Bond Formation Reactions to Phosphorus Using an Electrophilic Phosphinidene Complex

Total Page:16

File Type:pdf, Size:1020Kb

Bond Formation Reactions to Phosphorus Using an Electrophilic Phosphinidene Complex BOND FORMATION REACTIONS TO PHOSPHORUS USING AN ELECTROPHILIC PHOSPHINIDENE COMPLEX A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry University of Regina By Kandasamy Vaheesar Regina, Saskatchewan September, 2013 Copyright 2013: K. Vaheesar UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Kandasamy Vaheesar, candidate for the degree of Doctor of Philosophy in Chemistry, has presented a thesis titled, Bond Formation Reactions to Phosphorus Using an Electrophilic Phosphinidene Complex, in an oral examination held on August 28, 2013. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: *Dr. Stephen Foley, University of Saskatchewan Supervisor: Dr. Brian Sterenberg, Department of Chemistry/Biochemistry Committee Member: Dr. Mauricio Barbi, Department of Physics Committee Member: Dr. Allan East, Department of Chemistry/Biochemistry Committee Member: Dr. R. Scott Murphy, Department of Chemistry/Biochemistry Chair of Defense: Dr. Dongyan Blachford, Faculty of Graduate Studies & Research *Participated via Video Conference ABSTRACT Electrophilic phosphinidene complexes play a central role in organophosphorus chemistry. The chemistry of transient phosphinidene complexes has been well studied, but stable, cationic phosphinidene complexes are not as well understood. Therefore the i + 5 reactivity of a cationic phosphinidene complex [CpFe(CO)2{PN Pr2}] (Cp = η - cyclopentadienyl, iPr = isopropyl), toward bond activation, cycloaddition and nucleophilic addition has been examined. i + The complex [CpFe(CO)2{PN Pr2}] reacts with primary, secondary, and tertiary i + silanes to form the silyl phosphine complexes [CpFe(CO)2{P(H)(SiR3)N Pr2}] (SiR3 = SiPhH2, SiPh2H, Si(C2H5)3), in which the phosphinidene has inserted into the Si-H bond. A computational study shows that the insertion is concerted. The same phosphinidene complex reacts with HPPh2 to form the phosphine-coordinated phosphinidene complex i + [CpFe(CO)2{P(PHPh2)N Pr2}] , which rearranges to the phosphino-phosphine complex i + i + [CpFe(CO)2{P(PPh2)(H)N Pr2}] . Reaction of [CpFe(CO)2{PN Pr2}] with H2 at high i + pressure leads to the primary phosphine complex [CpFe(CO)2{PH2(N Pr2)}] . i + The phosphinidene complex [CpFe(CO)2{PN Pr2}] reacts with alkenes and alkynes via (1+2) cycloaddition to form phosphiranes and phosphirenes respectively. Conjugated alkenes react to initially form phosphiranes, which rearrange to phospholenes via a [1+3] sigmatropic shift. Reaction with an α, β unsaturated ketone gives an oxo-3- phospholene complex. Reaction with azobenzene forms a benzodiazophosphole via C-H activation. Addition of HCl or HBF4·O(CH3CH2)2 to the phosphirene and benzodiazophosphole complexes results in P-N bond cleavage, yielding the respective i chlorophosphorus heterocyclic complexes. The heterocycles can be removed from the metal complexes by addition of trimethylphosphine or triethylphosphine. i + The phosphinidene complex [CpFe(CO)2{PN Pr2}] , reacts with trialkylphos- phines to form the phosphine-coordinated phosphinidene complexes [CpFe(CO)2- i + {P(PR3)N Pr2] (R = CH3, C2H5, C4H9). Phosphines act as a protecting group and allow amine cleavage via reaction with HBF4·O(CH3CH2)2 to form phosphine-coordinated chlorophosphinidene complexes. The resulting chloro group can be displaced by an additional phosphine, leading to novel bisphosphoniophosphido complexes 2+ + [CpFe(CO)2{P(PR3)}] , which rapidly dissociates to form [PR3-P-PR3] . Reaction of i + [CpFe(CO)2{PN Pr2}] with bis(dimethylphosphino)methane forms [CpFe(CO)- i 2 1 4 + {P(N Pr2)P(Me2)CH2P(Me2)-κ P ,P }] . P-N cleavage of the bridging complex i 2 1 4 + [CpFe(CO){P(N Pr2)P(Me2)CH2P(Me2)-κ P ,P }] with HCl leads to [CpFe(CO)- 2 1 4 + {P(Cl)P(Me2)CH2P(Me2)-κ P ,P }] . Phosphine addition to [CpFe(CO){P(Cl)- 2 1 4 + P(Me2)CH2P(Me2)-κ P ,P }] gives the bisphosphoniophosphido complex [CpFe(CO)- 2 1 4 2+ {P(PR3)P(Me2)CH2P(Me2)-κ P ,P }] , which is stable to dissociation. i + The reactivity studies of [CpFe(CO)2{PN Pr2}] have shown that it can be used to activate non-polar bonds like Si-H, P-H and H-H to form P-Si, P-P and P-H bonds, but is i + not electrophilic enough to activate C-H bonds. [CpFe(CO)2{PN Pr2}] undergoes cycloaddition reactions with a wide range of unsaturated substrates leading to phosphorus heterocycles, and shows the typical reactivity expected for electrophilic phosphinidene complexes. Novel complexes with P-P-P ligands and P-P bonds have been formed via i + phosphine addition reactions of [CpFe(CO)2{PN Pr2}] . ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr. Brian Sterenberg for his guidance, valuable advice and support throughout this study, and help in writing thesis. I am most grateful to the members of the thesis supervisory committee, Dr. Lynn Mihichuk, Dr. Scott Murphy, Dr. Allan East, and Dr. Mauricio Barbi for their suggestions and advice. It is my pleasure to thank Prof. Doug Stephan, University of Toronto, for giving me an opportunity to work in his lab and Dr. Renan Cariou who supported me during my stay at the University of Toronto. I would like to express my gratitude to Dr. Bob McDonald and Dr. Mike Ferguson of University of Alberta for X-ray data collection, Dr. Wayne Moffat (University of Alberta) for elemental analysis, Dr. Ron Treble for GC/MS analysis and Dr. Chuanzhong Wang for troubleshooting the NMR spectrometer whenever needed. I thank Tim Bolton, Colin Kuntz, Rakesh Rajagopalan and Arumugam Jayaraman for their support in the lab. I would like to acknowledge the Faculty of Graduate Studies and Research, Department of Chemistry and Biochemistry, University of Regina and National Sciences and Engineering Research Council (discovery grant to Sterenberg) for financial assistance. At last but not least I wish to thank my wife, Kamalini, and children, Suthan and Thanu, for their encouragement and fullest support to achieve my long term goal. Their patience and soothing words were my driving force. iii TABLE OF CONTENTS Abstract……………………………………………………….………………………….i Acknowledgements………………………………………………….…………………..iii Table of Contents………………………………………………………………………..iv List of Tables……………………………………………………………………...……..x List of Figures…………………………………………………………………………...xi List of Abbreviations ………………………………………………………………….xiii CHAPTER 1: INTRODUCTION .................................................................................... 1 1.1 Phosphorus ................................................................................................................ 1 1.2 Organophosphorus compounds ................................................................................. 1 1.3 The phosphorus-carbon analogy ............................................................................... 3 1.4 Phosphinidenes ......................................................................................................... 4 1.4.1 Bonding in phosphinidenes ................................................................................ 6 1.4.2 Generation of phosphinidenes............................................................................ 7 1.5 Phosphinidene complexes ......................................................................................... 9 1.5.1 Nucleophilic phosphinidene complexes ............................................................ 9 1.5.2 Electrophilic phosphinidene complexes .......................................................... 11 1.6 Characteristic reactions of phosphinidene complexes ............................................ 18 1.6.1 Characteristic reactions of electrophilic phosphinidene complexes ................ 18 1.7 Rationale of the study ............................................................................................. 20 1.8 Scope of the study ................................................................................................... 22 iv CHAPTER 2: BOND ACTIVATION REACTIONS OF ELECTROPHILIC PHOSPHINIDENE COMPLEXES ............................................................................... 24 2.1 INTRODUCTION .................................................................................................. 24 2.1.1 Bond activation reactions ................................................................................. 24 2.1.2 Bond activation by electrophilic phosphinidene complexes ............................ 25 2.2 RESULTS AND DISCUSSION ............................................................................. 32 2.2.1 Preparation of iron aminophosphinidene complex .......................................... 32 2.2.2 Si-H activation reactions of iron aminophosphinidene complex ..................... 32 2.2.3 P-H activation reaction of iron aminophosphinidene complex........................ 39 2.2.4 H-H activation reaction of iron phosphinidene complex ................................. 41 2.2.5 Computational Studies of Si-H and H-H Activations ...................................... 43 2.3 CONCLUSIONS..................................................................................................... 48 2.4 EXPERIMENTAL .................................................................................................. 49 2.4.1 General Comments..........................................................................................
Recommended publications
  • October 1, 2020 Webinar
    Phosphorus Specialties: the cornerstone of synthesis for pharmaceutical applications Eamonn Conrad, Ph.D., Global BD Manager Dino Amoroso, Ph.D., NA Account Manager William Stibbs, Ph.D. Senior BD Manager Overview • Solvay Phosphorus Specialties, Strem Chemicals Inc. Partnership • Chemistry for the Manufacture of Phosphine Ligands • Applications in Pharmaceutical Catalysis • Applications in Life Sciences • Summary and Questions *Solvay partners with Strem Chemicals for sample distribution page 2 Phosphorus Specialties Strem Chemicals, Inc. Solvay partners with Strem Chemicals for sample distribution! Established in 1964 More than 55 years of experience in manufacturing and handling high quality inorganics and organometallics 5,000+ specialty chemicals available Laboratory Chemicals for R&D cGMP Products Manufactured in Kilo-lab Suites High Pressure Materials Custom Synthesis Projects Customers include: Corporate Headquarters Academic, industrial and government R&D laboratories Corporate Headquarters European Headquarters Commercial scale businesses in the pharmaceutical, Newburyport, MA USA Strasbourg, France microelectronics, chemical & petrochemical industries Phosphorus Specialties Samples available from Strem Who We Are Phosphorus Specialties Mining Solutions Polymer Additives Putting our science to work for customers to develop differentiated products and technologies Dedicated on-site technical service and applications expertise to support our customers’ needs Deep customer relationships and ongoing collaborations to solve demanding
    [Show full text]
  • Phosphine-Catalyzed Additions of Nucleophiles and Electrophiles to Α
    PHOSPHINE-CATALYZED ADDITIONS OF NUCLEOPHILES AND ELECTROPHILES TO α,β–UNSATURATED CARBONYL COMPOUNDS Reported by Michael Scott Bultman November 4, 2004 INTRODUCTION Organophosphorous compounds are becoming increasingly important in organic synthesis. Phosphines serve as precursors to phosphonium ylides in the Wittig reaction,1 and as nucleophilic triggers in the Mitsunobu2 and Staudinger3 reactions. In these processes, the phosphine is stoichiometrically consumed and converted into a phosphine oxide. Phosphines are also commonly used as ligands for transition metal-catalyzed reactions, to modulate reactivity and stereocontrol.4 On the other hand, the use of phosphines as nucleophilic catalysts for organic reactions has only gained attention in the last ten years. First reported by Rauhut and Currier in 1963,5 phosphine catalysis has since been reinvestigated after the phosphine ligands in some transition-metal-catalyzed reactions were found to be better catalysts than the metal/phosphine complexes alone!6 Phosphines are well suited for catalyzing the addition of both nucleophiles and electrophiles to electron deficient alkenes, alkynes, and allenes. Activation of these α,β-unsaturated carbonyl systems with the phosphine enables the formation of new bonds at the α-, β-, and γ-positions. This report will highlight these different modes of addition to α,β-unsaturated carbonyl systems under phosphine catalysis that allow for the formation of a wide array of products from a single class of substrates. GENERAL REACTIVITY OF PHOSPHINES Key characteristics required for successful nucleophilic catalysis lie in the balance of leaving group ability, nucleophilicity, and ease of ylid formation. Increasing leaving group ability can often be + correlated with decreasing basicity.
    [Show full text]
  • Guidelines for Pyrophoric Materials
    Guidelines for Pyrophoric Materials Definition and Hazards Pyrophoric materials are substances that ignite instantly upon exposure to air, moisture in the air, oxygen or water. Other common hazards include corrosivity, teratogenicity, and organic peroxide formation, along with damage to the liver, kidneys, and central nervous system. Examples include metal hydrides, finely divided metal powders, nonmetal hydride and alkyl compounds, white phosphorus, alloys of reactive materials and organometallic compounds, including alkylithiums. Additional pyrophoric materials are listed in Appendix A. Failure to follow proper handling techniques could result in serious injury or death. Controlling the Hazards . If possible, use safer chemical alternatives. A “dry run” of the experiment should be performed using low-hazard materials, such as water or solvent, as appropriate. Limit the amount purchased and the amount stored. Do not accumulate unneeded pyrophoric materials. BEFORE working with pyrophoric materials, read the MSDS sheets. The MSDS must be reviewed before using an unfamiliar chemical and periodically as a reminder. A Standard Operating Procedure (SOP) should be prepared and reviewed for each process involving pyrophoric materials. In lab training should be completed and documented. If possible, use the “buddy system”. Working alone with pyrophorics is strongly discouraged. All glassware used for pyrophorics should be oven-dried and free of moisture. Review the location of the safety shower, eyewash, telephone, and fire extinguisher. Keep an appropriate fire extinguisher or extinguishing material close at hand. Additional controls when handling liquid pyrophoric materials . Secure pyrophoric reagent bottle to stand. Secure the syringe so if the plunger blows out of the body of the syringe the contents will not splash anyone.
    [Show full text]
  • Advanced Studies on the Synthesis of Organophosphorus Compounds
    ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN SCIENZE CHIMICHE (XIX° ciclo) Area 03 Scienze Chimiche-CHIM/06 Chimica Organica Dipartimento di Chimica Organica “A. Mangini” Coordinatore: Chiar.mo Prof. Vincenzo Balzani Advanced Studies on the Synthesis of Organophosphorus Compounds Dissertazione Finale Presentata da: Relatore: Dott. ssa Marzia Mazzacurati Prof. Graziano Baccolini Co-relatore: Dott.ssa Carla Boga INDEX Index: Keywords…………………………………………………………….………….VII Chapter 1…………………………………………………………………………..3 GENERAL INTRODUCTION ON PHOSPHORUS CHEMISTRY 1.1 Organophosphorus Chemistry………………………………………………….4 1.1.1 Phosphines………………………………………………………………..5 1.1.2 Phosphonates……………………………………………………………..6 1.1.3 Phosphites………………………………………………………………...7 1.2 Uses of Organophosphorus Compounds………………………………………..7 1.2.1 Agricultural Application………………………………………………….8 1.2.2 Catalysis……………………………………………………………..…....9 1.2.3 Organophosphorus Conpounds in Medicine…………………………….11 1.2.4 Phosphorus in Biological Compounds…………………………………..12 1.3 References……………………………………………………………………..15 Chapter 2…………………………………………………………………………17 THE HYPERCOORDINATE STATES OF PHOSPHORUS 2.1 The 5-Coordinate State of Phosphorus……………………………………….17 2.2 Pentacoordinated structures and their non rigid character…………………….18 2.3 Permutational isomerization…………………………………………………..19 2.3.1 Berry pseudorotation……………………………………………………20 2.3.2 Turnstile rotation………………………………………………………..21 2.4 The 6-Coordinate State of Phosphorus……………………………………….22 2.5 References…………………………………………………………………......24 I Chapter
    [Show full text]
  • C-N Bond Insertion of a Complexed Phosphinidene Into a Bis(Imine)
    FULL PAPER C؊N Bond Insertion of a Complexed Phosphinidene into a Bis(imine) ؊ A Novel 2,3-Sigmatropic Shift Mark J. M. Vlaar,[a] Pieter Valkier,[a] Marius Schakel,[a] Andreas W. Ehlers,[a] Martin Lutz,[b] Anthony L. Spek,[b] and Koop Lammertsma*[a] Keywords: Complexed phosphinidene / Cycloadditions / Density functional calculations / Heterocycles / P,N-ylides The electrophilic phosphinidene complex PhPW(CO)5 reacts energetically much more demanding. Ring-closure to an aza- with bis(imine) 5, possessing a single carbon spacer, to give phosphirane is also less favorable than the C−N insertion, the C−N insertion product 6. B3LYP/6-31G* calculations in- which is in agreement with the absence of such a product in dicate that this process occurs by way of a 2,3-sigmatropic the experiment. shift from the initially formed phosphane ylide. The alternat- ive, 1,3-dipolar cycloaddition, followed by ring-opening of ( Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, the bicyclic structure, can be ruled out since both steps are 2002) Introduction Phosphane ylides are emerging as viable low-valent or- ganophosphorus synthons. These highly reactive species are already commonly employed in the phospha Wittig reac- tion,[1] while their transition metal complexes are useful re- agents for the synthesis of three- to eight-membered hetero- cycles.[2] These ylides are readily available. For example, the frequently used complexed nitrilium phosphane ylides I can be generated thermally[3] and photochemically[4] from 2H- azaphosphirene complexes. Reminiscently of regular yl- ides,[5] however, most transient P,N-ylides (I,[3,4,6] II,[7] and III[8]), P,O-ylides (IV[9]), P,S-ylides (V[10]), and P,P-ylides (VI[11]) are formed from direct interaction (or exchange) be- [12] tween complexed phosphinidenes RPW(CO)5, generated extends recent studies on the formation of azaphosphiridi- in situ, and the lone pair of the heteroatom-containing sub- nes[7,9a] and the 1,3-dipolar cycloadditions of P,N-ylides.[6,7] strate.
    [Show full text]
  • Improved Processes for the Preparation of 1-Aryl-5-Alkyl Pyrazole Compounds
    (19) TZZ¥__Z_T (11) EP 3 184 510 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.06.2017 Bulletin 2017/26 C07D 231/18 (2006.01) (21) Application number: 16199220.1 (22) Date of filing: 22.04.2013 (84) Designated Contracting States: • LEE, Hyoung, Ik AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Cary, NC 27519 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • ZHAN, Xinxi PL PT RO RS SE SI SK SM TR BDA, Beijing 100176 (CN) Designated Extension States: • LABROSSE, Jean-Robert BA ME F-34160 Saint Hilaire De Beauvoir (FR) • MULHAUSER, Michel (30) Priority: 20.04.2012 US 201261635969 P F-69370 Saint Didier au Mont d’Or (FR) (62) Document number(s) of the earlier application(s) in (74) Representative: D Young & Co LLP accordance with Art. 76 EPC: 120 Holborn 13720198.4 / 2 852 577 London EC1N 2DY (GB) (71) Applicant: Merial, Inc. Remarks: Georgia 30096 (US) •This application was filed on 16-11-2016 as a divisional application to the application mentioned (72) Inventors: under INID code 62. • MENG, Charles, Q •Claims filed after the date of filing of the Grayson, GA 30017 (US) application/dateof receipt of the divisional application • LE HIR DE FALLOIS, Loic, Patrick (Rule 68(4) EPC). Atlanta, Georgia 30305 (US) (54) IMPROVED PROCESSES FOR THE PREPARATION OF 1-ARYL-5-ALKYL PYRAZOLE COMPOUNDS (57) Provided are improved processes for the preparation of 1-aryl pyrazole compounds of formula (I) and (IB): which are substituted at the 5-position of the pyrazole ring with a carbon-linked functional group.
    [Show full text]
  • Beyond Traditional Superatom Ligands and Cores Evan Ambrose
    Beyond Traditional Superatom Ligands and Cores Evan Ambrose Doud Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2019 Evan Ambrose Doud All Rights Reserved Abstract Beyond Traditional Superatom Ligands and Cores Evan Ambrose Doud This dissertation summarizes my research in the Roy group on the development, synthesis, and study of new N-heterocyclic carbene (NHC) based ligands and nickel phsophinidene core compositions of molecular clusters, also known as superatoms. Chapter 1 introduces superatoms as atomically precise and discreet building blocks for use in the design and synthesis of novel materials. A brief history as well as selected synthetic strategies of superatoms will be introduced. The relevant materials properties of superatoms as well as their dependence on core composition and ligand structure will be discussed. Next, the use of superatoms with specialized or functionalizable ligands to synthesize new materials will be demonstrated. This chapter details the importance of the superatom ligands and core composition is the foundation that the subsequent chapters builds upon in developing these two areas. Chapter 2 introduces a functionalized NHC as a potential superatom ligand. While not necessary for all superatom ligands, ligands that enable electronic access to the superatom core are attractive. In this chapter, the conductance of potential NHC based ligands are probed through the scanning tunneling microscope-based break-junction (STM-BJ) method. A novel method of forming single molecule junctions in situ was used and these ligands are found to display a length dependent conductance with strong coupling to the Au electrode, confirming their potential use as ligands for superatoms.
    [Show full text]
  • New Boron–Hydrogen Insertion Reactions of Ligated Boranes By
    New Boron–Hydrogen Insertion Reactions of Ligated Boranes by Thomas H. Allen B.S. Chemistry, Magna Cum Laude, Ohio Northern University, 2012 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2018 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Thomas H. Allen It was defended on July 17, 2018 and approved by Sruti Shiva, Associate Professor, Department of Pharmacology and Chemical Biology W. Seth Horne, Associate Professor, Department of Chemistry Kay M. Brummond, Professor, Department of Chemistry Committee Chair: Dennis P. Curran, Distinguished Service Professor and Bayer Professor, Department of Chemistry ii Copyright © by Thomas H. Allen 2018 iii New Boron–Hydrogen Insertion Reactions of Ligated Boranes Thomas H. Allen, PhD University of Pittsburgh, 2018 Chemical transformations of ligated borane complexes, including N-heterocyclic carbene boranes, are demonstrated. Chapter 1 begins with an introduction of Lewis base borane complexes, rhodium carbene chemistry, and B–H insertion of ligated boranes. The second part of Chapter 1 describes the insertion of rhodium carbenes, previously demonstrated with NHC- boranes, into the B–H bonds of other ligated boranes. Stable ligated α-boryl esters were isolated. A series of competitive B–H insertion experiments are described that were used to develop a relative reactivity profile of ligated boranes toward rhodium-catalyzed B–H insertion. The enantioselective B–H insertion of NHC-boranes with chiral dirhodium catalysts was also investigated. Finally, the synthesis and application of two chiral bridged dirhodium catalysts is described.
    [Show full text]
  • Pyrophoric Handling Procedure
    Pyrophoric Handling Procedure Carnegie Mellon Environmental Health & Safety 5000 Forbes Avenue FMS Building, 3rd Floor Pittsburgh, PA 15213 412-268‐8182 www.cmu.edu.ehs October 2019 TABLE OF CONTENTS Introduction ........................................................................................................................................3 Examples of Pyrophoric/Water Reactive Materials ...........................................................................3 Hazards ..............................................................................................................................................3 Controlling the Hazards .....................................................................................................................3 Personal Protective Equipment (PPE) ...............................................................................................4 Eye Protection ........................................................................................................................4 Skin Protection .......................................................................................................................4 Eyewash/Safety Showers .......................................................................................................4 Fume Hood.............................................................................................................................4 Glove (dry) box ......................................................................................................................5
    [Show full text]
  • Organophosphorus-Tellurium Chemistry: from Fundamentals to Applications
    Organophosphorus-Tellurium Chemistry: From Fundamentals to Applications Andreas Nordheider,a J. Derek Woollinsa and Tristram Chiversb* a. EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK b. Department of Chemistry, University of Calgary, Calgary, AB, Canada T2N 1N4 CONTENTS 1. Introduction 2. Fundamental Considerations 3. Binary Phosphorus-Tellurium Species 4. Phosphine Complexes of Tellurium Cations 5. Organophosphorus(III)-Tellurium Compounds 5.1 Acyclic Organophosphorus(III)-Tellurium Compounds 5.1.1 With P‒Te‒C Linkages 5.1.2 With P‒Te‒P Linkages 5.2 Organophosphorus(III)-Tellurium Heterocycles 5.3 Weak Phosphorus(III)···Tellurium Interactions 6. Organophosphorus(V) Tellurides 6.1 Synthesis and Spectroscopic Characterization 6.2 NMR Spectra and Phosphorus-Tellurium Exchange 6.3 X-Ray Structures 6.4 Bonding and Electronic Structure 6.5 Reaction with Electrophiles and Redox Behavior 6.6 Coordination Complexes 6.7 Applications as Tellurium-Transfer Reagents 7 Anionic Phosphorus-Tellurium Ligands 7.1 Tellurophosphates 7.2 Tellurophosphinites and Ditellurophosphinates 7.3 Telluroimidophosphinites, Tellurobisimidophosphinates. Mono- and Di- telluroimidodiphosphinates 7.3.1 Alkali-Metal Derivatives 1 7.3.2 Redox Chemistry 7.3.3 p-Block, d-Block and f-Block Metal Complexes 7.4 PCP-Bridged Tellurium-Centered Anions 7.5 A Carbon-Bridged P‒Te‒Al Heterocycle 7.6 Tellurium-Centered Anions Supported by a P2N2 Ring 7.6.1 Alkali-Metal Derivatives 7.6.2 Redox Chemistry 7.6.3 p-Block Metal Complexes 8 Single-Source Precursors for Metal Telluride Thin Films 9 Conclusions and Prospects 10 Acknowledgments 11 Addendum Author Information Corresponding Author Notes Biographies Abbreviations Dedication References 2 1.
    [Show full text]
  • Phosphanylphosphinidene‐Phosphoranes
    EurJIC Full Paper European Journal of Inorganic Chemistry doi.org/10.1002/ejic.202000073 P-Rich Ylides Phosphanylphosphinidene-Phosphoranes: A Study on Building and Decomposition of Phosphorus-Rich Chains with Two Ylidic Moieties Eberhard Matern,[a] Christopher E. Anson,[a] Elke Baum,[a] Ewald Sattler,[a] and Ilona Kovács*[b] Abstract: The reactions of tBu2P–P=P(tBu2)CH2Li at low tem- {tBu2P–P} which is observed as its cyclic trimer or tetramer. In perature with dichlorophosphanes RPCl2 (R=Ph,Me,NEt2, tBu) the reactions of tBu(Me3Si)P–P=P(tBu2)CH2Li with RPCl2 the cor- lead to “P-7-chains” as primary products wherein two ylidic responding “P-7-chains” and the P4CH2-rings are formed. The moieties are linked by a CH2–PR–CH2 unit. However, if R = tBu substituent R strongly determines the ratio of chain to ring as the long chain is only a by-product in addition to tBu2P–P= well as the thermal stability of the products. The solid-state P(tBu2)Me. The thermal decomposition of “P-7-chains” as moni- structures of one representative of both “P-7-chains”, and of 31 tored by P NMR spectroscopy results in tBu2P–CH2–PR–CH2– the oxidized derivative of the P4CH2-ring with R = tBu were PtBu2 (“P-3-chains”) and the phosphanylphosphanylidene determined by single-crystal X-ray diffraction analysis. Introduction and studied extensively how their formation and properties de- pend on their substituents,[9] and some of these compounds 4 Phosphinidene-σ -phosphoranes (XP=PR3) can be interpreted were also structurally characterized.[10] These ylides possess a as phosphinidenes protected by phosphanes PR3.
    [Show full text]
  • The University of British Columbia FACULTY OF
    The University of British Columbia FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF DAVID STUART DAWSON B. sc, M.Sc,, University of British Columbia MONDAY, JUNE 12, at 3:30 P.M. IN ROOM 261, CHEMISTRY BUILDING COMMITTEE IN CHARGE Chairman: B. N. Moyls E. Peters - D.E. McGreer C. A. McDowell N.L. Paddock A. Storr . G.B. Porter External Examiner: H.J. Emeleus University Chemical Laboratory Lensfield Road Cambridge, England Research Supervisor: W.R. Cullen REACTIONS OF SOME UNSATURATED FLUOROCARBON DERIVATIVES WITH ORGANO COMPOUNDS OF PHOSPHOROUS AND NITROGEN ABSTRACT Perfluorocyclobutene and 1,2-dichlorotetrafluoro- cylobutene react readily with diethylphosphine at 20° to give unstable mono-subs'titution products, 1-diethyl- phosphino-2-halotetrafluorocyclobutenes. With tetra- methyldiphosphine, low yields of 1,2-bis(dimethylphos- phino)tetrafluorocyclobutene and trifluorodimethylphos- phorane are obtained from the chloro- and perfluoro- butenes respectively. Diphenylphosphine also gives the 1,2-disubstituted product at.20°, from perfluorocyclo• butene only. This olefin interacts with tetraphenyl- diphosphine (130°) to give 1-diphenylphosphinotrifluoro- cyclobutenone (from 95% ethanol). Under identical conditions the chloro-butene reacts with the phenyl- phosphines to give trifluorodiphenylphosphorane and fluorodiphenylphosphine oxide. Tetrakis (trifluoro- methyl)diphosphine on heating or ultra-violet irradia• tion reacts only very slightly, while bis(trifluoro- methyl)phosphine is essentially inert towards the cyclobutenes. Dimethylamine readily adds to hexafluorobutyne-2 at 20°to give the 1:1 adduct, 2-dimethylamino-3-H-hexa- fluorobutene-2, the ratio of trans:cis isomers being 6.2:1. -.The cis isomer is converted by distillation, but not by heating in a sealed tube, to the trans form.
    [Show full text]