Understanding Vapor Diffusion and Condensation

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Vapor Diffusion and Condensation uilding enclosure assemblies temperature is the temperature at which the moisture content, age, temperature, and serve a variety of functions RH of the air would be 100%. This is also other factors. Vapor resistance is commonly to deliver long-lasting sepa- the temperature at which condensation will expressed using the inverse term “vapor ration of the interior building begin to occur. permeance,” which is the relative ease of environment from the exteri- The direction of vapor diffusion flow vapor diffusion through a material. or, one of which is the control through an assembly is always from the Vapor-retarding materials are often Bof vapor diffusion. Resistance to vapor diffu- high vapor pressure side to the low vapor grouped into classes (Classes I, II, III) sion is part of the environmental separation; pressure side, which is often also from the depending on their vapor permeance values. however, vapor diffusion control is often warm side to the cold side, because warm Class I (<0.1 US perm) and Class II (0.1 to primarily provided to avoid potentially dam- air can hold more water than cold air (see 1.0 US perm) vapor retarder materials are aging moisture accumulation within build- Figure 2). Importantly, this means it is not considered impermeable to near-imperme- ing enclosure assemblies. While resistance always from the higher RH side to the lower able, respectively, and are known within to vapor diffusion in wall assemblies has RH side. the industry as “vapor barriers.” Some long been understood, ever-increasing ener- The direction of the vapor drive has materials that fall into this category include gy code requirements have led to increased important ramifications with respect to the polyethylene sheet, sheet metal, aluminum insulation levels, which in turn have altered placement of materials within an assembly, foil, some foam plastic insulations (depend- the way assemblies perform with respect to and what works in one climate may not work ing on thickness), and self-adhered (peel- vapor diffusion and condensation control. In in another. Improper use and placement of and-stick) bituminous membranes. Class III particular, for construction in cold climates, vapor-impermeable materials within a wall (1.0 to 10 US perm) vapor retarder materials these changes have led to the widespread can lead to condensation and, potentially, are considered semipermeable, and typical use of exterior-insulated and split-insulated to damaged materials wall assemblies (see Figure 1). and fungal growth. PrinCiPles of VaPor diffusion Controlling Fundamentally, vapor diffusion is the VAPOR DIFFUSION movement of water vapor molecules through Vapor-retarding porous materials (e.g., wood, insulation, materials are used drywall, etc.) as a result of differences in to control vapor dif- vapor pressure. Vapor pressure differences fusion through wall occur as the result of variations in air tem- assemblies. All build- perature and sources of humidity, such as ing materials provide occupants, showers, pools, plants, etc. The some resistance to commonly used term “relative humidity” vapor diffusion, and (RH), which is expressed as a percentage, the amount of resis- refers to the amount of water vapor in the tance varies depend- Figure 1 – Exterior-insulated (left), split-insulated (middle), and air (i.e., the vapor pressure) divided by the ing on the properties stud-cavity-insulated (right) steel-stud walls are three ways maximum amount of water vapor that the of the material. These to insulate the building enclosure, but these walls can provide air could hold at the same temperature (i.e., properties can change significantly different performance with respect to vapor diffusion the saturation vapor pressure). Dew point with the RH and and condensation. A P R I L 2 0 1 7 I N T E R F A C E • 3 3 Figure 2 – Example of wall assembly showing outward vapor drive Figure 3 – Schematic vertical cross section showing how a vapor for a cold climate (interior on the left and exterior on the right). barrier on the interior (left) side of a wall assembly can control vapor diffusion through the assembly (interior on the left and materials that fall into this category include a wall assembly where exterior on the right). latex paints, plywood, OSB, and some foam it can restrict vapor plastic insulations (depending on thick- diffusion through the wall and potentially within assemblies. ness). Materials greater than 10 US perms create a condensing plane within the wall A potentially damaging example of are considered vapor-permeable. assembly (see Figure 4). restricted drying of an assembly can be Figure 3 illustrates how a vapor retarder caused by a condition referred to as a “dou- can be used in a cold climate to control the Wetting Vs. drying ble vapor barrier,” in which a vapor retarder diffusion of vapor through the wall assembly. Vapor diffusion is typically thought of is installed at two different locations in as a negative phenomenon—one that needs an assembly such that any moisture that When does Condensation oCCur? to be completely stopped. In reality, vapor manages to get between the vapor retarder Condensation occurs within a wall diffusion is a positive mechanism that can materials is unable to dry effectively. When assembly when the temperature of a mate- be used to a designer’s benefit, and is a very the materials between the vapor retarders rial in the assembly is lower than the dew important drying mechanism for an enclosure are moisture-sensitive, this trapped mois- point temperature of the air at that location. assembly. In fact, vapor diffusion is the only ture can lead to damage. Moisture between This will typically occur when the tempera- process through which the interiors of most the vapor retarders may be the result of ture of the cold side of the assembly is lower in-service wall assemblies can dry. The con- air leakage, rainwater ingress, or built-in than the dew point temperature of the warm trol of vapor diffusion within a wall assembly construction moisture. Figure 5 illustrates side, and the materials on the cold (low is therefore a balance of minimizing or man- a schematic double vapor barrier situation vapor pressure) side provide greater resis- aging wetting sources and maximizing drying restricting the drying of a wall assembly. tance to vapor diffusion than the materials potential, should the wall be constructed wet on the warm (high vapor pressure) side of or somehow be wetted in-service. This is par- Wall assemBly design an assembly. An extreme example of this ticularly important with highly insulated wall For the design of durable wall assem- condition arises if a vapor retarder material assemblies, as more insulation means less blies, the placement of insulation and vapor- is placed on the low vapor pressure side of heat energy is available to dry moisture from retarding materials needs to be carefully Figure 4 – Schematic vertical cross section showing condensation Figure 5 – Schematic vertical cross section showing air leakage (red of moisture on a vapor-retarding material placed on the wrong (cold arrow) from the interior to the exterior, causing moisture to become side) of a wall assembly (interior on the left and exterior on the trapped within a wall assembly due to the presence of a two vapor right). barriers (interior on the left and exterior on the right). 3 4 • I N T E R F A C E A P R I L 2 0 1 7 considered. Many build- ing codes and building enclosure design pub- lications provide guid- ance for the selection of appropriate vapor control layers within wall assem- blies in North American climate zones, based on the class of vapor retard- er (I, II, or III). This guid- ance is also based on the anticipated indoor condi- tions for certain building types, which is related to exterior climate, indoor moisture generation rates, and ventilation rates. Walls with insulation between the studs are pervasively used in North Figure 6 – Stud-insulated wall assembly using Figure 7 – Split-insulated wall assembly using semi- American construction mineral wool batt insulation is relatively standard rigid mineral wool insulation to provide a combination (see Figure 6). In cold and straightforward. of the performance of stud-insulated and exterior- climates, interior vapor insulated walls. These walls can provide good per- control is often provided by a polyeth- sheathing will be and the lower the formance with respect to vapor diffusion and air leak- ylene sheet vapor barrier, although other risk of condensation. This can also age, but is important to use the correct type of insul­ options—such as vapor barrier paint, Kraft apply to the steel studs, as when ation on both the exterior and within the stud cavity, paper, and smart vapor retarder prod- insulation is only provided in the and also the correct type of sheathing membrane. ucts—can also be used. This interior vapor stud cavity, these studs create retarder limits the diffusion of moisture significant thermal bridges that can also some drying to the interior is possible in the through the wall assembly toward the exte- potentially create condensation locations. event of moisture entering the stud cavity rior. Outward vapor diffusion drying can A special condition exists when a rela- (see Figure 8). In terms of balancing the still occur from within the wall cavity to the tively vapor-impermeable insulation prod- wetting and drying potential, split-insulat- exterior through the sheathing, membrane, uct, such as many foam plastic insulation ed walls with vapor-impermeable exterior and cladding. products (i.e., extruded polystyrene [XPS], insulation are generally more sensitive than In some cases, it can be advantageous to polyisocyanurate, medium-density spray walls with permeable exterior insulation.
Recommended publications
  • Guide to Understanding Condensation
    Guide to Understanding Condensation The complete Andersen® Owner-To-Owner™ limited warranty is available at: www.andersenwindows.com. “Andersen” is a registered trademark of Andersen Corporation. All other marks where denoted are marks of Andersen Corporation. © 2007 Andersen Corporation. All rights reserved. 7/07 INTRODUCTION 2 The moisture that suddenly appears in cold weather on the interior We have created this brochure to answer questions you may have or exterior of window and patio door glass can block the view, drip about condensation, indoor humidity and exterior condensation. on the floor or freeze on the glass. It can be an annoying problem. We’ll start with the basics and offer solutions and alternatives While it may seem natural to blame the windows or doors, interior along the way. condensation is really an indication of excess humidity in the home. Exterior condensation, on the other hand, is a form of dew — the Should you run into problems or situations not covered in the glass simply provides a surface on which the moisture can condense. following pages, please contact your Andersen retailer. The important thing to realize is that if excessive humidity is Visit the Andersen website: www.andersenwindows.com causing window condensation, it may also be causing problems elsewhere in your home. Here are some other signs of excess The Andersen customer service toll-free number: 1-888-888-7020. humidity: • A “damp feeling” in the home. • Staining or discoloration of interior surfaces. • Mold or mildew on surfaces or a “musty smell.” • Warped wooden surfaces. • Cracking, peeling or blistering interior or exterior paint.
    [Show full text]
  • Chapter 3 Equations of State
    Chapter 3 Equations of State The simplest way to derive the Helmholtz function of a fluid is to directly integrate the equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be applied to either vapour-liquid or supercritical phenomena without any conceptual difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is also possible to determine transitions between these phenomena from the same inputs. All of the physical properties of the fluid except ideal gas are also simultaneously calculated. Many equations of state have been proposed in the literature with either an empirical, semi- empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin (1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996), Wei and Sadus (2000) and Sengers et al. (2000). The van der Waals equation of state (1873) was the first equation to predict vapour-liquid coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) improved the accuracy of the van der Waals equation by proposing a temperature dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed additional modifications of the Redlich-Kwong equation to more accurately predict the vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and Starling (1969) modified the repulsive term of van der Waals equation of state and obtained more accurate expressions for hard sphere systems. Christoforakos and Franck (1986) modified both the attractive and repulsive terms of van der Waals equation of state. Boublik (1981) extended the Carnahan-Starling hard sphere term to obtain an accurate equation for hard convex geometries.
    [Show full text]
  • Chapter 3 Bose-Einstein Condensation of an Ideal
    Chapter 3 Bose-Einstein Condensation of An Ideal Gas An ideal gas consisting of non-interacting Bose particles is a ¯ctitious system since every realistic Bose gas shows some level of particle-particle interaction. Nevertheless, such a mathematical model provides the simplest example for the realization of Bose-Einstein condensation. This simple model, ¯rst studied by A. Einstein [1], correctly describes important basic properties of actual non-ideal (interacting) Bose gas. In particular, such basic concepts as BEC critical temperature Tc (or critical particle density nc), condensate fraction N0=N and the dimensionality issue will be obtained. 3.1 The ideal Bose gas in the canonical and grand canonical ensemble Suppose an ideal gas of non-interacting particles with ¯xed particle number N is trapped in a box with a volume V and at equilibrium temperature T . We assume a particle system somehow establishes an equilibrium temperature in spite of the absence of interaction. Such a system can be characterized by the thermodynamic partition function of canonical ensemble X Z = e¡¯ER ; (3.1) R where R stands for a macroscopic state of the gas and is uniquely speci¯ed by the occupa- tion number ni of each single particle state i: fn0; n1; ¢ ¢ ¢ ¢ ¢ ¢g. ¯ = 1=kBT is a temperature parameter. Then, the total energy of a macroscopic state R is given by only the kinetic energy: X ER = "ini; (3.2) i where "i is the eigen-energy of the single particle state i and the occupation number ni satis¯es the normalization condition X N = ni: (3.3) i 1 The probability
    [Show full text]
  • Liquid-Vapor Equilibrium in a Binary System
    Liquid-Vapor Equilibria in Binary Systems1 Purpose The purpose of this experiment is to study a binary liquid-vapor equilibrium of chloroform and acetone. Measurements of liquid and vapor compositions will be made by refractometry. The data will be treated according to equilibrium thermodynamic considerations, which are developed in the theory section. Theory Consider a liquid-gas equilibrium involving more than one species. By definition, an ideal solution is one in which the vapor pressure of a particular component is proportional to the mole fraction of that component in the liquid phase over the entire range of mole fractions. Note that no distinction is made between solute and solvent. The proportionality constant is the vapor pressure of the pure material. Empirically it has been found that in very dilute solutions the vapor pressure of solvent (major component) is proportional to the mole fraction X of the solvent. The proportionality constant is the vapor pressure, po, of the pure solvent. This rule is called Raoult's law: o (1) psolvent = p solvent Xsolvent for Xsolvent = 1 For a truly ideal solution, this law should apply over the entire range of compositions. However, as Xsolvent decreases, a point will generally be reached where the vapor pressure no longer follows the ideal relationship. Similarly, if we consider the solute in an ideal solution, then Eq.(1) should be valid. Experimentally, it is generally found that for dilute real solutions the following relationship is obeyed: psolute=K Xsolute for Xsolute<< 1 (2) where K is a constant but not equal to the vapor pressure of pure solute.
    [Show full text]
  • It's Just a Phase!
    BASIS Lesson Plan Lesson Name: It’s Just a Phase! Grade Level Connection(s) NGSS Standards: Grade 2, Physical Science FOSS CA Edition: Grade 3 Physical Science: Matter and Energy Module *Note to teachers: Detailed standards connections can be found at the end of this lesson plan. Teaser/Overview Properties of matter are illustrated through a series of demonstrations and hands-on explorations. Students will learn to identify solids, liquids, and gases. Water will be used to demonstrate the three phases. Students will learn about sublimation through a fun experiment with dry ice (solid CO2). Next, they will compare the propensity of several liquids to evaporate. Finally, they will learn about freezing and melting while making ice cream. Lesson Objectives ● Students will be able to identify the three states of matter (solid, liquid, gas) based on the relative properties of those states. ● Students will understand how to describe the transition from one phase to another (melting, freezing, evaporation, condensation, sublimation) ● Students will learn that matter can change phase when heat/energy is added or removed Vocabulary Words ● Solid: A phase of matter that is characterized by a resistance to change in shape and volume. ● Liquid: A phase of matter that is characterized by a resistance to change in volume; a liquid takes the shape of its container ● Gas: A phase of matter that can change shape and volume ● Phase change: Transformation from one phase of matter to another ● Melting: Transformation from a solid to a liquid ● Freezing: Transformation
    [Show full text]
  • Capillary Condensation of Colloid–Polymer Mixtures Confined
    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) S3411–S3420 PII: S0953-8984(03)66420-9 Capillary condensation of colloid–polymer mixtures confined between parallel plates Matthias Schmidt1,Andrea Fortini and Marjolein Dijkstra Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Received 21 July 2003 Published 20 November 2003 Onlineatstacks.iop.org/JPhysCM/15/S3411 Abstract We investigate the fluid–fluid demixing phase transition of the Asakura–Oosawa model colloid–polymer mixture confined between two smooth parallel hard walls using density functional theory and computer simulations. Comparing fluid density profiles for statepoints away from colloidal gas–liquid coexistence yields good agreement of the theoretical results with simulation data. Theoretical and simulation results predict consistently a shift of the demixing binodal and the critical point towards higher polymer reservoir packing fraction and towards higher colloid fugacities upon decreasing the plate separation distance. This implies capillary condensation of the colloid liquid phase, which should be experimentally observable inside slitlike micropores in contact with abulkcolloidal gas. 1. Introduction Capillary condensation denotes the phenomenon that spatial confinement can stabilize a liquid phase coexisting with its vapour in bulk [1, 2]. In order for this to happen the attractive interaction between the confining walls and the fluid particles needs to be sufficiently strong. Although the main body of work on this subject has been done in the context of confined simple liquids, one might expect that capillary condensation is particularly well suited to be studied with colloidal dispersions. In these complex fluids length scales are on the micron rather than on the ångstrom¨ scale which is typical for atomicsubstances.
    [Show full text]
  • Alside Condensation Guide Download
    Condensation Your Guide To Common Household Condensation C Understanding Condensation Common household condensation, or “sweating” on windows is caused by excess humidity or water vapor in a home. When this water vapor in the air comes in contact with a cold surface such as a mirror or window glass, it turns to water droplets and is called condensation. Occasional condensation, appearing as fog on the windows or glass surfaces, is normal and is no cause for concern. On the other hand, excessive window Conquering the Myth . Windows Ccondensation, frost, peeling paint, or Do Not Cause Condensation. moisture spots on ceilings and walls can be signs of potentially damaging humidity You may be wondering why your new levels in your home. We tend to notice energy-efficient replacement windows show condensation on windows and mirrors first more condensation than your old drafty ones. because moisture doesn’t penetrate these Your old windows allowed air to flow between surfaces. Yet they are not the problem, simply the inside of your home and the outdoors. the indicators that you need to reduce the Your new windows create a tight seal between indoor humidity of your home. your home and the outside. Excess moisture is unable to escape, and condensation becomes visible. Windows do not cause condensation, but they are often one of the first signs of excessive humidity in the air. Understanding Condensation Where Does Indoor Outside Recommended Humidity Come From? Temperature Relative Humidity All air contains a certain amount of moisture, +20°F 30% - 35% even indoors. And there are many common +10°F 25% - 30% things that generate indoor humidity such as your heating system, humidifiers, cooking and 0°F 20% - 25% showers.
    [Show full text]
  • Preventing Condensation
    Preventing condensation Preventing condensation Consider conditions of condensation, for example, a room or warehouse where the air is 27°C (80°F) and • What causes condensation? the relative humidity is 75%. In this room, any object • How can conditions of condensation be anticipated? with a temperature of 22°C (71°F) or lower will become • What can be done to prevent condensation? covered by condensation. Unwanted condensation on products or equipment How can conditions of condensation be anticipated? can have consequences. Steel and other metals stored The easiest way to anticipate condensing conditions in warehouses can corrode or suffer surface damage as is to measure the dew point temperature in the area a result of condensation. Condensation on packaged of interest. This can be done simply with a portable beverage containers can damage labels or cardboard indicator, or a fixed transmitter can be used to track packaging materials. Water-cooled equipment, such dew point temperature full-time. The second piece of as blow molding machinery, can form condensation information required is the temperature of the object on critical surfaces that impair product quality or the that is to be protected from condensation. In all cases, productivity of the equipment. How can we get a grip as the dew point temperature reaches the object’s on this potential problem? temperature, condensation on the object is imminent. The best way to capture an object’s temperature is dependent on the specific application. For example, What causes condensation? water-cooled machinery may already provide a display or output of coolant temperature (and therefore, a Condensation will form on any object when the close approximation of the temperature of the object temperature of the object is at or below the dew that is being cooled).
    [Show full text]
  • Chapter 3 Moist Thermodynamics
    Chapter 3 Moist thermodynamics In order to understand atmospheric convection, we need a deep understand- ing of the thermodynamics of mixtures of gases and of phase transitions. We begin with a review of some of the fundamental ideas of statistical mechanics as it applies to the atmosphere. We then derive the entropy and chemical potential of an ideal gas and a condensate. We use these results to calcu- late the saturation vapor pressure as a function of temperature. Next we derive a consistent expression for the entropy of a mixture of dry air, wa- ter vapor, and either liquid water or ice. The equation of state of a moist atmosphere is then considered, resulting in an expression for the density as a function of temperature and pressure. Finally the governing thermody- namic equations are derived and various alternative simplifications of the thermodynamic variables are presented. 3.1 Review of fundamentals In statistical mechanics, the entropy of a system is proportional to the loga- rithm of the number of available states: S(E; M) = kB ln(δN ); (3.1) where δN is the number of states available in the internal energy range [E; E + δE]. The quantity M = mN=NA is the mass of the system, which we relate to the number of molecules in the system N, the molecular weight of these molecules m, and Avogadro’s number NA. The quantity kB is Boltz- mann’s constant. 35 CHAPTER 3. MOIST THERMODYNAMICS 36 Consider two systems in thermal contact, so that they can exchange en- ergy. The total energy of the system E = E1 + E2 is fixed, so that if the energy of system 1 increases, the energy of system 2 decreases correspond- ingly.
    [Show full text]
  • Sub-Slab Vapor Sampling Procedures
    Sub-Slab Vapor Sampling Procedures RR-986 July 2014 Table of Contents I. Introduction .......................................................................................................................... 2 II. Sub-Slab Sample Ports .......................................................................................................... 2 A. Distribution of sub-slab probes ...................................................................................... 3 B. Permanent vs. temporary sub-slab probes .................................................................... 4 C. Tubing used in the sample train ..................................................................................... 4 D. Abandonment of sub-slab probes .................................................................................. 4 E. Sub-slab vapor samples collected from a sump pit ....................................................... 4 III. Leak Testing and Collecting a Sub-slab Sample .................................................................... 5 A. Shut-in test ..................................................................................................................... 6 B. Helium shroud ................................................................................................................ 7 C. Other leak detection methods for probe seals .............................................................. 7 D. Sample collection after leak testing ............................................................................... 8
    [Show full text]
  • Condensation Information October 2016
    Sun Windows General Information Section 1 Condensation Information October 2016 Condensation Every year, with the arrival of cold, winter weather, questions about condensation arise. The moisture that forms on window glass, obscuring the view, freezing or even collecting in puddles on the window sill, can be irritating and possibly even damaging. The first reaction may be to blame the windows for this problem, yet windows do not cause condensation. Excessive water vapor in the air, the temperature of the air and air circulation or movement are the three factors involved in the formation of condensation. Today’s modern homes are built very “air-tight” for energy efficiency. They provide better insulating properties and a cleaner, more comfortable living environment than older homes. These improvements in home design and construction have created some new problems as well. The more “air-tight” a home is the less fresh air that home circulates. A typical central air and heat system only circulates the air already within the home. This air becomes saturated with by-products of normal living. One of these is water vapor. Excessive water vapor in the home will most likely show up as condensation on windows. Condensation on your windows is a warning sign that the relative humidity (the measure of water vapor in the air) in your home is too high. You may see it develop on your windows, but it may be damaging the structural components and finishes through-out your home. It can also be damaging to your health. The following review should answer many questions concerning condensation and provide good information that will help in controlling condensation.
    [Show full text]
  • VAPOR-LIQUID EQUILIBRIA Using the Gibbs Energy and the Common Tangent Plane Criterion
    ChE curriculum VAPOR-LIQUID EQUILIBRIA Using the Gibbs Energy and the Common Tangent Plane Criterion MARÍA DEL MAR OLAYA, JUAN A. REYES-LABARTA, MARÍA DOLORES SERRANO, ANTONIO MARCILLA University of Alicante • Apdo. 99, Alicante 03080, Spain hase thermodynamics is often perceived as a difficult overall composition. This is the case with the binary system subject with which many students never become fully in Figure 1(a); it is homogeneous for all compositions. The gM comfortable. It is our opinion that the Gibbsian geo- vs. composition curve is concave down, meaning that no split Pmetrical framework, which can be easily represented in Excel occurs in the global mixture composition to give two liquid spreadsheets, can help students to gain a better understanding phases. Geometrically, this implies that it is impossible to find of phase equilibria using only elementary concepts of high two different points on the gM curve sharing a common tangent school geometry. line. In contrast, the change of curvature in the gM function Phase equilibrium calculations are essential to the simula- as shown in Figure 1(b) permits the existence of two conju- tion and optimization of chemical processes. The task with gated points (I and II) that do share a common tangent line these calculations is to accurately predict the correct number and which, in turn, lead to the formation of two equilibrium of phases at equilibrium present in the system and their com- liquid phases (LL). Any initial mixture, as for example zi in positions. Methods for these calculations can be divided into Figure 1(b), located between the inflection points s on the M 2 M dx2 two main categories: the equation-solving approach (K-value g curve, is intrinsically unstable (d g / i <0) and splits method) and minimization of the Gibbs free energy.
    [Show full text]