Insecticidal Proteins and Methods for Their Use Insektizidproteine Und Verfahren Zu Deren Verwendung Protéines Insecticides Et Leurs Procédés D’Utilisation

Total Page:16

File Type:pdf, Size:1020Kb

Insecticidal Proteins and Methods for Their Use Insektizidproteine Und Verfahren Zu Deren Verwendung Protéines Insecticides Et Leurs Procédés D’Utilisation (19) *EP003102592B1* (11) EP 3 102 592 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 14/415 (2006.01) C12N 15/29 (2006.01) (2006.01) (2006.01) 20.05.2020 Bulletin 2020/21 C12N 15/82 C12N 15/62 A01N 65/04 (2009.01) (21) Application number: 15705872.8 (86) International application number: (22) Date of filing: 06.02.2015 PCT/US2015/014824 (87) International publication number: WO 2015/120276 (13.08.2015 Gazette 2015/32) (54) INSECTICIDAL PROTEINS AND METHODS FOR THEIR USE INSEKTIZIDPROTEINE UND VERFAHREN ZU DEREN VERWENDUNG PROTÉINES INSECTICIDES ET LEURS PROCÉDÉS D’UTILISATION (84) Designated Contracting States: •LIU, Lu AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Palo Alto, California 94301 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO •LUM, Amy PL PT RO RS SE SI SK SM TR Hayward, California 94545 (US) • SCHEPERS, Eric (30) Priority: 07.02.2014 US 201461937295 P Port Deposit, Maryland 21904 (US) 17.09.2014 US 201462051720 P • YALPANI, Nasser Johnston, Iowa 50131 (US) (43) Date of publication of application: • ZHU, Genhai 14.12.2016 Bulletin 2016/50 San Jose, California 95131 (US) • GERBER, Ryan Michael (60) Divisional application: Apex, North Carolina 27539 (US) 20169137.5 (74) Representative: J A Kemp LLP (73) Proprietors: 14 South Square • Pioneer Hi-Bred International, Inc. Gray’s Inn Johnston, Iowa 50131-1014 (US) London WC1R 5JJ (GB) • E. I. du Pont de Nemours and Company Wilmington, DE 19805 (US) (56) References cited: WO-A2-2013/098858 US-A1- 2012 233 726 (72) Inventors: • BARRY, Jennifer Ames, Iowa 50014 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 3 102 592 B1 Printed by Jouve, 75001 PARIS (FR) EP 3 102 592 B1 Description FIELD 5 [0001] This disclosure relates to the field of molecular biology. Provided are novel genes that encode pesticidal proteins. These pesticidal proteins and the nuchcleic acid sequences that encode them are useful in preparing pesticidal formu- lations and in the production of transgenic pest-resistant plants. BACKGROUND 10 [0002] Biological control of insect pests of agricultural significance using a microbial agent, such as fungi, bacteria or another species of insect affords an environmentally friendly and commercially attractive alternative to synthetic chemical pesticides. Generally speaking, the use of biopesticides presents a lower risk of pollution and environmental hazards and biopesticides provide greater target specificity than is characteristic of traditional broad-spectrum chemical insecti- 15 cides. In addition, biopesticides often cost less to produce and thus improve economic yield for a wide variety of crops. [0003] Certain species of microorganisms of the genus Bacillus are known to possess pesticidal activity against a range of insect pests including Lepidoptera, Diptera, Coleoptera, Hemiptera and others. Bacillus thuringiensis (Bt) and Bacillus popilliae are among the most successful biocontrol agents discovered to date. Insect pathogenicity has also been attributed to strains of B. larvae, B. lentimorbus, B. sphaericus and B. cereus. Microbial insecticides, particularly 20 those obtained from Bacillus strains, have played an important role in agriculture as alternatives to chemical pest control. [0004] Crop plants have been developed with enhanced insect resistance by genetically engineering crop plants to produce pesticidal proteins from Bacillus. For example, corn and cotton plants have been genetically engineered to produce pesticidal proteins isolated from strains of Bt. These genetically engineered crops are now widely used in agriculture and have provided the farmer with an environmentally friendly alternative to traditional insect-control methods. 25 While they have proven to be very successful commercially, these genetically engineered, insect-resistant crop plants provide resistance to only a narrow range of the economically important insect pests. In some cases, insects can develop resistance to different insecticidal compounds, which raises the need to identify alternative biological control agents for pest control. [0005] Accordingly, there remains a need for new pesticidal proteins with different ranges of insecticidal activity against 30 insect pests, e.g., insecticidal proteins which are active against a variety of insects in the order Lepidoptera and/or the order Coleoptera including but not limited to insect pests that have developed resistance to existing insecticides. [0006] US 2012/233726 discloses a novel Bacillus thuringiensis gene with lepidopteran activity. [0007] US 2013/098858 discloses a novel insecticidal chitinase protein, its encoding nucleotide and application thereof. 35 SUMMARY [0008] Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are disclosed. Compositions include nucleic acid molecules encoding sequences for pesticidal and insecticidal polypep- tides, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. Compositions also include 40 the pesticidal polypeptide sequences and antibodies to those polypeptides. The nucleic acid sequences can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. The nucleotide or amino acid sequences may be synthetic sequences that have been designed for expression in an organism including, but not limited to, a microorganism or a plant. Compositions also comprise transformed bacteria, plants, plant cells, tissues and seeds. 45 [0009] In particular, the invention provides a purified PtIP-83 polypeptide having at least 80% sequence identity across the full-length of the amino acid sequence PtIP-83Aa as shown in Figures 2a-2j, wherein the PtIP-83 polypeptide has insecticidal activity against Corn Earworm (Helicoverpa zea). [0010] The invention further provides a recombinant polynucleotide encoding the PtIP-83 as defined above. [0011] Yet further provided by the invention is a transgenic monocot or dicot plant comprising the polynucleotide as 50 defined above, a DNA construct comprising said polynucleotide and a transgenic monocot or dicot plant or plant cell comprising said DNA construct. [0012] The invention further provides an agricultural composition comprising an insecticidally effective dose of the PtIP-83 polypeptide as defined above. [0013] Yet further provided by the invention is a fusion protein comprising the PtIP-83 polypeptide as defined above. 55 [0014] The invention further provides a method: (a) for controlling an insect pest population, comprising contacting the insect pest population with the PtIP-83 polypep- tide as defined above; 2 EP 3 102 592 B1 (b) of inhibiting growth or killing an insect pest, comprising contacting the insect pest with a composition comprising the PtIP-83 polypeptide as defined above; and (c) of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and providing insect resistance management, comprising expressing in the plant the PtIP-83 polypeptide as defined above. 5 [0015] Yet further provided by the invention is a method: (a) for controlling an insect pest population, comprising contacting the insect pest population with the transgenic plant or plant cell as defined above; and 10 (b) of inhibiting growth or killing an insect pest, comprising contacting the insect pest with the transgenic plant or plant cell as defined above. [0016] The invention further provides the use of the PtIP-83 polypeptide as defined above to inhibit growth of or kill an insect or insect population. 15 [0017] Isolated or recombinant nucleic acid molecules are disclosed encoding Pteridophyta Insecticidal Protein-83 (PtIP-83) polypeptides including amino acid substitutions, deletions, insertions, fragments thereof. Additionally, amino acid sequences corresponding to the PtIP-83 polypeptides are disclosed. Disclosed are isolated or recombinant nucleic acid molecules capable of encoding PtIP-83 polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, as well as amino 20 acid substitutions, deletions, insertions, fragments thereof, and combinations thereof. Nucleic acid sequences that are complementary to a nucleic acid sequence of the embodiments or that hybridize to a sequence of the embodiments are also disclosed. Also disclosed are isolated or recombinant PtIP-83 polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, and SEQ ID NO: 19, as well as amino acid substitutions, deletions, insertions, fragments thereof and combinations thereof. 25 [0018] Methods are disclosed for producing the polypeptides and for using those polypeptides for controlling or killing a Lepidopteran, Coleopteran, nematode, fungi, and/or Dipteran pests. The transgenic plants of the embodiments express one or more of the pesticidal sequences disclosed herein. In various embodiments, the transgenic plant further comprises one or more additional genes for insect resistance, for example, one or more additional genes for controlling Coleopteran, Lepidopteran, Hemipteran or nematode pests. It will be understood by one of skill in the art that the transgenic plant 30 may comprise any gene imparting an agronomic trait of interest. [0019] Methods for detecting the nucleic acids and polypeptides of the embodiments in a sample are also disclosed. A kit for detecting the presence of a PtIP-83 polypeptide or detecting the presence of a polynucleotide encoding a PtIP- 83 polypeptide in a sample is disclosed. The kit may be provided along with all reagents and control samples necessary for carrying out a method for detecting the intended agent, as well as instructions for use.
Recommended publications
  • Sunday, March 4, 2012
    Joint Meeting of the Southeastern and Southwestern Branches Entomological Society of America 4-7 March 2012 Little Rock, Arkansas 0 Dr. Norman C. Leppla President, Southeastern Branch of the Entomological Society of America, 2011-2012 Dr. Allen E. Knutson President, Southwestern Branch of the Entomological Society of America, 2011-2012 1 2 TABLE OF CONTENTS Presidents Norman C. Leppla (SEB) and Allen E. 1 Knutson (SWB) ESA Section Names and Acronyms 5 PROGRAM SUMMARY 6 Meeting Notices and Policies 11 SEB Officers and Committees: 2011-2012 14 SWB Officers and Committees: 2011-2012 16 SEB Award Recipients 19 SWB Award Recipients 36 SCIENTIFIC PROGRAM SATURDAY AND SUNDAY SUMMARY 44 MONDAY SUMMARY 45 Plenary Session 47 BS Student Oral Competition 48 MS Student Oral Competition I 49 MS Student Oral Competition II 50 MS Student Oral Competition III 52 MS Student Oral Competition IV 53 PhD Student Oral Competition I 54 PhD Student Oral Competition II 56 BS Student Poster Competition 57 MS Student Poster Competition 59 PhD Student Poster Competition 62 Linnaean Games Finals/Student Awards 64 TUESDAY SUMMARY 65 Contributed Papers: P-IE (Soybeans and Stink Bugs) 67 Symposium: Spotted Wing Drosophila in the Southeast 68 Armyworm Symposium 69 Symposium: Functional Genomics of Tick-Pathogen 70 Interface Contributed Papers: PBT and SEB Sections 71 Contributed Papers: P-IE (Cotton and Corn) 72 Turf and Ornamentals Symposium 73 Joint Awards Ceremony, Luncheon, and Photo Salon 74 Contributed Papers: MUVE Section 75 3 Symposium: Biological Control Success
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • WO 2016/061206 Al 21 April 2016 (21.04.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/061206 Al 21 April 2016 (21.04.2016) P O P C T (51) International Patent Classification: (74) Agent: BAUER, Christopher; PIONEER HI-BRED IN C12N 15/82 (2006.01) A01N 65/00 (2009.01) TERNATIONAL, INC., 7100 N.W. 62nd Avenue, John C07K 14/415 (2006.01) ston, Iowa 5013 1-1014 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2015/055502 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 14 October 2015 (14.10.201 5) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/064,810 16 October 20 14 ( 16.10.20 14) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 7100 N.W.
    [Show full text]
  • Download Document
    African countries and neighbouring islands covered by the Synopsis. S T R E L I T Z I A 23 Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands by J.P. Roux Pretoria 2009 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens which SANBI inherited from its predecessor organisations. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arborescent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of the South African National Biodiversity Institute is based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It sym- bolises the commitment of the Institute to champion the exploration, conservation, sustain- able use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. J.P. Roux South African National Biodiversity Institute, Compton Herbarium, Cape Town SCIENTIFIC EDITOR: Gerrit Germishuizen TECHNICAL EDITOR: Emsie du Plessis DESIGN & LAYOUT: Elizma Fouché COVER DESIGN: Elizma Fouché, incorporating Blechnum palmiforme on Gough Island PHOTOGRAPHS J.P. Roux Citing this publication ROUX, J.P. 2009. Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands. Strelitzia 23. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-48-8 © Published by: South African National Biodiversity Institute. Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa.
    [Show full text]
  • From Tenerife, Canary Islands
    FERN GAZ. 18(8):342-350. 2010 342 TWO NOVEL ASPLENIUM HYBRIDS (ASPLENIACEAE: PTERIDOPHYTA) FROM TENERIFE, CANARY ISLANDS F.J. RUMSEY1 & A. LEONARD2 1Dept. of Botany, Natural History Museum, Cromwell Road, London, SW7 5BD, UK, e-mail: [email protected] 237 Lower Bere Wood, Waterlooville, Hants., PO7 7NQ, UK e-mail: [email protected] Keywords: Asplenium hemionitis, A. aureum, A. onopteris, A. × tagananaense, hybridization, Macaronesia ABSTRACT A plant closely resembling Asplenium hemionitis L. but with more dissected, lobed fronds was discovered during a trip to the Anaga mountains, Tenerife, Canary Islands in 2009. This was found to show almost complete spore abortion, indicating a hybrid origin. From the associated species and frond form we suggest the other parent to be A. onopteris L. This represents the first documented hybrid of the rather taxonomically isolated A. hemionitis. The hybrid, A. × tagananaense, is described and its distinguishing features given. A further novel Asplenium hybrid, photographed in 1995 but not subsequently refound, is identified as that between A. onopteris and A. aureum Cav. In the absence of a specimen it is not formally described but its distinctive features are illustrated and its occurrence reported. INTRODUCTION In February 2009 a small group of pteridologists led by the second author and comprising Alison Evans, Michael Hayward, Tim Pyner and Martin Rickard went to Tenerife. During the excursion, an odd looking fern, which several in the group considered to be an aberrant form of Asplenium hemionitis was found. The plant had the palmate frond form unique in the region to this species but closer examination showed the lobes themselves to be more highly dissected, the lobules not apparent as they were largely in the same plane as the frond and closely imbricate.
    [Show full text]
  • Dock and Crop Images
    orders: [email protected] (un)subscribe: [email protected] Current Availability for September 25, 2021 Dock and Crop images Click any thumbnail below for the slideshow of what we shipped this past week: CYCS ARE RED HOT GIANT GLOSSY LEAVES BLUE MOONSCAPE SUCCULENT BLUE LEAVES SUCCULENT ORANGE LEAVES SPECKLED LEAVES CYCS ARE RED HOT RED SUNSETSCAPE Jeff's updates - 9/16 dedicated this week's favorites Chimi's favorite climbing structure 4FL = 4" pot, 15 per flat 10H = 10" hanging basket n = new to the list ys = young stock 6FL = 6" pot, 6 per flat 10DP = 10" Deco Pot, round b&b = bud and bloom few = grab 'em! QT= quart pot, 12 or 16 per flat nb = no bloom * = nice ** = very nice Quarts - 12 per flat, Four Inch - 15 per flat, no split flats, all prices NET code size name comments comments 19406 4FL Acalypha wilkesiana 'Bronze Pink' ** Copper Plant-colorful lvs 12210 QT Acorus gramineus 'Ogon' ** lvs striped creamy yellow 19069 4FL Actiniopteris australis ** Eyelash Fern, Ray Fern 17748 4FL Adiantum hispidulum ** Rosy Maidenhair 17002 4FL Adiantum raddianum 'Microphyllum' ** extremely tiny leaflets 21496 4FL Adromischus filicaulis (cristatus?) ** Crinkle Leaf 16514 4FL Aeonium 'Kiwi' ** tricolor leaves 13632 QT Ajuga 'Catlin's Giant' ** huge lvs, purple fls 13279 QT Ajuga pyramidalis 'Metallica Crispa' ** crinkled leaf 17560 4FL Aloe vera * Healing Aloe, a must-have 13232 QT Anthericum sanderii 'Variegated' *b&b grassy perennial 13227 QT Asparagus densiflorus 'Meyer's' ** Foxtail Fern 19161 4FL Asplenium 'Austral Gem'
    [Show full text]
  • Review of Selected Literature and Epiphyte Classification
    --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards.
    [Show full text]
  • New Species and New Records of Click Beetles from the Palearctic Region (Coleoptera, Elateridae)
    Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 48 (30/06/2011): 47‒60. NEW SPECIES AND NEW RECORDS OF CLICK BEETLES FROM THE PALEARCTIC REGION (COLEOPTERA, ELATERIDAE) Giuseppe Platia Via Molino Vecchio, 21/a, 47043 Gatteo (FC), Italia – [email protected] Abstract: Fourteen new species of click beetles belonging to the genera Cardiophorus (Turkey), Dicronychus (Syria), Dima (Greece), Hemicrepidius (Azerbaijan), Athous (Orthathous) (Azerbaijan), Agriotes (Lebanon), Ampedus (Sardinia, It- aly), Ctenicera (Slovenia), Anostirus (Azerbaijan), Selatosomus (Warchalowskia) (Turkey), Adrastus (Azerbaijan) and Melanotus (Lebanon) are described. New chorological data for fifty-one species from the Palaearctic region are given. Key words: Coleoptera, Elateridae, new species, new records, Palaearctic region. Nuevas species y registros de elatéridos paleárticos (Coleoptera, Elateridae) Resumen: Se describen catorce nuevas especies de elatéridos de los géneros Cardiophorus (Turquía), Dicronychus (Siria), Dima (Grecia), Hemicrepidius (Azerbayán), Athous (Orthathous) (Azerbayán), Agriotes (Líbano), Ampedus (Cerdeña, Italia), Ctenicera (Eslovenia), Anostirus (Azerbayán), Selatosomus (Warchalowskia) (Turquía), Adrastus (Azerbayán) and Melanotus (Líbano). Se aportan además cincuenta y una nuevas citas de la región Paleártica. Palabras clave: Coleoptera, Elateridae, especies nuevas, cita nueva, región Paleártica. Taxonomy / Taxonomía: Adrastus azerbaijanicus n. sp. Athous (Orthathous) lasoni n. sp. Hemicrepidius kroliki n. sp. Agriotes kairouzi
    [Show full text]
  • Serpentine Geoecology of Eastern North America: a Review
    RHODORA, Vol. 111, No. 945, pp. 21–108, 2009 E Copyright 2009 by the New England Botanical Club SERPENTINE GEOECOLOGY OF EASTERN NORTH AMERICA: A REVIEW NISHANTA RAJAKARUNA College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609 Current Address: Department of Biological Sciences, One Washington Square, San Jose´ State University, San Jose´, CA 95192-0100 e-mail: [email protected] TANNER B. HARRIS University of Massachusetts, Fernald Hall, 270 Stockbridge Road, Amherst, MA 01003 EARL B. ALEXANDER 1714 Kasba Street, Concord, CA 94518 ABSTRACT. Serpentine outcrops are model habitats for geoecological studies. While much attention has been paid to serpentine outcrops worldwide, the literature on eastern North American serpentine and associated biota is scant. This review examines the available literature, published and unpublished, on geoecological studies conducted on serpentine in eastern North America, from Newfoundland through Que´bec and New England south to Alabama. Most serpentine outcrops in the region have been mapped, but there have been few intensive mineralogical and pedological investigations. The limited soil analyses available suggest elevated levels of heavy metals such as Ni, near-neutralpH values, and Ca:Mg ratios , 1, characteristic of serpentine soils worldwide. Botanical studies to date have largely focused on floristic surveys and the influence of fire exclusion and grazing on indigenous vegetation. To date, 751 taxa of vascular plants belonging to 92 families have been reported from serpentine outcrops in the region. Two taxa, Agalinis acuta and Schwalbea americana, are federally endangered in the United States while many others are listed as rare, endangered, or imperiled in one or more states or provinces.
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Ferns Robert H
    Southern Illinois University Carbondale OpenSIUC Illustrated Flora of Illinois Southern Illinois University Press 10-1999 Ferns Robert H. Mohlenbrock Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/siupress_flora_of_illinois Part of the Botany Commons Recommended Citation Mohlenbrock, Robert H., "Ferns" (1999). Illustrated Flora of Illinois. 3. http://opensiuc.lib.siu.edu/siupress_flora_of_illinois/3 This Book is brought to you for free and open access by the Southern Illinois University Press at OpenSIUC. It has been accepted for inclusion in Illustrated Flora of Illinois by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. THE ILLUSTRATED FLORA OF ILLINOIS ROBERT H. MOHLENBROCK, General Editor THE ILLUSTRATED FLORA OF ILLINOIS s Second Edition Robert H. Mohlenbrock SOUTHERN ILLINOIS UNIVERSITY PRESS Carbondale and Edwardsville COPYRIGHT© 1967 by Southern Illinois University Press SECOND EDITION COPYRIGHT © 1999 by the Board of Trustees, Southern Illinois University All rights reserved Printed in the United States of America 02 01 00 99 4 3 2 1 Library of Congress Cataloging-in-Publication Data Mohlenbrock, Robert H., 1931- Ferns I Robert H. Mohlenbrock. - 2nd ed. p. em.- (The illustrated flora of Illinois) Includes bibliographical references and index. 1. Ferns-Illinois-Identification. 2. Ferns-Illinois-Pictorial works. 3. Ferns-Illinois-Geographical distribution-Maps. 4. Botanical illustration. I. Title. II. Series. QK525.5.I4M6 1999 587'.3'09773-dc21 99-17308 ISBN 0-8093-2255-2 (cloth: alk. paper) CIP The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.§ This book is dedicated to Miss E.
    [Show full text]