<<

PUERTOLLANO IGCC:

Pilot plant for CO2 capture and H2 production

Francisco García-Peña Engineering – R&D Director ELCOGAS INDEX

INTRODUCTION

 R&D INVESTMENT PLAN. Lines

 CO2 capture and H2 co-production pilot plant

2 INTRODUCTION. The Elcogas company

Siemens Project Hidrocantábrico Ventures GmbH Krupp Koppers Explotación de 2,53% Spanish company established Centrales SAU , SpA GmbH 4,32% 4,32% 0,04% in April 1992 to undertake the Hidroeléctrica del planning, construction, Cantábrico, S.A. management and operation of 4,32% Endesa a 335 MWeISO IGCC plant Generación, S.A. Generación, S.A. 40,99% located in Puertollano () 12,00%

Electricité de France International, S.A. 31,48%

Repsol YPF Refinery

Puertollano IGCC Power Plant

ENCASUR (open cast coal mine)

3 Puertollano IGCC power plant description

Process description Flue gas to stack

Heat Steam G Recovery Steam STEAM Generator HP Steam TURBINE

135MWISO PetCoke Coal MP Steam Limestone Condenser Hot combustion gas Cooling HP Boiler tower Coal MP Boiler Water Sulfur Clean Raw Filtration G preparation wash Syngas Gasifier Gas Removal Coal - N 2 Tail Gas GAS TURBINE Claus Gas Water 200 MW to treatment ISO Quench Gas Air Sulfur N2 O2 O2 Recovery

Slag Fly ash Sulfur (99.8%)

Waste N2 Air Separation Unit

Compressed air 4 Puertollano IGCC power plant description

Main Design Data Power output and emissions The design fuel is a mixture 50/50 of GAS STEAM GROSS NET coal/petcoke POWER TURBINE TURBINE TOTAL TOTAL OUTPUT (MW) (MW) (MW) (MW) FUEL MIX 182.3 135.4 317.7 282.7 COAL PET COKE (50:50) EFFICIENCY GROSS NET Moisture (%w) 11.8 7.00 9.40 (LHV) 47.12% 42.2% Ash (%w) 41.10 0.26 20.68 3 C (%w) 36.27 82.21 59.21 EMISSIONS g/kWh mg/Nm (6% Oxygen) H (%w) 2.48 3.11 2.80 SO2 0.07 25 NO 0.40 150 N (%w) 0.81 1.90 1.36 x Particulate 0.02 7.5 O (%w) 6.62 0.02 3.32 S (%w) 0.93 5.50 3.21 LHV (MJ/kg) 13.10 31.99 22.55 Raw and clean gas data Raw Gas Clean Gas Actual average Design Actual average Design CO (%) 59.26 61.25 CO (%) 59.30 60.51 H2 (%) 21.44 22.33 H2 (%) 21.95 22.08 CO2 (%) 2.84 3.70 CO2 (%) 2.41 3.87 N2 (%) 13.32 10.50 N2 (%) 14.76 12.5 Ar (%) 0.90 1.02 Ar (%) 1.18 1.03

H2S (%) 0.81 1.01 H2S (ppm) 3 6 COS (%) 0.19 0.17 COS (ppm) 9 6 HCN (ppm) 23 38 HCN (ppm) - 3 5 Operational data

IGCC, NGCC and Total yearly production

2.500 IGCC GWh NGCC GWh

2.000 1,938 1,744 1,803 1,712 343 1,672 1,698 1,533 1,550 277 321 301 452 1,462 1,489 263 1.500 1,389 421 312 327 1,171 622 259 GWh 1.000 752 1.595 836 1.527 1.435 1.391 1.371 1.293 1.129 1.150 1.130 1.162 500 744 911 335 0 9 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 year

1st 5 years: Learning curve 2003: Major overhaul Gas Turbine findings 2004 & 2005: Gas turbine main generation transformer isolation fault 2006: Gas turbine major overhaul & candle fly ash filters crisis

2007 & 2008: ASU WN2 compressor coupling fault and repair MAN TURBO 2010: No operation due to non-profitable electricity price (30-40 days). 6 Operational data

3 (mg/Nm at 6% O2 dry) 350 EEC 88/609 291,7 300 ELCOGAS Environmental Permit 250,0 250 ELCOGAS 2010 average Natural gas (NGCC) 200 169,3 150 100 50 29,2 12,5 7,9 4,2 4,2 0,8 0 SO2 Particles NOx 3 Coal gas (mg/Nm at 6% O2 dry) 700 650 EU Directive 88/609/EEC 600 500 EU Directive 2001/80/EEC 500 400 ELCOGAS Environmental Permit 400 ELCOGAS 2010 average Coal gas (IGCC) 300 200 200 200 116,3 100 39,3 50 5 1,06 0 SO2 NOx Particles

ELCOGAS power plant emissions in NGCC & IGCC modes (2010) 7 Operational data

Costs

Consume Production Heat rate Fuel cost Partial cost Total cost Fuel mode Fuel (GJPCS) (GWh) (GJPCS/GWh) (€/GJPCS) (€/MWh) (€/MWh)

GT Natural gas 68.777 3,79 18.150 8,12 147,43 147,43

NGCC Natural gas 84.005 8,38 10.021 8,12 81,40 81,40

NGCC + ASU Natural gas 1.725.092 153,19 11.261 8,12 91,48 91,48

Natural gas 616.828 10.467 8,12 85,03 NGCC+ASU+ Coal 145.769 58,93 2.474 3,39 8,37 111,46 Gasifier (by flare) Petocke 455.056 7.722 2,34 18,06 NG auxiliar 265.814 218 8,12 1,77 consumption IGCC Coal 2.914.823 1.219,61 2.390 3,39 8,09 27,32

Petocke 9.104.375 7.465 2,34 17,46

Note: Net variable costs (average 2010)

8 R&D INVESTMENT PLAN. Lines

BASIS of the PUERTOLLANO IGCC R&D PLAN  Based on the opportunity that an IGCC plant represents  Contribution can be relevant in: -- climate change mitigation -- energy supply reliability

MAIN LINES OF THE R&D PLAN

 CO2 emission reduction using fossil fuels

 H2 production by gasification of fossil fuels  DIVERSIFICATION of raw fuels and products  Other ENVIRONMENTAL improvements  IGCC processes OPTIMISATION  DISSEMINATION of results

9 R&D INVESTMENT PLAN. Lines Diversification of raw fuels and products. Biomass co-gasification

Biomass selection criteria: Size < 25 mm Humidity < 12 % Price < 150 €/t Critical parameter for Availability in large quantities the biomass selection was the behavior on the ELCOGAS grinding Battery of co-gasification tests undertaken with system. olive oil waste (orujillo) Olive oil waste storage area orujillo Test Test orujillo dosage ratio duratio Month/Year tonnes (t) 100 gasifer load (%) 200.000 in weight% n (h) 90 180.000 2007- 2009 1 -2 % 1.572,84 800,3 80 160.000 2008 4 % 652,14 154 clean gas flow (%) 70 140.000

March 2009 6 % 395,86 64,4 60 120.000

June 2009 8 % 383,90 46 50 CO clean gas (%) 100.000 % Nm3/h Sept. 2009 10 % 656,68 62 40 80.000 TOTAL 3.661,42 1.126,7 30 60.000 H2 clean gas (%) 20 40.000 Load during %8 10 % Orujillo 20.000 olive oil waste 0 0 co-gasification test 14/06/2009 7:12 15/06/2009 2:24 15/06/2009 7:12 16/06/2009 2:24 16/06/2009 7:12 17/06/2009 2:24 17/06/2009 7:12 18/06/2009 2:24 18/06/2009 7:12 19/06/2009 2:24 19/06/2009 7:12 20/06/2009 2:24 20/06/2009 7:12 14/06/2009 12:00 14/06/2009 16:48 14/06/2009 21:36 15/06/2009 12:00 15/06/2009 16:48 15/06/2009 21:36 16/06/2009 12:00 16/06/2009 16:48 16/06/2009 21:36 17/06/2009 12:00 17/06/2009 16:48 17/06/2009 21:36 18/06/2009 12:00 18/06/2009 16:48 18/06/2009 21:36 19/06/2009 12:00 19/06/2009 16:48 19/06/2009 21:36 1020/06/2009 12:00 20/06/2009 16:48 R&D INVESTMENT PLAN. Lines

CO2 capture and H2 production (pre-combustion)

SECONDARY CO2 CAPTURE & CO2 PRODUCTION H2: GASIFICATION PREPARATION H PURIFICATION WATER-GAS 2 PROCESS H2 REACTION Step 1: Syngas production from Gasification

400-1600ºC Carbon compound + O + H O CO + H + Impurities 2 2 10-40 bar 2

Step 2:Conditioning fly ash removal, particles and sulphur comp.

Step 3: “Shifting” or water-gas reaction  Fly ash  Char - CO + H2O CO2 + H2  Cl  CN-

Step 4: H2 and CO2 separation  SH2 H2 & CO2  COS

 CO2 CO2 capture using pre-combustion technology  N … involves H2 generation 2 11 PSE-CO2 project : CO2 Capture Pilot Plant

TARGETS

To demonstrate the feasibility of capture of CO2 and production of H2 in an IGCC that uses solid fossil fuels and wastes as main feedstock. To obtain economic data enough to scale it to the full Puertollano IGCC capacity in synthetic gas production.

PARTICIPANTS & BUDGET ELCOGAS – UCLM – Ciemat – INCAR CSIC 14.5 M€ (initially 18.5 M€)

COORDINATION Project of pilot plant in an existing IGCC of Puertollano (pre-combustion technology) is part of a Spanish national initiative, “Advanced technologies of CO2 conversion, capture and storage” and it is coordinated with other related projects: Project # 2 is to explore oxyfuel combustion to be applied in the construction of a pilot plant (20-30 MW) to be built in , NW of Spain. CIUDEN Project # 3 is to study and regulate geological storage in Spain. IGME Project # 4 is to study public awareness of CCS technologies. CIEMAT PSE-CO2 project : CO2 Capture Pilot Plant

Puertollano IGCC power plant and pilot plant location

PRENFLO Gasifier

Coal ASU preparation

Combined New CO2 Sulphur capture pilot Recovery Cycle plant Pilot plant general view

IGCC power plant general view

13 PSE-CO2 project : CO2 Capture Pilot Plant

Pilot plant diagram process

Recycle compressor COAL + COKE

Raw 183.000 Nm3/h Clean gas FILTRATION gas COMBINED GASIFICATION PURIFICATION SYSTEM & CYCLE DESULPHURATION

CLEAN GAS

2% of total flow H2 rich gas (3,600 Nm3/h) CO2 37,5 % CO2 22,6 bar ¿H S? 50,0 % H2 100 t/d 2 130ºC 3,0 % CO 60,5 %CO Raw H (80% of purity) 22,1% H2 2

MP STEAM 40% CO & H SHIFT Reactor 2 2 Tail gas separation (Sweet /Acid) 1,3 bar (Chemical, aMDEA) HYDROGEN CO + H2O → CO2 + H2 PURIFICATION

PILOT PLANT PILOT (PSA) Pure H2 (2 t/d) 99,99% H @ 15 bar Pilot plant size: 1:50 ~ 14 MWt 2 14 Pilot plant diagram process:3D view

2 2 CO Capture Unit 2 PSA Unit 1

1 1 3 Electrical and 1 Shifting unit control building

3 2 2

Shifting Unit (several suppliers): PSA Unit (Linde): CO2 Capture Unit (Linde Caloric): 1. Syngas absober – 12 m 1. Desulphurization reactor 1. Adsobers – 6.5 m 2. CO2 stripper – 16.5 m 2. Shifting reactors 2. Tail gas drum – 12.5 m Electrical/control building: 3. Heat exchangers: kettles 3. Valve skid 1. Control room and shell&tube 15 2. Electrical room 15 PSE-CO2 project : CO2 Capture Pilot Plant

Construction permit: December 2008 Commissioning: May-October 2010 st 1 CO2 t captured: 13 September 2010 End of sweet capture tests: February 2011

End of programmed tests (within PSE-CO2): June 2011 Milestones Main suppliers Engineering Empresarios Agrupados

CO2 Unit Linde-Caloric PSA Unit Linde Civil work Construcciones Ocaña-Cañas Control Zeus Control Reactors Técnicas Reunidas Heat exchangers Técnicas Reunidas y Boreal-Vila Catalysts Johnson Matthey Piping and fitting Sidsa y Cuñado Valves SAMSON, Tyco Valves and Controls y SAIDI Electrical components GE Power On-line analysis system ABB Process Automation Division Mechanical erection HGL y MASA Electrical I&C erection MEISA 16 Pilot plant diagram process (I)

Shifting unit

Flow P T CO H2 CO2 H2O H2S COS kg/h bar ºC % % % % % % Sweet 3,677 19.8 126 60.45 21.95 2.66 0.29 0.0 0.0 Coal gas Sour 3,999 23.6 138 53.72 19.57 2.70 10.40 0,70 0,11

Shifted gas to Sweet 8,732 17.3 274 1.68 28.37 21.34 43.26 0.0 0.0 separation unit Sour 8,705 21.1 277 1.40 28.39 21.53 42.73 0.74 0.0 IP saturated Sweet 5,055 34.0 243 0.0 0.0 0.0 100 0.0 0.0 steam to feed Sour 4,706 34.0 243 0.0 0.0 0.0 100 0.0 0.0

IP saturated General view of Shifting Unit IP steam steam to feed

Coal gas Desulphuration Shifting rectors reactor Pre-heater N2 (start-up) SHIFTED GAS TO SEPARATION UNIT 17 Pilot plant diagram process (II)

Cooling stage Cond. Separator From shifting Separation unit Absorber Syngas unit LP steam Process separator 40 % CO2 product Cond. H2 to PSA Shifted Y Y gas Rich H2 gas 60 % CO2 separator CO2 Stripper LP steam General view of to reboiler Separation Unit

P T CO H CO H O H S COS Flow kg/h 2 2 2 2 bar ºC % % % % % %

Shifted gas to Sweet 5,318 15.9 45 2.9 49.7 37.3 0.7 0.0 0.0 absorber Sour 5,318 19.7 45 2.46 49.7 37.69 0.62 0.51 0.0

Process Sweet 3,414 15.9 45 0.0 0.0 0.0 100 0.0 0.0 condensated Sour 3,387 19.7 45 0.0 0.0 0.0 100 0.0 0.0

Sweet 4,185 1.5 40 0 0.18 95.32 4.47 0.0 0.0 CO2 product Sour 4,295.5 1.55 40 0.01 0.21 94.02 4.47 1.27 0.0

Sweet 481.7 15.2 40 4.63 79.37 0.5 0.48 0.0 0.0 H2 to PSA Sour 457.3 19.1 40 4.02 80.44 0.5 0.39 0.0001 0.0

Sweet 1,190.1 15.6 40 4.63 79.37 0.5 0.48 0.0 0.0 Rich H2 gas Sour 1,135.2 19.4 40 4.02 80.44 0.5 0.39 0.0001 0.0

LP Steam to Sweet 4,763 4.1 144 0.0 0.0 0.0 100 0.0 0.0 reboiler Sour 4,797 4.1 144 0.0 0.0 0.0 100 0.0 0.0 18 Pilot plant diagram process (III)

PSA unit

Flow P T CO H2 CO2 H2S COS Nm3/h bar ºC % % % % %

Sweet 1,431 15.2 40 4.63 79.37 0.5 0.0 0.0 H2 from separation unit Sour 1,412 19.1 40 4.02 80.44 0.5 0.0001 0.0

Sweet 795 14.7 43 0.0004 99.99 0.0001 0.0 0.0 H2 product Sour 795.1 18.6 43 0.0004 99.99 0.0001 0.0 0.0

Sweet 636 1.3 35.9 10.42 53.58 1.13 0.0 0.0 Tail gas Sour 616.9 1.3 35.7 9.2 55.23 1.14 0.0002 0.0

H2 product

Tail gas drum

Adsorbers

Rich H2 gas General view of PSA unit H2 from (40 % flow) separation unit Tail gas

19 Comparative : sweet vs sour (design data)

Sweet Sour

C.G.E s+a 88,5 % 88,2 %

Global Thermal efficiency 60,2 % 62,5 % (shifting+amines) s+a

CO2 recovery 91,7 % 93,6 %

20 Block diagram. Control flexibility Flare

PC CO2

Syngas FC PC

Shifting CO2 Flare

PC FC PC N2 H2 FC

PSA Tail gas Flare

PC

Flare

Pure H2

PC Flare

21 Some Test results

44 97,2 97 43,5 96,8 CO2 composition Shifting: 96,6 43 96,4 96,2 Coversion rate has to be 42,5 96 reconsidered! 42 95,8 composition(%)

2 95,6

CO 41,5 95,4 Total CO

95,2 Total CO conversion(%) conversion (%) 41 95 1,1 1,2 1,3 1,4 1,5 1,6 vapor/gas rate

COFuga2 leak CO2 FugaH2 leak H2 10 1,0 9 8 0,8 2 CO2-H2 separation: 7 2 6 0,6 leak leak 2 Desortion temperature can be 5 2 4 0,4 % Fuga H Fuga% % H % % Fuga CO Fuga % optimised CO % 3 2 0,2 1 0 0,0 75 80 85 90 95 100 105 110

DesortionT desorción T (ºC)(ºC)

22 Test results

UNIT START

23 PSE-CO2 project : CO2 Capture Pilot Plant

SHIFTING UNIT CONVERSION / TEMPERATURE (SWEET)

20,0

20/01/11 17:24-28:35

Conversion very 15,0 close to theoric, The inlet second although higher reactor temperature FIRST reactor outlet is higher than temperature. expected REACTOR 10,0 CO(%)

Real values STEAM GENERATOR (SWEET3 test)

5,0 JM - Fresh SECONDcatalyst REACTOR JM simulation (01/10/10) 0,0 300 350 400 450 500 550 600 Temperature(ºC)

Johnson Matthey Selection High temperature Fresh Potential (Johnson Matthey) Potential (High temperature)

The high conversion obtained in the first step (near 95%) will make considering a shifting process only with one step. 24 PSE-CO2 project : CO2 Capture Pilot Plant

Expected vs. obtained compositions of main streams (SWEET)

Shifted gas CO2 H2 rich gas Pure H2 Lab Lab E Design Design Lab Analysis Design Lab Analysis Analysis Analysis Design

H2 50.05 51.88 0.19 0.314 - 1.31 79.75 82.3 – 83.14 99.99 99.959- 99.995 CO 2.92 1.85 0 0.053 - 0.07 4.65 2.86 - 3.78 4 ppm N/A

CO 37.56 37.36 99.78 98.2 - 99.622 0.5 0.02 - 0.82 1 ppm N/A 2

N2 8.76 8.30 0.01 0.05 - 0.28 13.97 12.2 - 13.6 15 ppm 4 - 17 ppm Ar 0.71 0.60 0.02 0.01 - 0.09 1.13 0.89 - 0.97 80 ppm 3 - 14 ppm

i) All compositions are in % vol. (dry basis) ii) Analysis carried out by ELCOGAS Laboratory

CO2 capture & H2 co-production pilot plant. Tests  Comparison of sweet & sour catalysts: sweet tests up to Feb 2011, sour tests up to June 2011  Optimization of steam/gas ratio at shifting unit  Optimization of energy balance

 Real costs of CO2 capture and H2 production. 25 PSE-CO2 project : CO2 Capture Pilot Plant

The main learning in project phase: ● The finance delay: MICINN (Spanish Science & Research Minister) and JCCM (Regional Government).  Delay in main equipment supply: more than 12-14 months.  Detailed engineering: conditioned by suppliers.  PP construction step: delay due to safety permits since it is installed in an operating plant.  Delay of commissioning: low availability of experimented personnel.

The main learning in commissioning & operation phases: ● Investment costs: € 13 million ● Unexpected reactivity: 95% CO conversion in first step of shifting unit Estimated: 85%  consider a shifting process with only one step.

● CO2 and H2 design specifications: easily achieved

● CO2 capture rate: 91.7% CO > 99 % ● Auxiliary consumption: lower than estimated in design 2 H pure > 99.995 % ● Integration of O&M in the existing IGCC: very easy 2

26 PSE-CO2 project : CO2 Capture Pilot Plant

CO2 Capture Costs Comparison 1) Scaled up 100% Puertollano IGCC synthetic gas from the 14MWt pilot plant. 2) Existing plant capture cost = f (investment costs and operational costs). CAPEX  OPEX CO2 capture cost, €/t CO2  Captured CO2 tonnes

3) First ELCOGAS estimations show values of 25-30 €/ t CO2 4) Comparing to other studies

30 for ELCOGAS retrofit

Fuente: DOE/NETL CCS RD&D ROADMAP December 2010 27 PSE-CO2 project : CO2 Capture Pilot Plant

3.000 h 60 55 3.500 h 50 2 4.000 h 45 4.500 h 40 35 5.000 h 30 5.500 h cost, €/t CO 2 25 6.000 h CO 20 15 6.500 h 10 7.000 h 27 28 29 30 31 32 33 34 35 36 37 7.500 h

IGCC plant efficiency w ith CO2 capture, %

Variables Data Expected life 25 CO2 Capture Costs (SWEET). Bank interest 3.0 % As IGCC retrofit Bank fee 0.5 % Scale factor 0.75 Operating hours (IGCC mode) 6,500 h Average load factor 0.92 Electricity price 40 €/MWh

Net efficiency of power plant with CO2 capture 33 % Treated gas 100 % 28 PSE-CO2 project : CO2 Capture Pilot Plant

Minimum pure H2 price depending on the electricity price Minimum H2 prices depending on electricity price 6

Better to sell H2 €/Kg

5 Minimum H2 price per fix cost of production (external personal and spares) depending on anual production hours. 4

60.000 Kg/y 720h 3 90.000 Kg/y 1080 h 120.000 Kg/y 2 1440 h

180.000 Kg/y 2160 h 1 Better to sell electricity 420.000 Kg/y 5040 h

0 0 50 €/MWh 100 150

29 Pilot Plant beyond PSE project

Pilot plant for CO2 capture and production of H2 and electricity with IGCC technology Other activities: To be done after PSE as R&D platform:  Water shift reaction catalyst optimization. Tests of different catalyst

 New processes to separate CO2-H2

 CO2 different treatment processes

 Improvement of integration efficiency between CO2 separation processes and IGCC plant

ELCOGAS offers both the Puertollano IGCC and the

Pilot Plant for CO2 capture and H2 production as technical platforms to develop of process, equipments, components, or even pre-engineering of new plants with CCS and Zero emissions

30 Thank you for your attention

Francisco García-Peña Engineering – R&D Director ELCOGAS [email protected]