook.com/FujitsuSemiconductorAmerica trademarks of their respective owners. View Us: http://www.youtube.com/FujitsuSemiUS Printed in the U.S.A. GDC-FS-21439-01/2014.
Recommended publications
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • Powervr SGX Series5xt IP Core Family
    PowerVR SGX Series5XT IP Core Family The PowerVR™ SGX Series5XT Graphics Processing Unit (GPU) IP core family is a series Features of highly efficient graphics acceleration IP cores that meet the multimedia requirements of • Most comprehensive IP core family the next generation of consumer, communications and computing applications. and roadmap in the industry PowerVR SGX Series5XT architecture is fully scalable for a wide range of area and • USSE2 delivers twice the peak performance requirements, enabling it to target markets from low cost feature-rich mobile floating point and instruction multimedia products to very high performance consoles and computing devices. throughput of Series5 USSE • YUV and colour space accelerators The family incorporates the second-generation Universal Scalable Shader Engine (USSE2™), for improved performance with a feature set that exceeds the requirements of OpenGL 2.0 and Microsoft Shader • Upgraded PowerVR Series5XT Model 3, enabling 2D, 3D and general purpose (GP-GPU) processing in a single core. shader-driven tile-based deferred rendering (TBDR) architecture • Multi-processor options enable scalability to higher performance • Support for all industry standard PowerVR SGX Family mobile and desktop graphics APIs and operating sytems Series5XT SGX543MP1-16, SGX544MP1-16, SGX554MP1-16 • Fully backwards compatible with PowerVR MBX and SGX Series5 Series5 SGX520, SGX530, SGX531, SGX535, SGX540, SGX545 Benefits Multi-standard API and OS • Extensive product line supports all area/performance requirements OpenGL
    [Show full text]
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Opengl ES / Openvg / Opencl / Webgl / Etc
    KNU-3DC : Education and Training Plan 24 July 2013 Hwanyong LEE, Ph.D. Principal Engineer & Industry Cooperation Prof., KNU 3DC [email protected] KNU-3DC Introduction • Kyungpook National Univ. 3D Convergence Technology Center . Korea Government Funded Org. 23 staffs (10 Ph.D) . Research / Supporting Industry . Training and Education • Training and Education . Dassault Training Center . KIKS(Korea Institute of Khronos Study) • Constructing New Center Building . HUGE ! 7 Floors ! (2014E) 2 KNU-3DC KIKS • KIKS(Korea Institute of Khronos Study) . Leading Role in Korea for Training and Education of Khronos Standard – Collaboration with Khronos Group . Open Lecture + Develop Coursework for • OpenGL / OpenGL ES / OpenVG / OpenCL / WebGL / etc. • Opening / Sponsoring Workshop and Forum . Participating Khronos Activities • Contributor Member (Plan, now Processing) • Active participation of Khronos WG . Other Standard Activities • Make Khronos Standard into Korea National Standard. (WebGL) • W3C, ISO/IEC JTC1, IEEE 3333.X . Research and Consulting for Industry and Academy 3 KIKS Course • KIKS Course will be categorized into . Basic / Advanced / Packaged . Special Course - For instance Overview / Optimization / Consulting • Developing Courseware (for Khronos API) . OpenGL ES Basic & Advanced . OpenGL Basic & Advanced . OpenVG . OpenCL Basic & Advanced . WebGL . Etc. – new standards (Red - Started / Orange – Start at 4Q2013 / Dark Blue – Start at 2014) 4 Different View of Courses University Computer Game Image Parallel View Graphics Develop Processing … Processing JavaScript Khronos Canvas View … iPhone Android Company Web-App Parallel App App Application Develop View Develop Develop … Develop Course Development – Packaging Example • Android Application with OpenGL ES . General Android API’s – JNI, Java etc. OpenGL ES • iPhone App. Development with OpenGL ES . General iPhone APP API – cocoa, Objective-C, etc.
    [Show full text]
  • Openvg 1.1 API Quick Reference Card - Page 1
    OpenVG 1.1 API Quick Reference Card - Page 1 OpenVG® is an API for hardware-accelerated two-dimensional Errors [4.1] vector and raster graphics. It provides a device-independent Error codes and their numerical values are defined by the VGErrorCode enumeration and can be and vendor-neutral interface for sophisticated 2D graphical obtained with the function: VGErrorCode vgGetError(void). The possible values are as follows: applications, while allowing device manufacturers to provide VG_NO_ERROR 0 VG_UNSUPPORTED_IMAGE_FORMAT_ERROR 0x1004 hardware acceleration where appropriate. VG_BAD_HANDLE_ERROR 0x1000 VG_UNSUPPORTED_PATH_FORMAT_ERROR 0x1005 • [n.n.n] refers to sections and tables in the OpenVG 1.1 API VG_ILLEGAL_ARGUMENT_ERROR 0x1001 VG_IMAGE_IN_USE_ERROR 0x1006 specification available at www.khronos.org/openvg/ VG_OUT_OF_MEMORY_ERROR 0x1002 VG_NO_CONTEXT_ERROR 0x1007 • Default values are shown in blue. VG_PATH_CAPABILITY_ERROR 0x1003 Data Types & Number Representations Colors [3.4] The sRGB color space defines values R’sRGB, G’sRGB, B’sRGB in terms of the linear lRGB primaries. Primitive Data Types [3.2] Colors in OpenVG other than those stored in image pixels are represented as non-premultiplied sRGBA color values. openvg.h khronos_type.h range Convert from lRGB to sRGB Convert from sRGB to lRGB Image pixel color and alpha values lie in the range [0,1] (gamma mapping) (1) (inverse gamma mapping) (2) VGbyte khronos_int8_t [-128, 127] unless otherwise noted. -1 VGubyte khronos_uint8_t [0, 255] R’sRGB = γ(R) R = γ (R’sRGB) Color Space Definitions -1 The linear lRGB color space is defined in terms of the G’sRGB = γ(G) G = γ (G’sRGB) VGshort khronos_int16_t [-32768, 32767] -1 standard CIE XYZ color space, following ITU Rec.
    [Show full text]
  • Troubleshooting Guide Table of Contents -1- General Information
    Troubleshooting Guide This troubleshooting guide will provide you with information about Star Wars®: Episode I Battle for Naboo™. You will find solutions to problems that were encountered while running this program in the Windows 95, 98, 2000 and Millennium Edition (ME) Operating Systems. Table of Contents 1. General Information 2. General Troubleshooting 3. Installation 4. Performance 5. Video Issues 6. Sound Issues 7. CD-ROM Drive Issues 8. Controller Device Issues 9. DirectX Setup 10. How to Contact LucasArts 11. Web Sites -1- General Information DISCLAIMER This troubleshooting guide reflects LucasArts’ best efforts to account for and attempt to solve 6 problems that you may encounter while playing the Battle for Naboo computer video game. LucasArts makes no representation or warranty about the accuracy of the information provided in this troubleshooting guide, what may result or not result from following the suggestions contained in this troubleshooting guide or your success in solving the problems that are causing you to consult this troubleshooting guide. Your decision to follow the suggestions contained in this troubleshooting guide is entirely at your own risk and subject to the specific terms and legal disclaimers stated below and set forth in the Software License and Limited Warranty to which you previously agreed to be bound. This troubleshooting guide also contains reference to third parties and/or third party web sites. The third party web sites are not under the control of LucasArts and LucasArts is not responsible for the contents of any third party web site referenced in this troubleshooting guide or in any other materials provided by LucasArts with the Battle for Naboo computer video game, including without limitation any link contained in a third party web site, or any changes or updates to a third party web site.
    [Show full text]
  • Hardware Implementation of a Tessellation Accelerator for the Openvg Standard
    IEICE Electronics Express, Vol.7, No.6, 440–446 Hardware implementation of a tessellation accelerator for the OpenVG standard Seung Hun Kim, Yunho Oh, Karam Park, and Won Woo Roa) School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, SEOUL, 120–749, KOREA a) [email protected] Abstract: The OpenVG standard has been introduced as an efficient vector graphics API for embedded systems. There have been several OpenVG implementations that are based on the software rendering of image. However, the software rendering needs more execution time and power consumption than hardware accelerated rendering. For the effi- cient hardware implementation, we merge eight pipeline stages in the original specification to four pipeline stages. The first hardware accel- eration stage is the tessellation part which is one of the pipeline stages that calculates the edge of vector graphics. In this paper, we provide an efficient hardware design for the tessellation stage and claim this would eventually reduce the execution time and hardware complexity. Keywords: OpenVG, vector graphics, tessellation, hardware acceler- ator Classification: Electron devices, circuits, and systems References [1] K. Pulli, “New APIs for mobile graphics,” Proc. SPIE - The International Society for Optical Engineering, vol. 6074, pp. 1–13, 2006. [2] Khronos Group Inc., “OpenVG specification Version 1.0.1” [Online] http://www.khronos.org/openvg/ [3] S.-Y. Lee, S. Kim, J. Chung, and B.-U. Choi, “Salable Vector Graphics (OpenVG) for Creating Animation Image in Embedded Systems,” Lecture Notes in Computer Science, vol. 4693, pp. 99–108, 2007. [4] G. He, B. Bai, Z. Pan, and X.
    [Show full text]
  • Real-Time Computer Vision with Opencv Khanh Vo Duc, Mobile Vision Team, NVIDIA
    Real-time Computer Vision with OpenCV Khanh Vo Duc, Mobile Vision Team, NVIDIA Outline . What is OpenCV? . OpenCV Example – CPU vs. GPU with CUDA . OpenCV CUDA functions . Future of OpenCV . Summary OpenCV Introduction . Open source library for computer vision, image processing and machine learning . Permissible BSD license . Freely available (www.opencv.org) Portability . Real-time computer vision (x86 MMX/SSE, ARM NEON, CUDA) . C (11 years), now C++ (3 years since v2.0), Python and Java . Windows, OS X, Linux, Android and iOS 3 Functionality Desktop . x86 single-core (Intel started, now Itseez.com) - v2.4.5 >2500 functions (multiple algorithm options, data types) . CUDA GPU (Nvidia) - 250 functions (5x – 100x speed-up) http://docs.opencv.org/modules/gpu/doc/gpu.html . OpenCL GPU (3rd parties) - 100 functions (launch times ~7x slower than CUDA*) Mobile (Nvidia): . Android (not optimized) . Tegra – 50 functions NEON, GLSL, multi-core (1.6–32x speed-up) 4 Functionality Image/video I/O, processing, display (core, imgproc, highgui) Object/feature detection (objdetect, features2d, nonfree) Geometry-based monocular or stereo computer vision (calib3d, stitching, videostab) Computational photography (photo, video, superres) Machine learning & clustering (ml, flann) CUDA and OpenCL GPU acceleration (gpu, ocl) 5 Outline . What is OpenCV? . OpenCV Example – CPU vs. GPU with CUDA . OpenCV CUDA functions . Future of OpenCV . Summary OpenCV CPU example #include <opencv2/opencv.hpp> OpenCV header files using namespace cv; OpenCV C++ namespace int
    [Show full text]
  • 3Dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli
    3dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli Interviewed by: Shayne Hodge Recorded: July 29, 2013 Mountain View, California CHM Reference number: X6887.2013 © 2013 Computer History Museum 3dfx Oral History Panel Shayne Hodge: OK. My name is Shayne Hodge. This is July 29, 2013 at the afternoon in the Computer History Museum. We have with us today the founders of 3dfx, a graphics company from the 1990s of considerable influence. From left to right on the camera-- I'll let you guys introduce yourselves. Gary Tarolli: I'm Gary Tarolli. Scott Sellers: I'm Scott Sellers. Ross Smith: Ross Smith. Gordon Campbell: And Gordon Campbell. Hodge: And so why don't each of you take about a minute or two and describe your lives roughly up to the point where you need to say 3dfx to continue describing them. Tarolli: All right. Where do you want us to start? Hodge: Birth. Tarolli: Birth. Oh, born in New York, grew up in rural New York. Had a pretty uneventful childhood, but excelled at math and science. So I went to school for math at RPI [Rensselaer Polytechnic Institute] in Troy, New York. And there is where I met my first computer, a good old IBM mainframe that we were just talking about before [this taping], with punch cards. So I wrote my first computer program there and sort of fell in love with computer. So I became a computer scientist really. So I took all their computer science courses, went on to Caltech for VLSI engineering, which is where I met some people that influenced my career life afterwards.
    [Show full text]
  • The Openvx™ Specification
    The OpenVX™ Specification Version 1.0.1 Document Revision: r31169 Generated on Wed May 13 2015 08:41:43 Khronos Vision Working Group Editor: Susheel Gautam Editor: Erik Rainey Copyright ©2014 The Khronos Group Inc. i Copyright ©2014 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.
    [Show full text]
  • The Openvx™ Specification
    The OpenVX™ Specification Version 1.2 Document Revision: dba1aa3 Generated on Wed Oct 11 2017 20:00:10 Khronos Vision Working Group Editor: Stephen Ramm Copyright ©2016-2017 The Khronos Group Inc. i Copyright ©2016-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.
    [Show full text]
  • Powervr Graphics - Latest Developments and Future Plans
    PowerVR Graphics - Latest Developments and Future Plans Latest Developments and Future Plans A brief introduction • Joe Davis • Lead Developer Support Engineer, PowerVR Graphics • With Imagination’s PowerVR Developer Technology team for ~6 years • PowerVR Developer Technology • SDK, tools, documentation and developer support/relations (e.g. this session ) facebook.com/imgtec @PowerVRInsider │ #idc15 2 Company overview About Imagination Multimedia, processors, communications and cloud IP Driving IP innovation with unrivalled portfolio . Recognised leader in graphics, GPU compute and video IP . #3 design IP company world-wide* Ensigma Communications PowerVR Processors Graphics & GPU Compute Processors SoC fabric PowerVR Video MIPS Processors General Processors PowerVR Vision Processors * source: Gartner facebook.com/imgtec @PowerVRInsider │ #idc15 4 About Imagination Our IP plus our partners’ know-how combine to drive and disrupt Smart WearablesGaming Security & VR/AR Advanced Automotive Wearables Retail eHealth Smart homes facebook.com/imgtec @PowerVRInsider │ #idc15 5 About Imagination Business model Licensees OEMs and ODMs Consumers facebook.com/imgtec @PowerVRInsider │ #idc15 6 About Imagination Our licensees and partners drive our business facebook.com/imgtec @PowerVRInsider │ #idc15 7 PowerVR Rogue Hardware PowerVR Rogue Recap . Tile-based deferred renderer . Building on technology proven over 5 previous generations . Formally announced at CES 2012 . USC - Universal Shading Cluster . New scalar SIMD shader core . General purpose compute is a first class citizen in the core … . … while not forgetting what makes a shader core great for graphics facebook.com/imgtec @PowerVRInsider │ #idc15 9 TBDR Tile-based . Tile-based . Split each render up into small tiles (32x32 for the most part) . Bin geometry after vertex shading into those tiles . Tile-based rasterisation and pixel shading .
    [Show full text]