Hondajet Model HA-420
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine)
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-4 Issue-4, September 2015 A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine) Vivek Kumar, Rajeshwar Prasad Singh, Vikash Kumar Abstract- Paper includes detailed study of the HF120 turbofan The two companies began talks in 2003 with the goal of engine, which is the first product from GE Honda Aero providing durable and economical engines for business Engines. This paper is to showcase state of art technology aviation. The idea was to combine the strengths of each involved in gas turbine engines and to bring out various aspects and future trends in field of propulsion technology. parent company in technology leadership, manufacturing Paper also includes development in gas turbine engine that have expertise, and performance engine tradition to provide helped to achieve great fuel efficiency and less noise, increased modern business aviation engines with the performance power, thrust and also advancements made in the field of and availability of large commercial engines. A strategic materials have contributed in a major way in gas turbine in alliance between the two companies lead to planning of accordance to the future trends that have come up in recent 50/50 project intended to develop, certify and market the years. The paper reviews the evolutionary process that has taken place over the years with reference to the different design Honda engine. The HF120, product from GE Honda Aero concepts used for aero engines. At General Electric, the official Engines, utilizes Honda's world-renowned expertise in corporate slogan is “Imagination at work.” At Honda, it’s “The manufacturing, research and development and GE's power of dreams.” Two of the world's most respected names in experience in aerospace technology, durability, and propulsion have come together to design and manufacture certification. -
Aviation Wheel Well and Platform Stands Df071556
AVIATION WHEEL WELL AND PLATFORM STANDS DF071556 SA LIFT FE AVIATION WHEEL WELL AND PLATFORM STANDS F . A C L L IN PR N OTECTIO DESCRIPTION The Aviation Wheel Well and Platform Stand has been designed for maintenance access points for multiple aircraft. The lowered position is designed to clear wheel well entry points and has been tested and is operational on both Airbus and Boeing wide body aircraft. Optional telescopic side rails ensure safety compliant access to the forward and AFT lower cargo holds. The Aviation Wheel Well and Platform Stand is hydraulically actuated via a foot pump and has collapsible guardrails. The platform stand can also be used to service engines, pylons, radome and AFT fuselage points. Our Professional Engineers can design custom models based on your specific requirements. PRODUCT FEATURES • Anti-slip, anti-fatigue ladder steps WHAT OUR CUSTOMERS ARE SAYING • Hydraulically actuated “We use them in both the line and hangar maintenance to • Collapsible guardrails accomplish work on the engine and pylons for our wide • Corrosion and Skydrol®-resistant powder coat finish body aircraft. These stands are an excellent solution to a • Fail-safe hydraulic cylinder locks long-standing problem — providing fall safety protection • Optional front and rear guardrails and gates in difficult to access areas.” • Split wheel castors for easy movement • Designed and tested in accordance with ANSI-ASC A14.7 and BS EN 131.7, DIN EN 12312-8, EN 1915-1, and includes CE Certification BENEFITS • Fall restraint tie points • Optional extension -
(12) Patent Application Publication (10) Pub. No.: US 2013/0099053 A1 Barmichev Et Al
US 2013 0099053A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0099053 A1 Barmichev et al. (43) Pub. Date: Apr. 25, 2013 (54) MID-WING MULTI-DECK AIRPLANE B64C 9/00 (2006.01) B64C I/I) (2006.01) (75) Inventors: Sergey D. Barmichev, Kirkland, WA B64C25/10 (2006.01) (US); Mithra M.K.V. Sankrithi, Lake B64C II/00 (2006.01) Forest Park, WA (US); Kevin M. Retz, (52) U.S. Cl. Bothell, WA (US) USPC ........... 244/102 R; 24.4/73 R: 244/65: 244/91 (73) Assignee: THE BOEING COMPANY, Irvine, CA (57) ABSTRACT (US) An airplane comprises a twin-deck fuselage in which an (21) Appl. No.: 13/276,357 upper deck Support structure is utilized for carry-through of a mid-mount main wing box. The main landing gear of the (22) Filed: Oct. 19, 2011 airplane is mounted to the fuselage and is stowed in a non pressurized area below the main wing box (enabled due to an Publication Classification optimized wing box geometry). A pressurized passageway/ cargo/galley complex separates the main landing gear box (51) Int. Cl. and the main wing box. The upper deck is continuous, while B64D II/00 (2006.01) the lower deck is separated by the wheel wells into two B64C I/20 (2006.01) distinct fore and aft areas (for either cargo or passengers). The B64D I3/02 (2006.01) airplane further comprises an integrated vertical fin and an B64D 27/2 (2006.01) aft-extended pressurized deck area for reduced double-deck B64C I/06 (2006.01) wetted area. -
FAA Advisory Circular AC 91-74B
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6 -
Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype. -
Specification and Description
CITATION CJ3+ SPECIFICATION AND DESCRIPTION REVISION C JANUARY 2021 SERIAL NUMBER 525B0610 TO TBD SPECIFICATION AND DESCRIPTION CITATION CJ3+ SERIAL NUMBER 525B0610 TO TBD JANUARY 2021 REVISION C TABLE OF CONTENTS LIST OF FIGURES ..............................................................................................................................iv INTRODUCTION ..................................................................................................................................1 THE AIRCRAFT................................................................................................................................... 2 1. GENERAL DESCRIPTION ....................................................................................................2 1.1 Certifi cation...................................................................................................................... 2 1.2 Purchaser’s Responsibility......................................................................................... 2 1.3 Approximate Dimensions .......................................................................................... 5 1.4 Design Weights and Capacities .............................................................................. 5 2. PERFORMANCE .................................................................................................................... 5 3. DESIGN LIMITS ...................................................................................................................... 6 4. FUSELAGE ...............................................................................................................................7 -
Annual Report 2008 Honda Motor Co., Ltd
Honda Motor Co., Ltd. Annual Report 2008 Honda Motor Co., Ltd. Year Ended March 31, 2008 Annual Report 2008 This annual report is printed on recycled paper using soy ink with no volatile organic content. Furthermore, a waterless printing process was used to prevent toxic emissions. Printed in Japan WorldReginfo - bc9832be-05b4-4eaa-80a4-f78d1968d3bb Corporate Profile Honda Motor Co., Ltd., operates under the basic principles of “Respect for the Individual” and “The Three Joys”—expressed as “The Joy of Buying,” “The Joy of Selling” and “The Joy of Creating.” “Respect for the Individual” reflects our desire to re- spect the unique character and ability of each individual person, trusting each other as equal partners in order to do our best in every situation. Based on this, “The Three Joys” express our belief and desire that each person working in or coming into contact with our company, directly or through our products, should share a sense of joy through that experience. In line with these basic principles, since its establishment in 1948, Honda has remained on the leading edge by creating new value and providing products of the highest quality at a reasonable price, for worldwide customer satisfaction. In addi- tion, the Company has conducted its activities with a commitment to protecting the environment and enhancing safety in a mobile society. The Company has grown to become the world’s largest motorcycle manufacturer and one of the leading automakers. With a global network of 501* subsidiaries and affiliates accounted for under the equity method, Honda develops, manufac- tures and markets a wide variety of products, ranging from small general-purpose engines and scooters to specialty sports cars, to earn the Company an outstanding reputation from customers worldwide. -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
A “Short Course” on Ice and the TBM
A “Short Course” on Ice and the TBM. Icing is topical at the present time as a result of a recent accident in a TBM. I have had a number of conversations with pilots who I would consider knowledgeable and it is apparent that there is a lot of confusion surrounding this subject. Also noting on line posts this confusion is not limited to owner pilots. I have had occasion to be a victim of my own stupidity in a serious icing condition years ago and I can vouch that icing is a deadly serious situation in more ways than one. Before going on with the subject we want to stipulate that the data we are about to provide is a summary of information that is to be found on line, along with narrative and data provided from knowledgeable instructors, if any of the data provided conflicts with anything you have been taught we urge you to satisfy yourself as to which data is correct. TBM operators fly in the same airspace where we find Part 25 aircraft (Commercial Category) aircraft. There is a big difference in how these two categories of aircraft are affected by icing conditions. A 767 will often be climbing at over 300 kts and 4000+ ft/min at typical icing altitudes. This creates two very distinct advantages for the 767: first, their icing exposure time may be less than 1/3 of ours. Second, icing conditions are a function of TAT (Total Air Temperature), not SAT (static air temp). TAT is warmer than SAT because of the effects of compressibility as the airplane operates at faster and faster speeds. -
[4910-13-P] DEPARTMENT of TRANSPORTATION Federal
This document is scheduled to be published in the Federal Register on 05/13/2021 and available online at federalregister.gov/d/2021-10015, and on govinfo.gov [4910-13-P] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2021-0366; Project Identifier MCAI-2021-00080-T] RIN 2120-AA64 Airworthiness Directives; ATR – GIE Avions de Transport Régional Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: The FAA proposes to supersede Airworthiness Directive (AD) 2020-23-13, which applies to all ATR – GIE Avions de Transport Régional Model ATR42-200, -300, and -320 airplanes. AD 2020-23-13 requires a one-time inspection for discrepancies of the wire bundles between the left- and right-hand angle of attack (AOA) probes and the crew alerting computer, and, depending on findings, applicable corrective actions. Since the FAA issued AD 2020-23-13, a wiring modification for the captain stick shaker has been developed, along with an update to the aircraft flight manual (AFM). This proposed AD would continue to require the actions in AD 2020-23-13. This proposed AD would also require, for certain airplanes, modifying the captain stick shaker wiring, and for all airplanes, revising the existing AFM and applicable corresponding operational procedures to incorporate procedures for the stick pusher/shaker, as specified in a European Union Aviation Safety Agency (EASA), which is proposed for incorporation by reference. The FAA is proposing this AD to address the unsafe condition on these products. DATES: The FAA must receive comments on this proposed AD by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. -
Cessna Owner Magazine Article, October 2017
The following article appeared in the October 2017 edition of CESSNA OWNER magazine, the official publication of the Cessna Owner Organization. Whether for business or pleasure, the Official Publication of the Cessna Owner Organization Since 1975 Cessna Owner Organization is dedicated to assisting CESSNA>> October 2017 aircraft owners in OWNER MAGAZINE their continual pursuit to become better, TKS smarter and safer ROTECTION owners and pilots. ICE P Since 1975, the Liquid Armor for the collective knowledge War on Icing and experience of its members has saved owners countless hours of downtime and thousands of dollars in operational expenses. www.cessnaowner.org www.facebook.com/ CessnaOwnerOrganization Est. 1975 Not a member? Learn more at www.CessnaOwner.org TKS Ice Protection Liquid Armor for the War on Icing By Scott Sherer here are many people out accumulation before launching. I wind is strong and the wind chill there who really like snow also have a heavy-duty tug for get- is very low. The winter cloud in Tsports; things like skiing, ting my bird in and out of the han- Wisconsin is dark and grey. (I say snowboarding, ice skating, hockey, gar quickly, and the Janitrol fur- “cloud” and not “clouds” because we snowmobiling and all of those other nace, along with an assortment of seem to have only one cloud here sports that you typically see during other engine and interior warming and it covers the entire state from the winter Olympics. I’m sure that contraptions, helps to get my plane November well into January!) many aviators enjoy some of these warm and ready fast. -
Boeing 737 Postmaintenance Test Flight Encounters Uncommanded Roll-And-Yaw Oscillations
FLIGHT SAFETY FOUNDATION Accident Prevention Vol. 55 No. 5 For Everyone Concerned with the Safety of Flight May 1998 Boeing 737 Postmaintenance Test Flight Encounters Uncommanded Roll-and-yaw Oscillations Fluid leaking from the cabin onto the yaw-damper coupler in the electronic-and-equipment bay affected electronic signals transmitted to the yaw-damper actuator and caused a dutch-roll oscillation. FSF Editorial Staff On Oct. 22, 1995, a Boeing 737-236 Advanced was • “Sufficiently conductive contaminant paths in straight-and-level flight at Flight Level (FL) 200 between certain adjacent pins had affected the (20,000 feet), at an indicated airspeed of 290 knots phase and magnitude of the signals transmitted when roll-and-yaw oscillations began. The flight crew to the yaw-damper actuator, thereby stimulating disengaged the autopilot, autothrottles and yaw a forced dutch-roll mode of the aircraft; damper, but the uncommanded roll-and-yaw oscillations continued. • “The location of the E&E bay — beneath the cabin floor in the area of the aircraft doors, galleys The crew declared an emergency and descended to and toilets — made it vulnerable to fluid ingress 7,000 feet. The oscillations stopped when airspeed was from a variety of sources; [and,] reduced to about 250 knots. After a satisfactory check of the aircraft’s low-speed handling characteristics, the • “The crew actions immediately following the crew returned to London (England) Gatwick Airport onset of the dutch-roll oscillations did not result and landed without further incident. in the disengagement of the malfunctioning yaw- damper system.” The U.K. Air Accidents Investigation Branch (AAIB), in its final report on the incident, identified four causal factors: The B-737, operated by British Airways, was built in 1980 and had accumulated 37,871 hours in service.