Advanced Manufacturing: Innovation Institutes Have Demonstrated Initial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dod Manufacturing USA Institutes
DoD Manufacturing USA Institutes Small Business Briefings Ms. Tracy Frost Director, DoD Manufacturing Technology OUSD(R&E) Office of the Deputy Director for Strategic Technology Protection and Exploitation DISTRIBUTION F: Further dissemination only as directed by ODASD(MIBP) Manufacturing Technology Office (26 April 2018) or higher DoD authority. DoD ManTech Program MISSION: Anticipate and close gaps in manufacturing capabilities for affordable, timely, and low-risk development, production, and sustainment of defense systems. ManTech carries out its mission through programs in the Military Departments, participating Defense Agencies, and OSD DoD Manufacturing USA Institutes are executed out of OSD with support from the Services. Many additional DoD and other Federal agencies participate. Distribution A: Cleared for Public Release DoD Institutes Design Tenets Industry driven, public-private partnerships Investments in applied research Regional hubs of Required focus on and industrially- manufacturing education and relevant excellence with workforce manufacturing National Impact development needs technologies (cost-matched) Tenets meet key DoD ManTech requirements DISTRIBUTION A. Cleared for Public Release 5 DoD Manufacturing USA Institutes America Makes: The National Additive Manufacturing Innovation Institute Est. AUG 2012 (Youngstown, OH) • DoD MIIs part of Manufacturing USA: whole-of-government effort, in partnership Digital Manufacturing and Design Innovation with industry & academia Institute (DMDII) Est. FEB 2014 (Chicago, IL) • Strategically aligning resources to address targeted technology spaces LIFT - Lightweight Innovations For Tomorrow • Creating ‘industrial commons’ for Est. FEB 2014 (Detroit, MI) manufacturing R&D, workforce education and development AIM Photonics (photonic integrated circuits) Est. JUL 2015 (Albany, NY) • Catalyzing defense and broader industrial ‘innovation ecosystems’ across the nation NextFlex (flexible hybrid electronics) • Accelerating trust in supply chain Est. -
Advanced Manufacturing Competency Model
Advanced Manufacturing Competency Model Updated April 2010 Employment and Training Administration United States Department of Labor 1 www.doleta.gov Updated April 2010 Advanced Manufacturing Competency Model Table of Contents About the Model ............................................................................................................. 3 Tier One: Personal Effectiveness Competencies ....................................................... 4 Interpersonal Skills ............................................................................................. 4 Integrity ................................................................................................................ 4 Professionalism ................................................................................................... 4 Initiative ............................................................................................................... 4 Dependability & Reliability ............................................................................... 4 Lifelong Learning ................................................................................................ 4 Tier Two: Academic Competencies ............................................................................. 6 Science .................................................................................................................. 6 Basic Computer Skills ......................................................................................... 6 Mathematics ........................................................................................................ -
Manufacturing
Best Practices for Businesses to Reopen MANUFACTURING • Face coverings are encouraged but not required if an employee can isolate or separate their work area, either by PREPARE THE closing doors or using other physical PREPARE THE barriers to maintain six foot distance BUILDING from other individuals at all times, WORKFORCE • Zone the factory floor and encourage including individuals in adjacent • Train employees in current COVID-19 employees to remain in their cubicles or hallways. health and workplace guidelines designated area to the extent possible. to include procedures for social • Even when practicing social distancing, distancing, timeclock usage, use • Place partitions such as plexiglass to masks or face coverings must be worn when walking through hallways or of common areas, disinfecting separate people that work together in expectations and proper PPE usage. the production process. when two or more people are together in a space such as an office, conference Training should be included in daily • Increase ventilation rates and the room, or restroom. safety meetings to frequently remind percentage of outdoor air that employees and employers of their circulates into the system. • Face coverings are not required if responsibilities. wearing a face covering would subject • Assemble a team whose the person to an unsafe working • Offer teleworking where appropriate. responsibilities include implementing condition, as determined by federal, Give employees flexibility regarding and monitoring guidelines provided by state, or local occupational safety returning to the factory / office. the CDC, OSHA, the State, and by the regulators or workplace guidelines. For • Implement a daily screening process company. exceptions to this requirement, please for workers and other personnel which see the latest . -
Advanced Manufacturing Work-Based Learning Toolkit
IOWA ADVANCED MANUFACTURING WORK-BASED LEARNING TOOLKIT Employer and Educator Resource Guide Iowa Advanced Manufacturing Work-Based Learning Toolkit An employer and educator resource guide for establishing high-quality advanced manufacturing work-based learning opportunities for high school students Prepared by: Iowa Department of Education Division of Community Colleges and Workforce Preparation Grimes State Office Building 400 E. 14th Street Des Moines, IA 50319-0146 Phone: 515-281-8260 Fax: 515-242-5988 www.educateiowa.gov COMMUNITY COLLEGES & WORKFORCE PREPARATION PROSPERITY THROUGH EDUCATION With support from the following organizations: Download this toolkit and additional resources at WorkBasedLearning.EducateIowa.gov and SectorPartnerships.EducateIowa.gov It is the policy of the Iowa Department of Education not to discriminate on the basis of race, creed, color, sexual orientation, gender identity, national origin, sex, disability, religion, age, political party affiliation, or actual or potential parental, family or marital status in its programs, activities, or employment practices as required by the Iowa Code sections 216.9 and 256.10(2), Titles VI and VII of the Civil Rights Act of 1964 (42 U.S.C. § 2000d and 2000e), the Equal Pay Act of 1973 (29 U.S.C. § 206, et seq.), Title IX (Educational Amendments, 20 U.S.C.§§ 1681 – 1688), Section 504 (Rehabilitation Act of 1973, 29 U.S.C. § 794), and the Americans with Disabilities Act (42 U.S.C. § 12101, et seq.). If you have questions or complaints related to compliance with this policy by the Iowa Department of Education, please contact the legal counsel for the Iowa Department of Education, Grimes State Office Building, 400 E. -
Manufacturing Engineering Technology
MANUFACTURING ENGINEERING TECHNOLOGY “Modern manufacturing activities have become exceedingly complex because of rapidly increasing technology. This has increased the demand for highly skilled manufacturing technologists, engineers, and managers.” – Society of Manufacturing Engineers Manufacturers in the United States account for 12.5% of the total economic output employing almost 9% of the nation’s workforce. (National Association of Manufacturers, 2015) DEGREE Top 3 Reasons to Choose BACHELOR OF SCIENCE (B.S.) Manufacturing Engineering Technology (MFET) Manufacturing Engineering Students in the major are introduced to the fundamentals of Technology engineering, materials, and production processes used within industry. AT MILLERSVILLE UNIVERSITY The program provides in-depth technical content in advanced manufacturing with an emphasis on automated manufacturing and 1. Despite misconceptions that “manufacturing is dead” or computer integrated manufacturing. Students to design, develop, and that “all manufacturing has moved overseas” the National construct projects in laboratory-based courses. Technologies Network for Manufacturing Innovation (commonly commonly used in industry are emphasized throughout the curriculum. known as Manufacturing USA) estimates that the Seniors are encouraged to participate in a cooperative education or manufacturing workforce employs approximately 12 internship experience to further enhance their knowledge in technical million people nationwide. areas within an industrial environment. 2. Manufacturers in Pennsylvania -
Review of Innovation Practices in Small Manufacturing Companies
Review of Innovation Practices in Small Manufacturing Companies Anthony Warren and Gerald Susman Smeal College of Business The Pennsylvania State University With the assistance of Jonathan Butz Anupam Jaiswal Prashant Jhaveri Tolga Sakman Prepared for National Institute of Standards and Technology United States Department of Commerce Table of Contents Executive Summary......................................................................................................................5 1. Background..........................................................................................................................9 2. Definition of Innovation As Applied to This Project.........................................................14 3. Models of Innovation.........................................................................................................15 4. Taxonomy Derived by Testing Factors Related to Innovation Success ............................17 4.1 Development of Primary Categories and Key Factors .............................................17 4.2 Research Methodology .............................................................................................21 4.3 Results.......................................................................................................................22 5. Support for Factors Included in the Empirically Derived Taxonomy ...............................27 5.1 Manufacturing OR Service? .....................................................................................27 5.2 The Role -
Understanding Imaging and Metrology with the Helium Ion Microscope
Understanding Imaging and Metrology with the Helium Ion Microscope Michael T. Postek, Andras E. Vladar and Bin Ming National Institute of Standards and Technology Frontiers of Characterization and Metrology for Nanoelectronics CNSE University at Albany May 11-14, 2009 Disclaimer • Certain commercial equipment is identified in this report to adequately describe the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose Nanoelectronics Manufacturing • The helium ion microscope is an exciting new technology for nanotechnology and nanomanufacturing. – Initially, appears straightforward – But, much must be understood • Especially to obtain meaningful quantitative information. • The NIST Manufacturing Engineering Laboratory (MEL) has supported “nanomanufacturing” through the development of measurements and standards since about 1999. • Semiconductor manufacturing is “nanomanufacturing” and MEL has supported SEMATECH since its inception • New magnification calibration sample Nanoelectronics Manufacturing • Development of successful nanomanufacturing is the key link between scientific discovery and commercial products • Revolutionize and possibly revitalize many industries and yield many new high-tech products • Without high-quality imaging, accurate measurements and standards at the sub- nanometer scale, nanomanufacturing cannot succeed Imaging and Measurements -
Advanced Manufacturing in Missouri 2
Advanced Manufacturing in Missouri 2 Advanced Manufacturing in Missouri Missouri is a center for advanced manufacturing excel- Automotive Manufacturing lence, supported by a cost competitive, pro-business and innovative environment, exceptional talent, exten- Across the state, Missouri talent drives automotive sive training programs, access to raw materials, and a manufacturing into the future with significant produc- globally connected infrastructure. tion from Ford and GM. Missouri’s automotive manu- facturing plants are strategically located on the North American Automotive Alley that stretches from Toronto Aerospace Manufacturing to Mexico City, and Missouri’s Kansas City area is the second largest automotive trade hub behind Detroit, The U.S. is the world’s largest aerospace producer, and according to Brookings. In 2019, Missouri produced Missouri has a rich history in aviation, especially mili- more than 770,000 vehicles at the Ford and GM plants. tary aviation. From Charles Lindbergh, to the Mercury space program, to the latest in aerospace innovation by Boeing, Missouri has led the way in every aspect of Missouri is a Global Leader aviation for nearly 100 years. Missouri exports more than $7.3 billion in advanced Today, more than 16,000 of Missouri’s highly trained manufacturing products to more than 210 countries workforce builds the F/A-18, EA-18, F-15, and T-7A fighter every year. The state is a world leader in aerospace jets and the MQ-25 unmanned refueler at Boeing’s and automotive manufacturing, and our expertise Defense, Space and Security facilities, along with com- extends to producing everything from egg carts to posite parts for the 777X and a huge array of military aluminum boats. -
Additive Manufacturing Pioneering Affordable Aerospace Manufacturing
Materials and Manufacturing National Aeronautics and Space Administration Additive Manufacturing Pioneering Affordable Aerospace Manufacturing Rapidly evolving digital tools, such as additive systems design and other aerospace materials manufacturing, are the leading edge of a revo- to meet NASA mission and industry needs. At-A-Glance lution in the design and manufacture of space Marshall is helping establish the standards Propulsion system development requires systems that enables rapid prototyping and and qualifications “from art to part” for the new, more affordable manufacturing tech- reduces production times. Marshall has unique use of these advanced techniques and the niques and technologies in a constrained expertise in leveraging new digital tools, 3D parts produced using them in aerospace or budget environment, while future in-space printing, and other advanced manufacturing elsewhere in the U.S. industrial base. applications will require in-space manu- technologies and applying them to propulsion facturing and assembly of parts and systems. Marshall is advancing cutting- edge commercial capabilities in additive and digital manufacturing and applying them to aerospace challenges. The Center is developing the standards by which new manufacturing processes and parts will be tested and qualified. Selective laser melting enables faster and cheaper component development. NASA Marshall Space Flight Center | Core Capabilities and Services Accelerating Design and Development Additive Manufacturing technology for plastics includes: for Plastics and Metals • Stereo-lithography: often used for flow cell models and cold flow testing, as the parts are water resistant and can be made see-through As designers harness the capabilities of Additive Manufacturing, the way to channels inside: they think is changing. -
Policy Recommendations to Stimulate U.S. Manufacturing Innovation
POLICY RECOMMENDATIONS TO STIMULATE U.S. MANUFACTURING INNOVATION By Stephen Ezell Vice President for Global Innovation Policy, Information Technology and Innovation Foundation INTRODUCTION After dropping significantly in the Great Recession, inflation-adjusted.S. U manufacturing output has continued to decline as a share of gross domestic product (GDP), down 3.5 percent between 2009 and 2019 (0.41 percentage points), even with the strong cyclical rebound in the motor vehicle sector. While U.S. manufacturing performs adequately in a few sectors—such as primary metals, chemicals, computers and electronic products (including semiconductors)—most other sectors are smaller as share of the U.S. economy than they were a decade ago.1 To boost U.S. manufacturing output and innovation, effective manufacturing strategies—articulated at both the federal and state levels and underpinned by a suite of effective, specific policies—will be needed. This report first examines the underperformance of American manufacturing and then examines how a concerted suite of policies—focused on addressing strategy and analysis, technology development and diffusion, finance, tax, and talent challenges and opportunities—could be implemented to revitalize America’s manufacturing economy. THE STATE OF AMERICA’S MANUFACTURING ECONOMY Across a number of facets—from manufacturing value added, productivity, and employment to trade balances—America’s manufacturing economy continues to underperform its potential. Perhaps the most significant indicator is weakness in real U.S. manufacturing output, which has fallen as a share of GDP over the last decade. In fact, real manufacturing value added declined 13 percent from 2007 to 2019, from 13.2 percent of GDP to 11.5 percent. -
Manufacturing Activities During the Covid-19 Public Health Emergency
INTERIM GUIDANCE FOR MANUFACTURING ACTIVITIES DURING THE COVID-19 PUBLIC HEALTH EMERGENCY When you have read this document, you can affirm at the bottom. As of June 26, 2020 Purpose This Interim Guidance for Manufacturing Activities during the COVID-19 Public Health Emergency (“Interim COVID-19 Guidance for Manufacturing”) was created to provide owners/operators of manufacturing sites and their employees and contractors with precautions to help protect against the spread of COVID-19 as manufacturing sites reopen. These guidelines are minimum requirements only and any employer is free to provide additional precautions or increased restrictions. These guidelines are based on the best-known public health practices at the time of Phase I of the State’s reopening, and the documentation upon which these guidelines are based can and does change frequently. The Responsible Parties – as defined below – are accountable for adhering to all local, state and federal requirements relative to manufacturing activities. The Responsible Parties are also accountable for staying current with any updates to these requirements, as well as incorporating same into any manufacturing activities and/or Site Safety Plan. Background On March 7, 2020, Governor Andrew M. Cuomo issued Executive Order 202, declaring a state of emergency in response to COVID-19. Community transmission of COVID-19 has occurred throughout New York. To minimize further spread, social distancing of at least six feet must be maintained between individuals, where possible. On March 20, 2020, Governor Cuomo issued Executive Order 202.6, directing all non-essential businesses to close in-office personnel functions. Essential businesses, as defined by Empire State Development Corporation (ESD) guidance, were not subject to the in-person restriction, but were, however, directed to comply with the guidance and directives for maintaining a clean and safe work environment issued by the New York State Department of Health (DOH), and were strongly urged to maintain social distancing measures to the extent possible. -
High Efficiency Modular Chemical Processes (HEMCP)
ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Dickson Ozokwelu, Technology Manager Processes (HEMCP) Advanced Manufacturing Office September 27, 2014 Modular Process Intensification - Framework for R&D Targets 1 | Advanced Manufacturing Office Presentation Outline 1. What is Process Intensification? 2. DOE’s !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced Manufacturing Office What is Process Intensification (PI)? Rethinking existing operation schemes into ones that are both more precise and more efficient than existing operations Resulting in… • Smaller equipment, reduced number of process steps • Reduced plant size and complexity • Modularity may replace scale up • Reduced feedstock consumption – getting more from less • Reduced pollution, energy use, capital and operating costs 3 | Advanced Manufacturing Office Vision of the Process Intensification Institute This institute will bring together US corporations, national laboratories and universities to collaborate in development of next generation, innovative, simple, modular, ultra energy efficient manufacturing technologies to enhance US global competitiveness, and positively affect the economy and job creation “This institute will provide the shared assets to Create the foundation to continue PI development and help companies, most importantly small PI equipment manufacturing in the U.S. and support manufacturers, access the