Deracemization of Sodium Chlorate with Or Without the Influence of Sodium Dithionate Manon Schindler

Total Page:16

File Type:pdf, Size:1020Kb

Deracemization of Sodium Chlorate with Or Without the Influence of Sodium Dithionate Manon Schindler Deracemization of sodium chlorate with or without the influence of sodium dithionate Manon Schindler To cite this version: Manon Schindler. Deracemization of sodium chlorate with or without the influence of sodium dithionate. Cristallography. Normandie Université, 2020. English. NNT : 2020NORMR004. tel- 02521046v2 HAL Id: tel-02521046 https://tel.archives-ouvertes.fr/tel-02521046v2 Submitted on 15 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité Physique Préparée au sein de l’Université de Rouen Normandie Deracémisation du chlorate de sodium avec et sans l’influence du dithionate de sodium Présentée et soutenue par Manon SCHINDLER Thèse soutenue publiquement le 13 mars 2020 devant le jury composé de Mme. Elizabeth HILLARD Dr. Hab. Université de Bordeaux Rapporteur M. Elias VLIEG Pr. Université Radboud de Nimègue Rapporteur Mme. Sylvie MALO Pr. Université de Caen Normandie Présidente M. Woo Sik KIM Pr. Université Kyung Hee de Séoul Examinateur M. Gérard COQUEREL Pr. Université de Rouen Normandie Directeur de thèse Thèse dirigée par Gérard COQUEREL, professeur des universités au laboratoire Sciences et Méthodes Séparatives (EA3233 SMS) THÈSE Pour obtenir le diplôme de doctorat Spécialité Physique Préparée au sein de l’Université de Rouen Normandie Deracemization of sodium chlorate with or without the influence of sodium dithionate Présentée et soutenue par Manon SCHINDLER Thèse soutenue publiquement le 13 mars 2020 devant le jury composé de Mme. Elizabeth HILLARD Dr. Hab. Université de Bordeaux Rapporteur M. Elias VLIEG Pr. Université Radboud de Nimègue Rapporteur Mme. Sylvie MALO Pr. Université de Caen Normandie Présidente M. Woo Sik KIM Pr. Université Kyung Hee de Séoul Examinateur M. Gérard COQUEREL Pr. Université de Rouen Normandie Directeur de thèse Thèse dirigée par Gérard COQUEREL, professeur des universités au laboratoire Sciences et Méthodes Séparatives (EA3233 SMS) Acknowledgements This work was funded by the Normandy region and European regional development fund (FEDER) through the SCAMPI project. First, I want to thank Prof. Gérard Coquerel for giving me the opportunity to achieve this Ph.D in the SMS laboratory and supervising me. Thank you for sharing your knowledge and your infinite passion for heterogeneous equilibria, crystallization and crystals in general, which brought me here today. Moreover, thank you for your determination to find the best opportunities for all of us. In my case, my Swiss break of 5 months in Nestlé would not have been possible without your disposition to think outside the box. It has been a great opportunity to develop my knowledge about crystallization in industrial field and to reinforce my English level. Then, I give a particular thanks to Dr. Clément Brandel for supervising my master and Ph.D work. I thank you for sharing your knowledge and valuable ideas and proposals during the past 3 years, for spending time to read and amend all of my writings and presentations and for having believe in me since the beginning. This Ph.D would not have been the same without your contribution and your support. I would like to thank the jury members, Dr. Elizabeth Hillard and Pr. Elias Vlieg as reviewers and Pr. Sylvie Malo and Pr. Woo Sik Kim as examiners, for accepting to review my thesis. All of your comments will certainly lead to interesting discussion during the defense. I would like thank twice Pr. Woo Sik Kim for our fruitful discussion and collaboration and also Bowen Zhang for our exchange of results and advises. J’écris maintenant en français pour remercier toutes les personnes qui ont contribuées, à leur manière et de plus ou moins loin à cette thèse. Merci aux Docteurs-Permanents du laboratoire, Yohann Cartigny, pour m’avoir mis le pied à l’étrier des équilibres hétérogènes et de m’avoir encadrée et conseillée pendant mes deux premiers passages au laboratoire ; Gabin Gbabode pour toutes nos longues discussions scientifiques et non scientifiques, ainsi que pour ta sympathie et ta gentillesse ; Valérie Dupray, coordinatrice du projet européen que je remercie pour sa patience et sa bienveillance. Merci à Morgane Sanselme et Nicolas Couvrat pour leur aide scientifique au quotidien mais aussi pour leur humour tout feu tout flamme (Bisous à Allan !). Merci aux autres permanent(e)s du laboratoire, Lucie, pour ta patience devant les personnes allergiques aux tâches administratives ! Merci à Céline (marathonienne !), pour tes conseils en CAP et nos moments ensemble en général, une petite déception de n’avoir jamais fait les TPs avec toi. Marie, merci à toi pour ta gentillesse, même si on m’a dit que tu râlais des fois, moi je ne retiendrai que ta bonne humeur et nos rires ! Merci aux étudiants, les nouveaux arrivés et les « déjà partis » : Benjamin, merci évidemment pour ton aide précieuse au début de cette thèse, mais aussi pour toutes tes qualités, trop nombreuses pour les énumérer, merci pour les conseils, les livres, et les bons moments. Merci à Clément (DSJ) pour ton amitié et ton aide aussi sur la fin de cette thèse, j’espère avoir pu en faire au moins la moitié pour toi en retour. Des Cœurs et des bisous pour toi ! De la même génération, je remercie FX, entre taquinage et démontage de Couette Taylor, Bienvenu pour sa bonne humeur et ces terribles anecdotes et Antoine, pas pour ta bonne humeur ni ta gentillesse, mais pour ton humour sarcastique c’est sûr ! Merci à Simon, Docteur loulou, pour nos discussions en général, même si tu as abandonné ton poste au Technicum ! Une pensée pour tous ceux que je n’ai pas beaucoup vu mais avec qui les conversations étaient toujours culturellement intéressantes, Aliou, Lina et Kangli, je vous souhaite toute la réussite que vous méritez. Je souhaite bon courage aux suivants : Chloé, Laureline, Marine, Aurélien, Florent (peut être !) et Mélodie. N’ayez pas peur, c’est malgré tout une super aventure ! Laureline et Chloé, je compte sur vous pour garder l’esprit féminin du bureau ! En dehors du laboratoire, je remercie profondément Clément et Éléonore, pour votre amitié, pour nos discussions sans fin sur la thèse (promis, les gars c’est finit maintenant ! Enfin…), pour nos soirées, nos vacances, et bref, tout quoi ! Que cela dure. Merci aux copains d’il y a longtemps, Paul, Chris, Pauline, Margot, Agathe, Thomas, aux copines qui sont beaucoup trop loin, Shannon, Sarah, Noëlline, et aux nouveaux, l’équipe de choc, Mélaine, Thomas, Ju, Alex, Cécile, Cora, Flo, peut être au ski l’année prochaine ? Merci à ma famille, mes parents, Christine et Philippe, et mes frères, Clément, Simon et Antoine. Plus besoin d’essayer de prononcer « deracemization » vous l’aurez assez entendu, et moi aussi ! Enfin, merci à Antoine, mon Loulou, pour ton soutien infaillible pendant 3 ans et même plus. Merci pour ton amour depuis tout ce temps. Vivement la suite. General Introduction ........................................................................ 1 State of the Art ................................................................ 5 Crystal Genesis ................................................................................................... 6 Crystalline State ......................................................................................................... 6 Crystallography .......................................................................................................... 8 Principle of Crystallization from Solution ................................................................. 9 1. Establishment of the Driving Force: The Supersaturation β ................................ 9 2. Nucleation ............................................................................................................ 11 3. Crystal Growth ..................................................................................................... 13 Growth Kinetics ........................................................................................................ 13 1. Crystal Habit Prediction ...................................................................................... 14 2. Growth Kinetics in the Presence of Impurities ................................................... 15 3. Ostwald Ripening ................................................................................................. 16 Defects in Crystals .................................................................................................... 16 Chirality ............................................................................................................ 18 Definition .................................................................................................................. 18 Enantiomer Properties ............................................................................................. 18 1. Physical-Chemical Properties .............................................................................. 18 2. Biological Properties and API .............................................................................. 18 3. Heterogeneous
Recommended publications
  • Sodium Chlorate Process Liquor De-Chromed SN
    SAFETY DATA SHEET This SDS adheres to the standards and regulatory requirements of the United States and may not meet the regulatory requirements in other countries. 1. Identification Product identifier Sodium Chlorate Process Liquor De-chromed SN Other means of identification De-chromed blend of Crystallizer Feed Liquor and Mother Liquor, NaClO3 Recommended use For internal transfer between ERCO Worldwide sodium chlorate manufacturing facilities for process purposes Recommended restrictions None known Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name ERCO Worldwide Address 335 Carlingview Drive Unit 1 Etobicoke, M9W 5G8 Canada Telephone Information #: (416) 239-7111 (M- F: 8:00 am – 5:00pm EST) Website http://www.ercoworldwide.com E-mail [email protected] Emergency phone number Canada & USA: 1-800-424-9300 (CHEMTREC) Supplier Refer to Manufacturer 2. Hazard(s) Identification Physical hazards Oxidizing liquids Category 2 Health hazards Acute toxicity, oral Category 4 Environmental hazards Not currently regulated by OSHA, refer to Section 12 for additional information. OSHA defined hazards This mixture does not meet the classification criteria according to OSHA HazCom 2012. Label elements Signal word Danger Hazard statement May intensify fire; oxidizer. Harmful if swallowed. Page 1 of 15 Issue Date: 11/18/2020 Sodium Chlorate Process Liquor De-chromed SN Precautionary statement Prevention Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep away from clothing and other combustible materials. Wear protective gloves, protective clothing, eye protection, face protection. Response IF ON SKIN: Wash with plenty of water. Take off contaminated clothing and wash it before reuse. In case of fire: Use water to extinguish.
    [Show full text]
  • Guidelines for Drinking-Water Quality, Fourth Edition
    12. CHEMICAL FACT SHEETS Assessment date 1993 Principal reference WHO (2003) Chlorine in drinking-water In humans and experimental animals exposed to chlorine in drinking-water, no specific adverse treatment-related effects have been observed. IARC has classified h ypochlorite in Group 3 (not classifiable as to its carcinogenicity to humans). Chlorite and chlorate Chlorite and chlorate are disinfection by-products resulting from the use of chlorine dioxide as a disinfectant and for odour and taste control in water. Chlorine dioxide is also used as a bleaching agent for cellulose, paper pulp, flour and oils. Sodium chlorite and sodium chlorate are both used in the production of chlorine dioxide as well as for other commercial purposes. Chlorine dioxide rapidly decomposes into chlorite, chlorate and chloride ions in treated water, chlorite being the predominant species; this reaction is favoured by alkaline conditions. The major route of environmental ex- posure to chlorine dioxide, sodium chlorite and sodium chlorate is through drinking- water. Chlorate is also formed in sodium hypochlorite solution that is stored for long periods, particularly at high ambient temperatures. Provisional guideline values Chlorite: 0.7 mg/l (700 µg/l) Chlorate: 0.7 mg/l (700 µg/l) The guideline values for chlorite and chlorate are designated as provisional because use of chlorine dioxide as a disinfectant may result in the chlorite and chlorate guideline values being exceeded, and difficulties in meeting the guideline value must never be a reason for compromising adequate disinfection. Occurrence Levels of chlorite in water reported in one study ranged from 3.2 to 7.0 mg/l; however, the combined levels will not exceed the dose of chlorine dioxide applied.
    [Show full text]
  • Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low Ph by O2 and Fe3+
    Geochimica et Cosmochimica Acta, Vol. 67, No. 23, pp. 4457–4469, 2003 Copyright © 2003 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/03 $30.00 ϩ .00 doi:10.1016/S0016-7037(03)00388-0 3؉ Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe 1, 2 1,2 GREGORY K. DRUSCHEL, *ROBERT J. HAMERS, and JILLIAN F. BANFIELD † 1Departments of Geology and Geophysics and 2Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA (Received October 16, 2002; accepted in revised form May 30, 2003) 2Ϫ Abstract—Polythionates (SxO6 ) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3ϩ and/or oxygen. In these solutions, Fe3ϩ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3ϩ attachment, followed by electron density shifts that result in formation of a sulfite radical and 0 S3O3 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrange- ment reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10Ϫ11 sϪ1 at 25°C to 10Ϫ8 sϪ1 at 70°C, compared to 2 ϫ 10Ϫ7 sϪ1 Ϯ at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 4.13 kJ/mol.
    [Show full text]
  • The Response of Aircraft Oxygen Generators Exposed to Elevated N Temperatures
    a a c i The Response of Aircraft Oxygen Generators Exposed to Elevated n Temperatures h c e t e David Blake t o n April 2003 l DOT/FAA/AR-TN03/35 a c This document is available to the public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. i n h c e U.S. Department of Transportation t Federal Aviation Administration e te technical note technic t o o NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-TN03/35 4. Title and Subtitle 5. Report Date THE RESPONSE OF AIRCRAFT OXYGEN GENERATORS EXPOSED TO April 2003 ELEVATED TEMPERATURES 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. David Blake DOT/FAA/AR-TN03/35 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Federal Aviation Administration William J.
    [Show full text]
  • Treatment of Spent Caustic from Sodium Dithionate Industry Effluent Using Electrochemical Membrane Cell
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 7, July 2014 Treatment of Spent Caustic from Sodium Dithionate Industry Effluent using Electrochemical Membrane Cell S.A.T.Shanmugapriya1, Lashmipriya2 Assistant Professor, Department of Chemistry, Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamilnadu, India1 P.G. Scholar, Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamilnadu, India2 ABSTRACT: In this paper treatment of caustic from Sodium dithionate industry effluent is presented. Sodium dithionate industry effluent very harmful to environment in many ways. Effluent can contaminate soil and ground water if landfilling is adopted. It will also decrease dissolved oxygen in water bodies and harmful to aquatic organisms. Effluent will affect the agricultural field, irrigation water source as well as drinking water. Incineration of residues from industry will leads to acid rain because they contain sulfur compounds. So the treatment before disposal of effluent is necessary . From the characterization study concluded that treatment is necessary for the effluent before disposal. Among various methods for industrial waste water treatment electrochemical membrane process was selected because of its attractiveness & economical method. The study was carried out using TSIA anode ( System I) and Pt/Ti anodes (System II) . In system I, experiment was carried out in a constant current density of 50 mA/cm2 at 4 hour duration. The variation of potential, pH, concentration of sodium thiosulfate, sodium formate and sodium hydroxide with respect to time were analysed. Since chemical and electrochemical reactions takes place in system I, recovered products from system I were caustic, sulfate and sulfur.
    [Show full text]
  • Toxic Action of Aqueous Sodium Chlorate on Nitella1
    TOXIC ACTION OF AQUEOUS SODIUM CHLORATE ON NITELLA1 By H. R. OFFORD, Agent, and R. P. D'URBAL, Assistant Chemist, Division of Blister Rust Control, Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION The experiments herein reported on the toxic action of aqueous sodium chlorate on Nitella were conducted as part of an investigative program ^ to devise economic methods for the chemical suppression of wild currant and gooseberry plants. These plants, members of the family Grossulariaceae and commonly referred to as Ribes, are the alternate hosts of the blister-rust disease of white pines, which is caused by the fungus Cronartium ribicola Fisch. Blister rust may be effectively controlled by hand eradication of currants and goose- berries within 900 feet of the white-pine stand delimited for protection, though in the case of certain highly susceptible species of Ribes this distance necessarily must be increased. Hand pulling is an effective eradication practice, but a cheaper method, such as chemical treat- ment, is needed where the plants occur in great profusion. High toxicity, low cost, and adaptability to field use are important requi- sites of a chemical for general use in plant-eradication work. In field experiments more than a hundred chemicals were tested as plant poisons during the summers of 1925, 1926, and 1927 (P).^ The results of these experiments showed that sodium chlorate is by far the best killing agent and in addition lends itself suitably to general field application. Sodium chlorate, fully effective on Ribes petiolare Dougk, is but moderately successful on other Ribes. Field experiments performed during three successive years established this difference in susceptibility very definitely and suggested that, in the mechanism of killing, specific reactions between the chlorate and the several Ribes species are involved.
    [Show full text]
  • Dangers of Unspent Aircraft Oxygen Generators
    Safety Advisory Dangers of Unspent Aircraft Oxygen Generators U.S. Chemical Safety and Hazard Investigation Board No. 2007-I-NC-01-SA | June 2007 Key Message This Safety Advisory is issued to alert aircraft maintenance and hazardous waste facility personnel to the hazards associated with the transportation and storage of expired, unspent aircraft chemical oxygen generators. Aircraft oxygen generators are dangerous devices that, if mishandled, can cause fires, property damage, and personal injury. Aircraft oxygen generators that have exceeded their service life should be expended before shipping by any transport mode. Introduction On October 5, 2006, at about 10 pm, a fire occurred at the EQ Industrial Services (EQ) hazardous waste treatment, storage, and disposal facility in Apex, North Carolina. The fire resulted in the evacuation of thousands of Apex residents and the complete destruction of the hazardous waste building at EQ’s Apex facility. The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigation concluded that aircraft oxygen generators most likely contributed to the rapid spread of the fire to other areas in the EQ facility. The CSB issues this Safety Advisory to focus attention on the need for aircraft maintenance facilities to expend chemical oxygen generators that have exceeded their service life, and for hazardous waste facility operators and shippers to exercise due care when handling unspent chemical oxygen generators. Incident Description At about 10 pm on October 5, 2006, a citizen driving past the EQ facility in Apex, North Carolina, called 911 when he saw a plume of smoke and smelled a strong chlorine odor coming from the facility.
    [Show full text]
  • Experiments with Sodium Chlorate and Other Chemicals As Herbicides for Field Bindweed»
    EXPERIMENTS WITH SODIUM CHLORATE AND OTHER CHEMICALS AS HERBICIDES FOR FIELD BINDWEED» By W. L. LATSHAW, Associate Professor of Chemistry^ and J. W. ZAHNLEY, Associate Professor of Farm Crops, Kansas State Agricultural College ^ INTRODUCTION Field bindweed (Convolvulus arvensis) is regarded as the most noxious weed in several of the Western States and is widely distrib- uted in Kansas. In some cases infested farms are reduced in value more than one-half and loan companies often refuse to accept them as security. Considering the seriousness of the situation and the fact that methods now in use (5)^ in Kansas are not wholly satisfactory, further experimental work seemed desirable. The use of chemicals as herbicidal agents is not new, but so far as is known to the authors sodium chlorate had not been tried in any experiments with bind- weed previous to those herein reported. REVIEW OF LITERATURE A considerable amount of work has been done by various investi- gators relating to the eradication of bindweed. Intensive cultivation has proved effective in several States as shown by the following workers: Call and Getty (5) in Kansas; Barnum (3) and Bioletti (4) in California; Cox (6) of the United States Department of Agricul- ture; Stewart and Pittman (13) in Utah; and in Idaho (10), as reported by the direptor of the Idaho Experiment Station. Chemicals have been used more or less generally. Krauss (12) and Wilcox (15) found sodium arsenite effective. Gray (7) also found it effective within the fog belt of California, but not nearly so successful (8) in the less humid section of the State.
    [Show full text]
  • WO 2012/024294 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Λ 23 February 2012 (23.02.2012) WO 2012/024294 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C22B 47/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/047916 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 16 August 201 1 (16.08.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/374,691 18 August 2010 (18.08.2010) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): AMER¬ kind of regional protection available): ARIPO (BW, GH, ICAN MANGANESE INC. [CA/US]; 2533 North Car GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, son Street, Suite 3913, Carson City, NV 89706 (US).
    [Show full text]
  • The Use of Glucose As Ecological Reducing Agent for Sulphur Dyes: Optimization of Experimental Conditions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by European Scientific Journal (European Scientific Institute) European Scientific Journal June 2014 edition vol.10, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 THE USE OF GLUCOSE AS ECOLOGICAL REDUCING AGENT FOR SULPHUR DYES: OPTIMIZATION OF EXPERIMENTAL CONDITIONS Romdhani Zouhaier Dhouib Sofiène Sakli Faouzi Laboratory of Textile Research, ISET of Ksar, Hellal, Monastir, Tunisia Abstract At the present time, dyeing of textile material requires the use of various auxiliaries. These used agents have adverse effects on the environment. In general, for the dyeing with sulphur dyes, a reducing agent is used to transform the dye molecule to a water soluble leuco form that can diffuse into the fibre. In this study, three reducing agents were used : the sodium sulphide, sodium dithionite and glucose as an environmentally friendly reducer. To compare their effect on the reduction of the sullphur dyestuff, the redox potential, pH and the colour yield (K/S) were measured according to the concentration of reducing agent and caustic soda concentration. Results of leuco sulphur black B reduction by the different reducing agents were evaluated by measuring the colour yield (K/S) and the brightness variation after the washing process. The obtained results showed that glucose can offer some scientifically results similar to those done with sodium sulphide which can give for the reduction of sulphur dyestuff Keywords: Sulphur dye, Dyeing, Reduction, Reducing Agent, Glucose Introduction Cellulosic substrates especially cotton, rayon, and paper, are very hydrophilic and, therefore, require hydrophilic soluble dyes for their coloration from a dye bath.
    [Show full text]
  • Safety Data Sheet
    World Headquarters Hach Company P.O.Box 389 MSDS No: M00107 Loveland, CO USA 80539 (970) 669-3050 SAFETY DATA SHEET _____________________________________________________________________________ 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Name: Hydrosulfite Reagent for Total Copper Catalog Number: 2118869 Hach Company Emergency Telephone Numbers: P.O.Box 389 (Medical and Transportation) Loveland, CO USA 80539 (303) 623-5716 24 Hour Service (970) 669-3050 (515)232-2533 8am - 4pm CST MSDS Number: M00107 Chemical Name: Dithionous acid, disodium salt CAS Number: 7775-14-6 Additional CAS No. (for hydrated forms): Not applicable Chemical Formula: Na2S2O4 Chemical Family: Reducing Agent Intended Use: Laboratory Use _____________________________________________________________________________ 2. HAZARDS IDENTIFICATION GHS Classification: Hazard categories: Self Heating: Self-heat. 1 Acute Toxicity: Acute Tox. 4-Orl . Serious Eye Damage/Eye Irritation:Eye Irrit. 2 Specific Target Organ Toxicity - Single Exposure: STOT SE 3 Hazardous to the Aquatic Environment: Aquatic Chronic 3 GHS Label Elements: DANGER Hazard statements: Self-heating: maycatch fire. Harmful if swallowed. Causes serious eye irritation. May cause respiratory irritation. Harmful to aquatic life with long lasting effects. Precautionary statements: Avoid breathing dust/fume/gas/mist/vapours/spray. Handle environmental release according to local, state, federal, provincial requirements. Wear eye protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention. IF INHALED: Remove victim/person to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or doctor/physician if you feel unwell. IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
    [Show full text]
  • Sodium Hydroxide (Caustic Soda)
    SODIUM HYDROXIDE odium hydroxide (caustic soda) is a co-product from the manufacture of chlorine using a Ssolution of the readily available raw material, rock salt (sodium chloride). These factors contribute to it being the cheapest and most widely used strong alkali. Uses 48 The biggest single use for sodium hydroxide in making organic chemicals is in the manufacture of epoxypropane, used in turn to make polyurethanes (Unit 67). Figure Sodium hydroxide is used in the purification of the ore, bauxite, prior to it being used to make aluminium (Unit 69). This picture shows stockpiling of recently mined bauxite ore at the Gove refinery in the Northern Territory, Australia. Figure 2 Purified bauxite being unloaded from a ship in Iceland, on its way to an aluminium extraction plant. Much sodium hydroxide is used to scrub gases to remove acids. One example is in the purification of flue gases in the manufacture of sulfuric acid, where the alkali removes sulfur dioxide and sulfur trioxide from gases that are being emitted into the atmosphere (Unit 50). Similarly it is used to treat the effluent in the manufacture of titanium dioxide (Unit 51). Another major use of sodium hydroxide is in the manufacture of paper from wood. In the most used process, the Kraft process, wood is treated with a Figure 3 Uses of sodium hydroxide. solution containing a mixture of sodium sulfide and SODIUM HYDROXIDE sodium hydroxide. Most of the unwanted material in the caustic soda produced from each of the processes wood, such as the lignins, dissolve in the liquor, leaving varies: relatively pure cellulose which is filtered off.
    [Show full text]