Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)

Total Page:16

File Type:pdf, Size:1020Kb

Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005) NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G. Connelly Ture Damhus University of Bristol, UK Novozymes A/S, Denmark Richard M. Hartshorn Alan T. Hutton University of Canterbury, NewZealand University of Cape Town, South Africa Cover images # Murray Robertson/visual elements 1998–99, taken from the 109 Visual Elements Periodic Table, available at www.chemsoc.org/viselements ISBN 0-85404-438-8 Acatalogue record for this book is availablefrom the British Library # InternationalUnion of Pure and Applied Chemistry,2005 All rights reserved Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright,Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permissioninwriting of The Royal Society of Chemistry, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriateReproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page. Published for the International Union of Pure and Applied Chemistry by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK RegisteredCharity Number 207890 For further information see our web site at www.rsc.org and the IUPAC site at www.iupac.org Typeset by Alden Bookset, Northampton,UK Printed by Biddles Ltd, King’s Lynn, Norfolk, UK Preface Chemicalnomenclature must evolve to reflect the needs of the community that makes use of it. In particular, nomenclature must be createdtodescribe new compounds or classes of compounds; modified to resolve ambiguities which might arise; or clarified where there is confusion over the way in which nomenclature should be used. There is also aneed to make nomenclature as systematic and uncomplicated as possible in order to assist less familiar users (for example, because they are only in the process of studying chemistry or are non- chemists who need to deal with chemicalsatwork or at home). Arevision of Nomenclature of Inorganic Chemistry, IUPAC Recommendations 1990 (Red BookI)was therefore initiated in 1998, under the guidance of the IUPAC Commission on Nomenclature of InorganicChemistry (CNIC) and then,onthe abolition of CNIC in 2001 as part of the general restructuringofIUPAC, by aproject group workingunder the auspices of the Division of ChemicalNomenclature and Structure Representation (Division VIII). The need to ensurethat inorganic and organic nomenclature systems are, as far as possible, consistent has resulted in extensive cooperation betweenthe editorsofthe revised Red Book and the editorsof Nomenclature of Organic Chemistry, IUPAC Recommendations (the revised ‘Blue Book’, in preparation). At present,the concept of preferred IUPAC names (PINs), an important element in the revision of the Blue Book, has not been extended to inorganicnomenclature (though preferred names are used herein for organic, i.e. carbon- containing, compounds when appropriate). Aplanned future project on inorganic PINswill need to face the problem of choice betweenthe equally valid nomenclature systems currently in use. The present book supersedes not only Red Book Ibut also, where appropriate, Nomenclature of Inorganic Chemistry II, IUPAC Recommendations 2000 (Red BookII). One of the main changes from RedBookIis the different organization of material, adopted to improveclarity. Thus, Chapters IR-5 (Compositional Nomenclature, and Overview of Names of Ions and Radicals), IR-6 (Parent HydrideNames and Substitutive Nomenclature), and IR-7 (Additive Nomenclature) deal with the general characteristicsofthe three main nomenclature systemsapplied to inorganic compounds. (Note that the notation ‘IR-’isused to distinguish chaptersand sections in the current book from those in RedBook I, prefixed ‘I-’). The next three chaptersdeal with their application,particularly that of additive nomenclature, to three large classes of compounds: inorganic acids and derivatives (Chapter IR-8), coordination compounds (Chapter IR-9) and organometallic compounds (Chapter IR-10). Overall, the emphasisonadditive nomenclature (generalized from the classical nomenclature of coordination compounds) which was already apparent in Red Book Iis reinforced here. Examples are even includedoforganic compounds, from the borderline betweeninorganic and organic chemistry, which may be conveniently named usingadditive nomenclature (although their PINs will be different). One important addition in this book is Chapter IR-10 on Organometallic Compounds. The separation of this material from that on Coordination Compounds (Chapter IR-9) reflects the huge growth in importanceoforganometallic chemistry and the very different v PREFACE problemsassociated with the presence of p -bondedligands. ChapterIR-9 is also considerably changed(cf.Red BookI,ChapterI-10). This revised chapter includes a clarification of the use of the Z and k conventions in coordination and organometallic compounds (Section IR-9.2.4.3); new rules for the orderingofcentral atoms in names of polynuclear compounds (Section IR-9.2.5.6); the bringingtogetherofsections on configuration (Section IR-9.3)and their separation from thoseonconstitution (Section IR-9.2); and the addition of polyhedral symbols for T-shaped (Section IR-9.3.3.7) and see- saw (Section IR-9.3.3.8) molecules, alongwith guidance on how to choose betweenthese shapesand those of closely related structures(Section IR-9.3.2.2). The chapter on Oxoacids and Derived Anions (Red Book I, ChapterI-9) has also been extensively modified. Now called InorganicAcids and Derivatives (Chapter IR-8), it includesthe slightly revised concept of ‘hydrogen names’ in Section IR-8.4 (and some traditional ‘ous’ and ‘ic’names have been reinstated for consistency and because they are requiredfor organic nomenclature purposes, i.e.inthe new Blue Book). The reader facing the problem of how to nameagiven compound or species may find help in several ways. Aflowchart is provided in Section IR-1.5.3.5 which will in most cases guide the user to aSection or Chapter where rules can be found for generating at least one possiblename; asecond flowchart is given in Section IR-9.2.1 to assist in the application of additivenomenclature specifically to coordination and organometallic compounds.Amore detailed subject indexisalso provided, as is an extended guide to possible alternative names of awide range of simple inorganic compounds,ions and radicals(in Table IX). For most compounds,formulae are another important type of compositional or structural representation and for somecompounds aformulaisperhaps easier to construct. In Chapter IR-4 (Formulae) several changesare made in order to makethe presentation of aformula and its corresponding name moreconsistent, e.g. the order of ligand citation(which does not now depend on the charge on the ligand) (Section IR-4.4.3.2) and the order and use of enclosing marks (simplified and more consistent with the usage proposed for the nomenclature of organic compounds) (Section IR-4.2.3). In addition, the use of ligand abbreviations can makeformulae lesscumbersome.Thus, recommendations for the construction and useofabbreviations are provided in Section IR-4.4.4, with an extensive list of established abbreviations given in Table VII (and with structuralformulae for the ligands given in Table VIII). Two chaptersofRed BookIhave been shortenedorsubsumed since in both areas extensive revision is still necessary. First, the chapter on Solids (IR-11) now describes only basic topics, morerecent developments in this area tending to be covered by publications from the International Union of Crystallography (IUCr). It is to be hoped that future cooperation betweenIUPAC and IUCr will leadtothe additional nomenclature required for the rapidlyexpanding field of solid-state chemistry. Second, boron chemistry, particularly that of polynuclear compounds, has also seen extensive development. Again, therefore, only the basics of the nomenclature of boron- containing compounds are covered here ( cf.the separate, more comprehensive but dated, chapter on boron nomenclature, I-11, in RedBook I), within ChapterIR-6 (Parent Hydride Names and Substitutive Nomenclature), while more advanced aspects are left for elaboration in afuture project. Other changes include asectiononnew elements and the procedure by which they are now named (Section IR-3.1)and asimplified coverage of the systematic method for naming vi PREFACE chains and rings (adaptedfrom Chapter II-5 of Red Book II).
Recommended publications
  • IR-3 Elements and Groups of Elements (March 04)
    1 IR-3 Elements and Groups of Elements (March 04) CONTENTS IR-3.1 Names and symbols of atoms IR-3.1.1 Systematic nomenclature and symbols for new elements IR-3.2 Indication of mass, charge and atomic number using indexes (subscripts and superscripts) IR-3.3 Isotopes IR-3.3.1 Isotopes of an element IR-3.3.2 Isotopes of hydrogen IR-3.4 Elements (or elementary substances) IR-3.4.1 Name of an element of infinite or indefinite molecular formula or structure IR-3.4.2 Name of allotropes of definite molecular formula IR-3.5 Allotropic modifications IR-3.5.1 Allotropes IR-3.5.2 Allotropic modifications constituted of discrete molecules IR-3.5.3 Crystalline allotropic modifications of an element IR-3.5.4 Solid amorphous modifications and commonly recognized allotropes of indefinite structure IR-3.6 Groups of elements IR-3.6.1 Groups of elements in the Periodic Table and their subdivisions IR-3.6.2 Collective names of groups of like elements IR-3.7 References IR-3.1 NAMES AND SYMBOLS OF ATOMS The origins of the names of some chemical elements, for example antimony, are lost in antiquity. Other elements recognised (or discovered) during the past three centuries were named according to various associations of origin, physical or chemical properties, etc., and more recently to commemorate the names of eminent scientists. In the past, some elements were given two names because two groups claimed to have discovered them. To avoid such confusion it was decided in 1947 that after the existence of a new element had been proved beyond reasonable doubt, discoverers had the right to IUPACsuggest a nameProvisional to IUPAC, but that only Recommendations the Commission on Nomenclature of Inorganic Chemistry (CNIC) could make a recommendation to the IUPAC Council to make the final Page 1 of 9 DRAFT 2 April 2004 2 decision.
    [Show full text]
  • Brief Guide to the Nomenclature of Organic Chemistry
    1 Brief Guide to the Nomenclature of Table 1: Components of the substitutive name Organic Chemistry (4S,5E)-4,6-dichlorohept-5-en-2-one for K.-H. Hellwich (Germany), R. M. Hartshorn (New Zealand), CH3 Cl O A. Yerin (Russia), T. Damhus (Denmark), A. T. Hutton (South 4 2 Africa). E-mail: [email protected] Sponsoring body: Cl 6 CH 5 3 IUPAC Division of Chemical Nomenclature and Structure suffix for principal hept(a) parent (heptane) one Representation. characteristic group en(e) unsaturation ending chloro substituent prefix 1 INTRODUCTION di multiplicative prefix S E stereodescriptors CHEMISTRY The universal adoption of an agreed nomenclature is a key tool for 2 4 5 6 locants ( ) enclosing marks efficient communication in the chemical sciences, in industry and Multiplicative prefixes (Table 2) are used when more than one for regulations associated with import/export or health and safety. fragment of a particular kind is present in a structure. Which kind of REPRESENTATION The International Union of Pure and Applied Chemistry (IUPAC) multiplicative prefix is used depends on the complexity of the provides recommendations on many aspects of nomenclature.1 The APPLIED corresponding fragment – e.g. trichloro, but tris(chloromethyl). basics of organic nomenclature are summarized here, and there are companion documents on the nomenclature of inorganic2 and Table 2: Multiplicative prefixes for simple/complicated entities polymer3 chemistry, with hyperlinks to original documents. An No. Simple Complicated No. Simple Complicated AND overall
    [Show full text]
  • Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002
    Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002 Members Present: Dr Stephen Heller, Prof Herbert Kaesz, Prof Dr Alexander Lawson, Prof G. Jeffrey Leigh, Dr Alan McNaught (President), Dr. Gerard Moss, Prof Bruce Novak, Dr Warren Powell (Secretary), Dr William Town, Dr Antony Williams Members Absent: Dr. Michael Dennis, Prof Michael Hess National representatives Present: Prof Roberto de Barros Faria (Brazil) The second meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held in the Great Republic Room of the Westin Hotel in Boston, Massachusetts, USA was convened by President Alan McNaught at 9:00 a.m. on Sunday, August 18, 2002. 1.0 President McNaught welcomed the members to this meeting in Boston and offered a special welcome to the National Representative from Brazil, Prof Roberto de Barros Faria. He also noted that Dr Michael Dennis and Prof Michael Hess were unable to be with us. Each of the attendees introduced himself and provided a brief bit of background information. Housekeeping details regarding breaks and lunch were announced and an invitation to a reception from the U. S. National Committee for IUPAC on Tuesday, August 20 was noted. 2.0 The agenda as circulated was approved with the addition of a report from Dr Moss on the activity on his website. 3.0 The minutes of the Division Committee Meeting in Cambridge, UK, January 25, 2002 as posted on the Webboard (http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.rtf and http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.pdf) were approved with the following corrections: 3.1 The name Dr Gerard Moss should be added to the members present listing.
    [Show full text]
  • Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
    DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) .
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Halogenated diazines and triazines Wood, D. E. How to cite: Wood, D. E. (1978) Halogenated diazines and triazines, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8324/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk UNIVERSITY OF Du'RKAM A THESIS entitled HALOGENATED DIAZINES AND TRIAZINES Submitted by D E. WOOD (Grey), B Sc (London) The copyright of this thesis rests with the author No quotation from it should be published without his prior written consent and information derived from it should be acknowledged A candidate for the degree of Doctor of Philosophy 19 78 sr i i > j J To my MoLhcr and FaLhcr WLLII Lh.inks for .ill LhaL Lhey have done ACKNOWLEDGEMLNTS I would like LO express my thanks Lo Professor R D Chambers i under whose guidance this research was undertaken, for considerable encouragement, advice and discussion Thanks are due to Dr R S Matthews for his expert advice with n in r.
    [Show full text]
  • 540.14Pri.Pdf
    Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs.
    [Show full text]
  • Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low Ph by O2 and Fe3+
    Geochimica et Cosmochimica Acta, Vol. 67, No. 23, pp. 4457–4469, 2003 Copyright © 2003 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/03 $30.00 ϩ .00 doi:10.1016/S0016-7037(03)00388-0 3؉ Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe 1, 2 1,2 GREGORY K. DRUSCHEL, *ROBERT J. HAMERS, and JILLIAN F. BANFIELD † 1Departments of Geology and Geophysics and 2Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA (Received October 16, 2002; accepted in revised form May 30, 2003) 2Ϫ Abstract—Polythionates (SxO6 ) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3ϩ and/or oxygen. In these solutions, Fe3ϩ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3ϩ attachment, followed by electron density shifts that result in formation of a sulfite radical and 0 S3O3 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrange- ment reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10Ϫ11 sϪ1 at 25°C to 10Ϫ8 sϪ1 at 70°C, compared to 2 ϫ 10Ϫ7 sϪ1 Ϯ at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 4.13 kJ/mol.
    [Show full text]
  • DBDMH As a Processing Aid to the List of Allowed Substances in the National Organic Program
    CBI Deleted ALBEMARLE CORPORATION Petition to add DBDMH as a processing aid to the List of Allowed Substances in the National Organic Program This petition contains Confidential Business Information. This includes “trade secrets” related to the production process and quality control tests and data. This information is commercially valuable, used in Albemarle business and maintained in secrecy. Introduction Hypobromous acid (HOBr) derived from 1,3-dibromo-5,5-dimethylhydantoin (DBDMH, CAS No. 77-48-5) exhibits antimicrobial effects in water. It is used as a post-harvest intervention in the beef industry, and results from laboratory studies and commercial trials have shown a reduction in E. coli and Salmonella levels1 with HOBr from DBDMH. It can be used to control bacterial numbers on beef hides, carcasses, heads and organs. This chemistry is also used in the poultry processing industry. DBDMH is a stable white to off-white granular solid. In water, DBDMH undergoes a hydrolysis reaction to form two molecules of hypobromous acid (HOBr) and one molecule of dimethylhydantoin (DMH). During use, DBDMH is placed into a flow-through chemical feeder. The aqueous output of this feeder is mixed with a separate stream of water to dilute the HOBr to the desired level, and supply a constant stream of HOBr to the DBDMH application system. The water flow to the feeder and the water flow for dilution can be controlled to achieve the proper dilution to obtain the desired HOBr concentration. Hypobromous acid is the active antimicrobial agent in the water applied to the beef. The oxidizing action of hypobromous acid kills the bacteria.
    [Show full text]
  • Chemical Nomenclature
    Chemical Nomenclature Many everyday and historically important chemical compounds have common names. For example, water is the common name for H2O, baking soda is the common name for NaHCO3 and KNO3, an important component of gunpowder, is known as saltpeter. However, since there are over 50 million known chemical compounds, learning a common name for each one would be very difficult. Chemical nomenclature is a systematic method of naming chemical compounds. Having a system for naming means that we don’t have to learn 50 million names, we only have to learn the rules for naming. It also allows scientists who speak different languages to communicate effectively. The rules for chemical nomenclature come from the International Union for Pure and Applied Chemistry (IUPAC), a group made up of chemists from all over the world. In this exercise you will learn rules for naming ionic and covalent compounds and learn to predict the ratios that chemicals combine in based on their ionic charge. A. Naming Type I Binary Ionic Compounds Type I binary ionic compounds are made of (1) a metal that can only have one possible charge and (2) a nonmetal. The metal is the cation, or positively charged ion and the nonmetal is the anion, or negatively charged ion. In the chemical formula, the cation is always written first and the anion is written second. Cations that fall under Type I naming include Group 1A alkali metals, which always form 1+ cations and Group 2A alkaline earth metals which always form 2+ cations. Most transition metals fall under Type II naming, discussed below, but the exceptions are silver (Ag), which always forms 1+ cations and zinc (Zn) and cadmium (Cd), which always form 2+ cations.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Chemical Nomenclature for an Introductory Chemistry Course: a Tutorial Rules & Drills with Answers
    Chemical Nomenclature for an Introductory Chemistry Course: A Tutorial Rules & Drills with Answers Table of Contents Unit I: Chemical Symbols of Some Common Elements (Drill A)…………………… 2 Unit II: Nomenclature of Pure Elements (Drill B)…………………………………… 4 Unit III: Nomenclature of Monatomic Ions (Simple Ions) ………………………….. 5 Unit IIIA: Nomenclature of Monatomic Anions ………………………………….. 5 Unit IIIB: Nomenclature of Monatomic Cations of Fixed Charges ………………. 6 Unit IIIC: Nomenclature of Monatomic Cations of Variable Charges (Drill C)….. 6 Unit IV: Nomenclature of Ionic Compounds of Monatomic Ions …………………... 7 Unit IVA: Writing Formulas from a Given Name (Drill D)………………………. 8 Unit IVB: Writing Names from a Given Formula (Drills E thru H)………………. 9 Unit V: Nomenclature of Polyatomic Ions …………………………………………... 11 Unit VA: The "Basic Eight" Polyatomic Ions (Drills I-1 thru I-4)………………... 11 Unit VB: Polyatomic Ions with "- ite" Ending ……………………………………. 14 Unit VC: Nomenclature of "- ate" and "- ite" Compounds (Drill I-5)……………... 14 Unit VD: Nomenclature of Oxohaloanions (Drills J & K)………………………… 15 Unit VI: Nomenclature of Acids (Drill L)……………………………………………. 17 Unit VII: Nomenclature of Acid Anions (Drill M)…………………………………… 20 Unit VIII: Nomenclature of Molecular Binary Compounds (Drill N & O)……….…. 22 Unit IX: Nomenclature of Hydrates (Drill P)……………………………………….... 23 Answers to Drill A…………………………………………………………………. 25 Answers to Drill B…………………………………………………………………. 25 Answers to Drill C…………………………………………………………………. 25 Answers to Drill D………………………………………………………………… 26 Answers to Drill E…………………………………………………………………. 26 Answers to Drill F…………………………………………………………………. 26 Answers to Drill G…………………………………………………………………. 27 Answers to Drill H………………………………………………………………… 27 Answers to Drill I-1, I-2, I-3………………………………………………………. 28 Answers to Drill I-4, I-5…………………………………………………………… 29 Answers to Drill J………………………………………………………………….. 30 Answers to Drill K………………………………………………………………… 30 Answers to Drill L………………………………………………………………....
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]