Strophoids, a family of cubic curves with remarkable properties Hellmuth Stachel
[email protected] — http://www.geometrie.tuwien.ac.at/stachel 6th International Conference on Engineering Graphics and Design University Transilvania, June 11–13, Brasov/Romania Table of contents 1. Definition of Strophoids 2. Associated Points 3. Strophoids as a Geometric Locus June 12, 2015: 6th Internat. Conference on Engineering Graphics and Design, Brasov/Romania 1/29 replacements 1. Definition of Strophoids ′ F Definition: An irreducible cubic is called circular if it passes through the absolute circle-points. asymptote A circular cubic is called strophoid ′ if it has a double point (= node) with G orthogonal tangents. F g A strophoid without an axis of y G symmetry is called oblique, other- wise right. S S : (x 2 + y 2)(ax + by) − xy =0 with a, b ∈ R, (a, b) =6 (0, 0). In x N fact, S intersects the line at infinity at (0 : 1 : ±i) and (0 : b : −a). June 12, 2015: 6th Internat. Conference on Engineering Graphics and Design, Brasov/Romania 2/29 1. Definition of Strophoids F ′ The line through N with inclination angle ϕ intersects S in the point asymptote 2 2 ′ sϕ c ϕ s ϕ cϕ G X = , . a cϕ + b sϕ a cϕ + b sϕ F g y G X This yields a parametrization of S. S ϕ = ±45◦ gives the points G, G′. ϕ The tangents at the absolute circle- N x points intersect in the focus F . June 12, 2015: 6th Internat. Conference on Engineering Graphics and Design, Brasov/Romania 3/29 1.