WO 2012/024294 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/024294 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Λ 23 February 2012 (23.02.2012) WO 2012/024294 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C22B 47/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/047916 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 16 August 201 1 (16.08.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/374,691 18 August 2010 (18.08.2010) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): AMER¬ kind of regional protection available): ARIPO (BW, GH, ICAN MANGANESE INC. [CA/US]; 2533 North Car GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, son Street, Suite 3913, Carson City, NV 89706 (US). ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventors; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (75) Inventors/ Applicants (for US only): CHOW, Norman LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, [CA/CA]; 6608 East Boulevard, Vancouver, BC V6V SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 2M2 (CA). FISHER, John, W. [CA/CA]; 2628 Gun- GW, ML, MR, NE, SN, TD, TG). whale Road, Pender Island, BC VON 2M2 (CA). WARKENTI, Douglas [CA/CA]; 745 East 30th Avenue, Declarations under Rule 4.17 : Vancouver, BC V5V 2V8 (CA). NACU, Anca-mihaela — as to applicant's entitlement to apply for and be granted [CA/CA]; #507 - 1199 Seymour Street, Vancouver, BC a patent (Rule 4.1 7(H)) V6B 1K3 (CA). — as to the applicant's entitlement to claim the priority of (74) Agent: PUNTIGAM, Clark, A.; 2033 6th Avenue, Suite the earlier application (Rule 4.17(Hi)) 1020, Seattle, WA 98121 (US). [Continued on next page] (54) Title: PROCESSING OF MANGANOUS SULPHATE/DFTHIONATE LIQUORS © (57) Abstract: The process concerns hydrometallurgical processing of manganese sulphate and manganese dithionate containing liquors and recovery of water therefrom. Sodium sulphate and/or sodium dithionate containing liquors are derived from man ganese sulphate and manganese dithionate containing liquids, which are then cooled to produce crystals of sodium sulphate dec o ahydrate and sodium dithionate dehydrate. The sodium sulphate decahydrate and sodium dithionate dehydrate crystals are then heated to a temperature sufficient to decompose the sodium sulphate decahydrate crystals to form anhydrous sodium sulphate crystals, sodium dithionate hydrate crystals and water, after which water is removed from the sodium sulphate and sodium dithion o ate hydrate crystal. The sodium sulphate and sodium dithionate dehydrate crystals are then heated to form anhydrous sodium sul phate, sulfur dioxide and water or steam. The anhydrous sodium sulphate is then separated from the sulfur dioxide and water. w o 201 2/024294 Al IIII 111II 11111 Hill lllll 11III III Hill 11 III I I I I I III II 11 II Published: before the expiration of the time limit for amending the — with international search report (Art. 21(3)) claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) Description PROCESSING OF MANGANOUS SULPHATE/DITHIONATE LIQUORS Prior Application This non-provisional application claims the priority of prior U.S. provisional application Serial No. 61/374,691 , filed on August 18, 2010. Technical Field [0001] The present invention relates to the recovery of water and sodium sulphate from sodium sulphate and sodium dithionate containing liquors such as those derived from hydrometallurgical processing of manganese containing resource material. Background of the Invention [0002] It is generally known that manganese may be leached from higher valent manganese (Mn) containing resource material, such as manganese dioxide, using sulphur dioxide alone or in combination with sulphuric acid to produce manganous sulphate and manganous dithionate. This is described for example in WO 2004/033738 to Ward: Mn02 + S0 2 = MnS0 4 [1] Mn0 + 2S02 = MnS 0 [2] The manganous dithionate (MnS20 ) precludes proper control for electrowinning high purity Mn metal and must be removed before electrolysis. Henn et al ("Review of Major Proposed Processes for Recovering Manganese from United States Resources", U.S. Bureau of Mines, Information Circular 8368, 1968) describes different methods of converting MnS 0 to MnS0 4. One method describes autoclaving the MnS 0 containing pregnant leach solution at 230 °C and 600 psi with air. MnS 20 conversion to MnS0 4 would proceed according to the following reaction: → MnS 0 6 + ½ 02 + H 0 MnS0 + H2S0 4 [3] [0003] Although autoclaving can convert MnS20 to MnS0 4 and H S0 , it requires the use of an expensive corrosion resistant pressure vessel. Process challenges with this technique include inefficient use of SO2 and potential precipitation of manganous sulphate due to its inverse solubility with increasing temperature, as shown in Figure 1. Controlling optimum concentration of Manganous sulphate in solution is desirable for electrowinning as is the need to develop an effective scheme to process the H2SO4 by-product in combination with the MnSC . Henn's report mentions that the H2SO4 could be used to consume non-manganese oxides to form insoluble sulphates. This would involve reacting the pregnant leach solution with more resource material in the autoclave. While not mentioned in the Henn report, a perfect balance between H2SO4 by-product generation and consumption of non-manganese material to form insoluble products is unlikely. Insufficient acid consuming material would have to be supplemented with the addition of lime to consume excess H2SO4. Controlled lime addition would be required as over addition may cause manganese precipitation, resulting in loss of product. [0004] One of the techniques described in the Henn report uses evaporation to crystallize MnSO4 H20 from aqueous solution i.e. manganous sulphate containing liquor is evaporated via heating to release water so as to concentrate manganous sulphate above its solubility limit. A report by Allen ("Recovery of Manganese from Low-Grade Ores", Chemical Engineering Progress, Vol 50, No. 1, 1954, pp 9-13) describes methodology to evaporate the pregnant leach solution to form MnS0 4 and MnS20 crystals. Sintering the crystals at 1100 to 1200 °C produces a M¾0 4 product as well as evolve SO2 gas which can be recycled to the leach. The high temperature for sintering was used in this case in order to decompose MnS0 4 into M¾04 and SO2. [0005] Prior art techniques for recovering manganese metal from low grade manganese resource material via sulphite leaching techniques resulting in the formation of manganous sulphate (MnS0 4) and manganous dithionate (MnS206) containing liquors have the following problems: 1) Destruction of manganous dithionate in the presence of manganous sulphate under conditions which favour undesirable manganous sulphate precipitation i.e. high temperature and pressure plus reactor corrosion due to high temperature sulphuric acid formation (see reaction [3] above), and 2) Expensive evaporative crystallization of manganous sulphate containing liquor. Summary of the Invention [0006] Accordingly, disclosed herein is a process for hydrometallurgical processing of manganese sulphate and manganese dithionate containing liquors and recovery of water therefrom, comprises the steps of: deriving sodium sulphate and/or sodium dithionate containing liquors from manganese sulphate and manganese dithionate containing liquids; crystallizing sodium sulphate decahydrate and sodium dithionate dehydrate by cooling sodium sulphate/sodium dithionate containing liquor with or without a vacuum; heating the sodium sulphate decahydrate and sodium dithionate dehydrate crystals to a temperature sufficient to decompose the sodium sulphate decahydrate crystals to form anhydrous sodium sulphate crystals, sodium dithionate hydrate crystals and water; removing water from the sodium sulphate and sodium dithionate hydrate crystals; heating the sodium sulphate and sodium dithionate dehydrate crystals to form anhydrous sodium sulphate, sulfur dioxide and water or steam; and separating the anhydrous sodium sulphate from the sulfur dioxide and water. Brief Description of the Drawings [0007] Figure 1 is a known graph of temperature solubility of manganous sulfate. [0008] Figure 2 is a diagram of the overall system/process described herein. Best Mode for Carrying Out the Invention [0009] Figure 2 shows the overall system/process disclosed herein. Manganese dioxide containing resource material is fed through a grate into a hammer mill 1 and from there to a trommel screen 14. Minus 30 mm resource material is stockpiled for feed into a leach system, whereas oversized material is recycled back to the hammermill. [00010] The minus 30 mm resource material from the milling circuit is preleached with a sulphuric acid solution in a series of stirred tanks shown at 16. The resource material pulp density is 12 to 20% by weight to facilitate subsequent solid liquid separation with a leach thickener. The resource material disintegrates into smaller particles as a result of the agitation at this stage. Acid consuming resource material, e.g. calcium and barium, react with the sulphuric acid to form insoluble sulphates.
Recommended publications
  • Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low Ph by O2 and Fe3+
    Geochimica et Cosmochimica Acta, Vol. 67, No. 23, pp. 4457–4469, 2003 Copyright © 2003 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/03 $30.00 ϩ .00 doi:10.1016/S0016-7037(03)00388-0 3؉ Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe 1, 2 1,2 GREGORY K. DRUSCHEL, *ROBERT J. HAMERS, and JILLIAN F. BANFIELD † 1Departments of Geology and Geophysics and 2Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA (Received October 16, 2002; accepted in revised form May 30, 2003) 2Ϫ Abstract—Polythionates (SxO6 ) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3ϩ and/or oxygen. In these solutions, Fe3ϩ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3ϩ attachment, followed by electron density shifts that result in formation of a sulfite radical and 0 S3O3 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrange- ment reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10Ϫ11 sϪ1 at 25°C to 10Ϫ8 sϪ1 at 70°C, compared to 2 ϫ 10Ϫ7 sϪ1 Ϯ at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 4.13 kJ/mol.
    [Show full text]
  • Treatment of Spent Caustic from Sodium Dithionate Industry Effluent Using Electrochemical Membrane Cell
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 7, July 2014 Treatment of Spent Caustic from Sodium Dithionate Industry Effluent using Electrochemical Membrane Cell S.A.T.Shanmugapriya1, Lashmipriya2 Assistant Professor, Department of Chemistry, Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamilnadu, India1 P.G. Scholar, Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamilnadu, India2 ABSTRACT: In this paper treatment of caustic from Sodium dithionate industry effluent is presented. Sodium dithionate industry effluent very harmful to environment in many ways. Effluent can contaminate soil and ground water if landfilling is adopted. It will also decrease dissolved oxygen in water bodies and harmful to aquatic organisms. Effluent will affect the agricultural field, irrigation water source as well as drinking water. Incineration of residues from industry will leads to acid rain because they contain sulfur compounds. So the treatment before disposal of effluent is necessary . From the characterization study concluded that treatment is necessary for the effluent before disposal. Among various methods for industrial waste water treatment electrochemical membrane process was selected because of its attractiveness & economical method. The study was carried out using TSIA anode ( System I) and Pt/Ti anodes (System II) . In system I, experiment was carried out in a constant current density of 50 mA/cm2 at 4 hour duration. The variation of potential, pH, concentration of sodium thiosulfate, sodium formate and sodium hydroxide with respect to time were analysed. Since chemical and electrochemical reactions takes place in system I, recovered products from system I were caustic, sulfate and sulfur.
    [Show full text]
  • Deracemization of Sodium Chlorate with Or Without the Influence of Sodium Dithionate Manon Schindler
    Deracemization of sodium chlorate with or without the influence of sodium dithionate Manon Schindler To cite this version: Manon Schindler. Deracemization of sodium chlorate with or without the influence of sodium dithionate. Cristallography. Normandie Université, 2020. English. NNT : 2020NORMR004. tel- 02521046v2 HAL Id: tel-02521046 https://tel.archives-ouvertes.fr/tel-02521046v2 Submitted on 15 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité Physique Préparée au sein de l’Université de Rouen Normandie Deracémisation du chlorate de sodium avec et sans l’influence du dithionate de sodium Présentée et soutenue par Manon SCHINDLER Thèse soutenue publiquement le 13 mars 2020 devant le jury composé de Mme. Elizabeth HILLARD Dr. Hab. Université de Bordeaux Rapporteur M. Elias VLIEG Pr. Université Radboud de Nimègue Rapporteur Mme. Sylvie MALO Pr. Université de Caen Normandie Présidente M. Woo Sik KIM Pr. Université Kyung Hee de Séoul Examinateur M. Gérard COQUEREL Pr. Université de Rouen Normandie Directeur de thèse Thèse dirigée par Gérard COQUEREL, professeur des universités au laboratoire Sciences et Méthodes Séparatives (EA3233 SMS) THÈSE Pour obtenir le diplôme de doctorat Spécialité Physique Préparée au sein de l’Université de Rouen Normandie Deracemization of sodium chlorate with or without the influence of sodium dithionate Présentée et soutenue par Manon SCHINDLER Thèse soutenue publiquement le 13 mars 2020 devant le jury composé de Mme.
    [Show full text]
  • The Use of Glucose As Ecological Reducing Agent for Sulphur Dyes: Optimization of Experimental Conditions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by European Scientific Journal (European Scientific Institute) European Scientific Journal June 2014 edition vol.10, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 THE USE OF GLUCOSE AS ECOLOGICAL REDUCING AGENT FOR SULPHUR DYES: OPTIMIZATION OF EXPERIMENTAL CONDITIONS Romdhani Zouhaier Dhouib Sofiène Sakli Faouzi Laboratory of Textile Research, ISET of Ksar, Hellal, Monastir, Tunisia Abstract At the present time, dyeing of textile material requires the use of various auxiliaries. These used agents have adverse effects on the environment. In general, for the dyeing with sulphur dyes, a reducing agent is used to transform the dye molecule to a water soluble leuco form that can diffuse into the fibre. In this study, three reducing agents were used : the sodium sulphide, sodium dithionite and glucose as an environmentally friendly reducer. To compare their effect on the reduction of the sullphur dyestuff, the redox potential, pH and the colour yield (K/S) were measured according to the concentration of reducing agent and caustic soda concentration. Results of leuco sulphur black B reduction by the different reducing agents were evaluated by measuring the colour yield (K/S) and the brightness variation after the washing process. The obtained results showed that glucose can offer some scientifically results similar to those done with sodium sulphide which can give for the reduction of sulphur dyestuff Keywords: Sulphur dye, Dyeing, Reduction, Reducing Agent, Glucose Introduction Cellulosic substrates especially cotton, rayon, and paper, are very hydrophilic and, therefore, require hydrophilic soluble dyes for their coloration from a dye bath.
    [Show full text]
  • Safety Data Sheet
    World Headquarters Hach Company P.O.Box 389 MSDS No: M00107 Loveland, CO USA 80539 (970) 669-3050 SAFETY DATA SHEET _____________________________________________________________________________ 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Name: Hydrosulfite Reagent for Total Copper Catalog Number: 2118869 Hach Company Emergency Telephone Numbers: P.O.Box 389 (Medical and Transportation) Loveland, CO USA 80539 (303) 623-5716 24 Hour Service (970) 669-3050 (515)232-2533 8am - 4pm CST MSDS Number: M00107 Chemical Name: Dithionous acid, disodium salt CAS Number: 7775-14-6 Additional CAS No. (for hydrated forms): Not applicable Chemical Formula: Na2S2O4 Chemical Family: Reducing Agent Intended Use: Laboratory Use _____________________________________________________________________________ 2. HAZARDS IDENTIFICATION GHS Classification: Hazard categories: Self Heating: Self-heat. 1 Acute Toxicity: Acute Tox. 4-Orl . Serious Eye Damage/Eye Irritation:Eye Irrit. 2 Specific Target Organ Toxicity - Single Exposure: STOT SE 3 Hazardous to the Aquatic Environment: Aquatic Chronic 3 GHS Label Elements: DANGER Hazard statements: Self-heating: maycatch fire. Harmful if swallowed. Causes serious eye irritation. May cause respiratory irritation. Harmful to aquatic life with long lasting effects. Precautionary statements: Avoid breathing dust/fume/gas/mist/vapours/spray. Handle environmental release according to local, state, federal, provincial requirements. Wear eye protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention. IF INHALED: Remove victim/person to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or doctor/physician if you feel unwell. IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • The Use of Glucose As Ecological Reducing Agent for Sulphur Dyes: Optimization of Experimental Conditions
    European Scientific Journal June 2014 edition vol.10, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 THE USE OF GLUCOSE AS ECOLOGICAL REDUCING AGENT FOR SULPHUR DYES: OPTIMIZATION OF EXPERIMENTAL CONDITIONS Romdhani Zouhaier Dhouib Sofiène Sakli Faouzi Laboratory of Textile Research, ISET of Ksar, Hellal, Monastir, Tunisia Abstract At the present time, dyeing of textile material requires the use of various auxiliaries. These used agents have adverse effects on the environment. In general, for the dyeing with sulphur dyes, a reducing agent is used to transform the dye molecule to a water soluble leuco form that can diffuse into the fibre. In this study, three reducing agents were used : the sodium sulphide, sodium dithionite and glucose as an environmentally friendly reducer. To compare their effect on the reduction of the sullphur dyestuff, the redox potential, pH and the colour yield (K/S) were measured according to the concentration of reducing agent and caustic soda concentration. Results of leuco sulphur black B reduction by the different reducing agents were evaluated by measuring the colour yield (K/S) and the brightness variation after the washing process. The obtained results showed that glucose can offer some scientifically results similar to those done with sodium sulphide which can give for the reduction of sulphur dyestuff Keywords: Sulphur dye, Dyeing, Reduction, Reducing Agent, Glucose Introduction Cellulosic substrates especially cotton, rayon, and paper, are very hydrophilic and, therefore, require hydrophilic soluble dyes for their coloration from a dye bath. Current dyes designed for cellulosic polymers are direct, vat, sulfur, and reactive dyes. Sulphur dyes are one of the less costs of all dye classes used on cellulosic fibres and their blends (Senior & Clarke, 1986).
    [Show full text]
  • Regolith Weathering and Sorption Influences Molybdenum, Vanadium, and Chromium Export Via Stream Water at Four Granitoid Critica
    feart-06-00193 November 8, 2018 Time: 16:14 # 1 ORIGINAL RESEARCH published: 09 November 2018 doi: 10.3389/feart.2018.00193 Regolith Weathering and Sorption Influences Molybdenum, Vanadium, and Chromium Export via Stream Water at Four Granitoid Critical Zone Observatories Justin B. Richardson1,2* and Elizabeth K. King3 1 Department of Geosciences, University of Massachusetts Amherst, Amherst, MA, United States, 2 Earth and Atmospheric Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States, 3 Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada Understanding the fate of oxyanions in the Critical Zone is important because of Edited by: their biological significance and the potential for their use as geochemical tracers in Julia Perdrial, University of Vermont, United States terrestrial environments and subsurface systems. This study assessed the partitioning Reviewed by: and transport of a suite of oxyanion metals (Mo, V, and Cr) in regolith profiles and stream Angelica Vazquez-Ortega, waters from four granitoid Critical Zone Observatories (CZOs) (Boulder Creek, Calhoun, Bowling Green State University, United States Luquillo, and Southern Sierra). For regolith profiles, we compared Mo, V, and Cr in Dragos George Zaharescu, total digestions and two extractions targeting oxyanions adsorbed to organic matter Georgia Institute of Technology, and amorphous oxides (H O C 0.1 M acetic acid) and secondary Fe oxides (citrate– United States 2 2 bicarbonate–dithionite). Total Mo, V, and Cr ranged from 0.4 to 2.5 mg kg−1, 16 to *Correspondence: −1 −1 Justin B. Richardson 208 mg kg , and 0.2 to 55 mg kg , respectively.
    [Show full text]
  • January-February 2009 Volume 31 No
    The News Magazine of the International Union of Pure and Applied Chemistry (IUPAC) CHEMISTRY International January-February 2009 Volume 31 No. 1 The IUPAC International Periodic Tables Chemical Identifier and IUPAC Celebrating Worldwide Excellence in Chemistry From the Editor CHEMISTRY International omething old, something new, something borrowed, something blue . Sthat recipe is for something else, yet it applies surprisingly well to the The News Magazine of the International Union of Pure and contents of this issue of Chemistry International. Applied Chemistry (IUPAC) Something old would be the description of IUPAC’s position with regard to the periodic table. The feature article by Jeffery Leigh (page 4) www.iupac.org/publications/ci reminds the reader that “IUPAC’s primary concern is with unequivo- Managing Editor: Fabienne Meyers cal and unambiguous commu- Production Editor: Chris Brouwer nication,” and in the context of Design: CB Communications a periodic table format, IUPAC’s recommendation is only for the All correspondence to be addressed to: groups numbering from 1 to 18, and Fabienne Meyers no more. Leigh demonstrates that IUPAC, c/o Department of Chemistry one table does not fit all uses, and Boston University the periodic table as we know it today is an icon often wrongly associ- Metcalf Center for Science and Engineering ated with IUPAC. 590 Commonwealth Ave. Something new would be the focus of Steve Heller and Alan Boston, MA 02215, USA McNaught’s article (page 7) on InChI, known as “in-chee.” The IUPAC International Chemical Identifier (InChI) continues to be developed and E-mail: [email protected] is becoming more widely used throughout the chemistry community.
    [Show full text]
  • United States Patent (19. 11) 4,059,533 Watson Et Al
    United States Patent (19. 11) 4,059,533 Watson et al. 45 Nov. 22, 1977 (54) OXYGENSCAVENGING METHODS AND 3,399,725 9/1968 Pye ....................................... 166/275 ADDITIVES 3,852,201 12/1974 Jackson ................................. 252/8.5 (75 Inventors: Jimmie L. Watson; Leroy L. Carney, FOREIGN PATENT DOCUMENTS both of Duncan, Okla. 6,414,645 6/1965 Netherlands .......................... 252/8.5 (73) Assignee: Halliburton Company, Duncan, Okla. OTHER PUBLICATIONS (21) Appl. No.: 518,306 The Merck Index, Eighth Edition, Published 1968 by 22 Filed: Oct. 29, 1974 - Merck and Co., Inc., pp. 958 and 960. 51) Int. Cl.2 ....... e o os see s see a woo C09K 7/02; C09K 7/04; Primary Examiner-Herbert B. Guynn E21B 43/22; CO1B 17/66 Attorney, Agent, or Firm-Robert S. Nisbett; Thomas R. 52 U.S. C. ................................... 252/8.5A; 175/64; Weaver; John H. Tregoning 252/8.5 B; 252/8.55 B; 252/188 58) Field of Search .............. 252/8.5 A, 8.5 B, 8.5 C, 57 ABSTRACT 252/8.55 D, 188; 166/279, 310, 175/64; This invention relates to methods and additives for 423/515, 512 R, 265 scavenging oxygen dissolved and entrained in liquids (56) References Cited which are particularly suitable for removing dissolved and entrained oxygen from polymer-containing fluids U.S. PATENT DOCUMENTS used in drilling and completing well bores as well as 1,810,663 6/1931 Kritchevsky et al................ 252/188 water flood and other procedures carried out in the oil 1,810,665 6/1931 Kritchevsky et al.
    [Show full text]
  • US 2002/0002128A1 Gernon Et Al
    US 2002.0002128A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0002128A1 Gernon et al. (43) Pub. Date: Jan. 3, 2002 (54) AQUEOUS SOLUTIONS CONTAINING Related U.S. Application Data DITHIONIC ACID AND/OR METAL DTHONATE (63) Non-provisional of provisional application No. 60/186,097, filed on Mar. 1, 2000. (76) Inventors: Michael D. Gernon, Upper Providence, Publication Classification PA (US); Sandra L. Bodar, 7 Coulommiers (FR) (51) Int. Cl." ....................................................... C11D 1100 (52) U.S. Cl. .............................................................. 510,363 Correspondence Address: Gilbert W. Rudman (57) ABSTRACT ATOFINA Chemicals, Inc., Patent Department This invention relates to Solutions of dithionic acid and/or 26th Floor dithionate Salts for use in metal finishing processes Such as 2000 Market Street those used for the cleaning, activating, electroplating, elec Philadelphia, PA 19103-3222 (US) troless plating, conversion coating and/or other pre-treat ment or post-treatment of a metallic Surface. In particular the (21) Appl. No.: 09/791,224 Solutions are a useful electrolyte for the electroplating of metallic coatings, especially, Sn, Cu, Ni, Zn and precious (22) Filed: Feb. 22, 2001 metals, onto metal or plastic Substrates and/or other Surfaces. US 2002/0002128A1 Jan. 3, 2002 AQUEOUS SOLUTIONS CONTAINING DITHIONIC 0014) Another embodiment is a surface cleaning solution ACID AND/OR METAL DITHIONATE composition for a Substrate, other than copper, which con tains metal or ammonium dithionate Salts. REFERENCE TO RELATED APPLICATION 0015. Another embodiment is an aqueous solution of 0001. This application claims the benefit of United States ammonium, IA metal and/or IIA metal dithionate Salts for Provisional Application Ser.
    [Show full text]
  • Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)
    NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G.
    [Show full text]