<<

University of Groningen

Functional carbohydrates from the red microalga sulphuraria Martínez García, Marta

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Martínez García, M. (2017). Functional carbohydrates from the red microalga . University of Groningen.

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment.

Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-09-2021

References

115

References

Aikawa, S., Izumi, Y., Matsuda, F., Hasunuma, T., Chang, J. S., & Kondo, A. (2012). Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technology, 108: 211- 215.

Aikawa, S., Nishida, A., Ho, S. H., Chang, J. S., Hasunuma, T., & Kondo, A. (2014). Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnology for Biofuels, 7.

Albertano, P., Ciniglia, C., Pinto, G., & Pollio, A. (2000). The taxonomic position of Cyanidium, and Galdieria: an update. Hydrobiologia, 433: 137-143.

Allen, M. B. (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Archives of Microbiology, 32: 270-277.

Ao, Z., Simsek, S., Zhang, G., Venkatachalam, M., Reuhs, B. L., & Hamaker, B. R. (2007). Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. Journal of Agricultural and Food Chemistry, 55: 4540-4547.

Atichokudomchai, N., Jane J-L., & Hazlewood, G. (2005) Reaction pattern of a novel thermostable α-amylase. Carbohydrate Polymers, 64: 582-588.

Backer, D., & Saniez, M. H. (2005). Soluble highly branched glucose polymers and their method of production. US6861519 B2.

Bailey, R. W., & Staehelin, L. A. (1968). The chemical composition of isolated cell walls of Cyanidium caldarium. Microbiology, 54: 269-276.

Ball, S. G., & Morell, M. K. (2003). From bacterial glycogen to starch: understanding the biogenesis of the starch granule. Annual Review of Plant Biology, 54: 207-233.

Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. G., Wilkerson, C., Garavito, R. M., Benning, C., & Weber, A. P. (2005). Comparative genomics of two closely related unicellular thermo-acidophilic , Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiology, 137: 460-474.

Barry, V. C., Halshall, T. G., Hirst, E. L., & Jones, J. K. N. (1949) The polysaccharides of the . . Journal of the Chemistry Society, 1468-1470.

14 Bean, R. C., & Hassid, W. Z. (1955). Assimilation of CO2 by a photosynthesizing red alga, Iridophycus flaccidum. Journal of Biological Chemistry, 212: 411-425.

116

References

Becker, J. U., Vohmann, H. J., & Eilers-König, C. (1979) Glycogen metabolism in resting and growing cells of Saccharomyces carlsbergensis. Archives of Microbiology, 12: 143-149.

Bender, H. (1979). Glycogen from Klebsiella pneumonie M 5 al and Escherichia coli K 12. European Journal of Applied Microbiology and Biotechnology, 8: 279-287.

Bhattacharya, D., & Medlin, L. (1995). The phylogeny of plastids: a review based on comparisons of small subunit ribosomal RNA coding regions. Journal of Phycology, 31: 489-498.

Bijttebier, A., Goesaert, H., & Delcour, J.A. (2008) Amylase action pattern on starch polymers. Biologia, 63, 989-999.

Biwer, A., Antranikian, G., & Heinzle, E. (2002). Enzymatic production of cyclodextrins. Applied Microbiology and Biotechnology, 59: 609-617.

Boeck, B., & Schinzel, R. (1998). Growth dependence of α-glucan phosphorylase activity in Thermus thermophilus. Research in Microbiology, 149: 171-176.

Bondu, S., Cerantola, S., Kervarec, N., & Deslandes, E. (2009). Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Phytochemistry, 70: 173-184.

Bondu, S., Kervarec, N., Deslandes, E., & Pichon, R. (2007) Separation of floridoside and isofloridoside by HPLC and complete 1H and 13C NMR spectral assingments for D- isofloridoside. Carbohydrate Research, 342: 2470-2473.

Borowitzka, M. A. (1992). Algal biotechnology products and processes. Matching science and economics. Journal of Applied Phycology, 4: 267-279.

Borowitzka, M. A. (2013). High-value products from microalgae. Their development and commercialisation. Journal of Applied Phycology, 25: 743-756.

Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae - Novel highly efficient starch producers. Biotechnology and Bioengineering, 108: 766-776.

Brown, A. D. (1978). Compatible solutes and extreme water stress in eukaryotic micro- organisms. Advances in Microbial Physiology, 17: 181-242.

Buchholz, K., & Seibel, J. (2008). Industrial carbohydrate biotransformations. Carbohydrate Research, 343: 1966-1979.

Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998) Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23: 85-112.

117

References

Bumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Applied Microbiology and Biotechnology, 91: 31-46.

Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α‐ amylase and starch digestion: An interesting marriage. Starch/Stärke, 63: 395-405.

Callow, M. E., & Callow, J. A. (2002). Marine biofouling: a sticky problem. Biologist, 49:1-5.

Chao, L., & Bowen, C. C. (1971). Purification and properties of glycogen isolated from a blue-green alga, Nostoc muscorum. Journal of Bacteriology, 105: 331-338.

Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G., & Bhattacharya, D. (2004). Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 13: 1827- 1838.

Ciric, J., Oostland, J., de Vries, J. W., Woortman, A. J. J, & Loos, K (2012) Size exclusion chromatography with multi detection in combination with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry as a tool for unraveling the mechanism of the enzymatic polymerization of polysaccharides. Analytical Chemistry, 84: 10463-10470.

Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 44: 1813-1819.

Cole, K. M., & Sheath, R. G. (1990). Biology of the red algae. Cambridge University Press.

Colin, H., & Gueguen, E. (1930). Le sucre des Floridées. Comptes Rendus de l'Académie des Sciences Paris, 191: 163-164.

Courtois, A., Simon-Colin, C., Boisset, C., Berthou, C., Deslandes, E., Guézennec, J., & Bordron, A. (2008). Floridoside extracted from the red alga Mastocarpus stellatus is a potent activator of the classical complement pathway. Marine Drugs, 6: 407-417.

Cozzolino, S., Caputo, P., De Castro, O., Moretti, A., & Pinto, G. (2000). Molecular variation in Galdieria sulphuraria (Galdieri) Merola and its bearing on . Hydrobiologia, 433: 145-151.

Crabb, W. D., & Mitchinson, C. (1997). Enzymes involved in the processing of starch to sugars. Trends in Biotechnology, 15: 349-352.

Craigie, J. S., McLachlan, J., & Tocher, R. D. (1968). Some neutral constituents of the Rhodophyceae with special reference to the occurrence of the floridosides. Canadian Journal of , 46: 605-611. 118

References

Crowe, J. H., Crowe, L. M., Carpenter, J. F., & Wistrom, C. A. (1987). Stabilization of dry phospholipid bilayers and proteins by sugars. Biochemical Journal, 242: 1-10.

Da Costa, M. S., Santos, H., & Galinski, E. A. (1998). An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In Biotechnology of Extremophiles (pp. 117-153). Springer Berlin Heidelberg.

Damager, I., Jensen, M. T., Olsen, C. E., Blennow, A., Møller, B. L., Svensson, B., & Motawia, M. S. (2005) Chemical synthesis of a dual branched malto-decasoe: a potential substrate for α-amylases. ChemBioChem, 6: 1224-1233.

De Luca, P., Moretti, A. (1983) Floridosides in Cyanidium caldarium, Cyanidioschyzon merolae and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). Journal of Phycology, 19: 368-369.

De Luca, P., Taddei, R., & Varano, L. (1978). Cyanidioschyzon merolae: a new alga of thermal acidic environments. Webbia, 3: 37-44.

Deremaux, L., Petitjean, C., & Wills, D. (2013) Soluble highly branched glucose polymers for enteral and parenteral nutrition and for peritoneal dialysis. US8445460B2.

Deschamps, P., Haferkamp, I., d’Hulst, C., Neuhaus, H. E., & Ball, S. G. (2008). The relocation of starch metabolism to chloroplasts: when, why and how. Trends in Plant Science, 13: 574-582.

Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M., & Posewitz, M. C. (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 19: 235-240.

Egorova, K., Grudieva, T., Morinez, C., Kube, J., Santos, H., Da Costa, M. S., & Antranikian, G. (2007). High yield of mannosylglycerate production by upshock fermentation and bacterial milking of trehalose-deficient mutant Thermus thermophilus RQ-1. Applied Microbiology and Biotechnology, 75: 1039-1045.

Ekman, P., Yu, S., & Pedersen, M. (1991). Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultivated Gracilaria sordida. British Phycological Journal, 26: 123-131.

Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13: 17R-27R.

Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swatson, J. S., & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77: 289-311.

Empadinhas, N., & Costa, M. S. D. (2006). Diversity and biosynthesis of compatible solutes in hyper-thermophiles. International Microbiology, 9:199-206. 119

References

Englyst, H. N, Veenstra, J., & Hudson, G.J. (1996) Measurement of rapidly available glucose (RAG) in plant foods: a potential in vitro predictor of the glycaemic response. British Journal of Nutrition, 75, 327-337.

Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992) Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 33-50.

Eriksen, N. T. (2008). Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80: 1-14.

Fleming, I. D., Hirst, E. L., & Manners, D. J. (1956). 553. α-1: 4-Glucosans. Part IV. A re-examination of the molecular structure of floridean starch. Journal of the Chemical Society, 2831-2836.

Frampton, J. E., & Plosker, G. L. (2003) Icodextrin. A review of its use in peritoneal dialysis. Drugs, 63: 2079-2105.

Fuertes, P., Roturier, J. M., & Petitjean, C. (2009). Soluble highly branched glucose polymers, US7612198 B2.

Fujiwara, T., Ohnuma, M., Yoshida, M., Kuroiwa, T., & Hirano, T. (2013). Gene targeting in the red alga Cyanidioschyzon merolae: single-and multi-copy insertion using authentic and chimeric selection markers. PloS one, 8.

Gantt, E. (1981). Phycobilisomes. Annual Review of Plant Physiology, 32: 327-347.

Gidley, M. J. (1985) Quantification of the structural features of starch polysaccahrides by NMR spectroscopy. Carbohydrate Research, 139: 85-93.

Gilbert, R. G., Wu, A. C., Sullivan, M. A., Sumarriva, G.E., Ersch, N., & Hasjim, J. (2013) Improving human health through understanding the complex structure of glucose polymers Anals of Bioanalytical Chemistry, 405: 8969-8980.

Goedl, C., Sawangwan, T., Mueller, M., Schwarz, & Nidetzky, B. (2008) A high- yielding biocatalytic process for the production of 2-O-(α-D-glycopyranosyl)-sn- glycerol, a natural osmolyte and useful moisturizing ingredient. Angewandte Chemie, 47: 10086-10089.

Goedl, C., Sawangwan, T., Nidetzky, B. (2009) Method for producing 2-O-glycerol-α- D-glucopyranoside. US 2009/0318372 A1.

Graverholt, O. S., & Eriksen, N. T. (2007). Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Applied Microbiology and Biotechnology, 77: 69-75.

120

References

Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G., & Pollio, A. (2013). Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food & Function, 4: 144-152.

Greenwood, C. T., & Thomson, J. (1961). Physicochemical studies on starches. Part XXIII. Some physical properties of floridean starch and the characterization of structure-type of branched α-1,4-glucans. Journal of the Chemical Society, 301: 1534- 1537.

Gross, W. (2000). Ecophysiology of algae living in highly acidic environments. Hydrobiologia, 433: 31-37.

Gross, W., & Oesterhelt, C. (1999) Ecophysiological studies on the red alga Galdieria sulphuraria isolated from southwest Iceland. Plant Biology, 1: 694-700.

Gross, W., & Schnarrenberger, C. (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiology, 36: 633-638.

Gross, W., Küver, J., Tischendorf, G., Bouchaala, N., & Büsch, W. (1998). Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. European Journal of Phycology, 33: 25-31.

Gross, W., Oesterhelt, C., Tischendorf, G., & Lederer, F. (2002) Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). European Journal of Phycology, 37: 477-482.

Guiry, M.D. & Guiry, G.M. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. www.algaebase.org (searched on 25 October 2016).

Gunja-Smith, Z., Marchall, J. J., & Smith, E. E. (1971) Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS letters, 13: 309-311.

Guo, L., Zhang, J., Hu, J., Du, X., & Cui, B. (2016). The effects of entanglement concentration on the hydrodynamic properties of cereal starches. Journal of the Science of Food and Agriculture.

Hagemann, M (2016) Coping with high and variable salinity: molecular aspects of compatible solute accumulation. In: Borowitzka et al. (eds.) The physiology of microalgae, 1st edn. Springer International Publishing, pp 359-372.

Hagemann, M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews, 35: 87-123.

Hagemann, M., & Pade, N. (2015) Heterosides – compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biology, 17: 927-934.

121

References

Hara, F., Akazawa, T., & Kojima, K. (1973). Glycogen biosynthesis in Chromatium strain D: I. characterization of glycogen. Plant and Cell Physiology, 14: 737-745.

Hejazi, M. A., & Wijffels, R. H. (2004). Milking of microalgae. Trends in Biotechnology, 22: 189-194.

Hejazi, M. A., Holwerda, E., & Wijffels, R. H. (2004). Milking microalga Dunaliella salina for β‐ carotene production in two‐ phase bioreactors. Biotechnology and Bioengineering, 85: 475-481.

Hellio, C., Simon-Colin, C., Clare, A., & Deslandes, E. (2004) Isethonic acid and floridoside isolated from the red alga Grateloupia turuturu inhibit settlement of Balanus Amphitrite crypid larvae. Biofouling, 20: 139-145.

Henkanatte-Gedera, S. M., Selvaratnam, T., Karbakhshravari, M., Myint, M., Nirmalakhandan, N., Van Voorhies, W., & Lammers, P. J. (2016). Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: laboratory to field scale demonstration. Algal Research, article in press.

Hirabaru, C., Izumo, A., Fujiwara, S., Tadokoro, Y., Shimonaga, T., Konishi, M., Yoshida, M., Fujita, N., Nakamura, Y., Yoshida, M., Kuroiwa, T., & Tsuzuki, M. (2010) The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, α-glucan. Plant Cell Physiology, 51: 682-693.

Hirose, H. (1958). Rearrangement of the systematic position of a thermal alga, Cyanidium caldarium. Botanical Magazine Tokyo,71: 347-352.

Jeong, J. W., Seo, D. H., Jung, J. H., Park, J. H., Baek, N. I., Kim, M. J., & Park, C. S. (2014) Biosynthesis of glucosylglycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Applied Biochemistry and Biotechnology, 173: 904-917.

Ju, X., Igarashi, K., Miyashita, S. I., Mitsuhashi, H., Inagaki, K., Fujii, S. I., Sawada, H., Kuwabara, T., & Minoda, A. (2016). Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. Bioresource Technology, 211:759-764.

Kasrten, U., Barrow, K. D., & King, R. J. (1993) Floridoside, L-isofloridoside and D- isofloridoside in the red alga Porphyra columbina – Seasonal and osmotic effects. Plant Physiology, 103: 485-491.

Kauss, H. (1968). Galaktosylglyzeride und Osmoregulation in Rotalgen. Zeitschrift für Pflanzenphysiologie, 58: 428-433.

122

References

Kent, P. W., & Stacey, M. (1949). Studies in the glycogen of M. tuberculosis (human strain). Biochimica et Biophysica Acta, 3: 641-647.

Kerjean, V., Morel, B., Stiger, V., Bessières, M. A., Simon-Colin, C., Magné, C., & Deslandes, E. (2007) Optimization of floridoside production in the red alga Mastocarpus stellatus: pre-conditioning, extraction and seasonal variations. Botanica Marina, 50: 59-64.

Kerr, R. W., Cleveland, F. C.,& Katzbeck, W. J. (1951) The action of amylo- glucosidase on amylose and amylopectin. Journal of the American Chemical Society, 73: 3916-3921.

Khajuria. A. & Krahn, J. (2005) Osmolality revisited – Deriving and validating the best formula for calculated osmolality. Clinical Biochemistry, 38: 514-519.

Kim, E. J., Ryu, S. I., Bae, H. A., Huong, N. T., & Lee, S. B. (2008). Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: Enzymatic modification of starch. Food Chemistry, 110: 979-984.

Kim, M. J., Li, Y. X., Dewapriya, P., Ryu, B. M., & Kim, S. K. (2013) Floridoside suppresses pro-inflamatory reponses by blocking MAPK signaling in activated microglia. BMB Reports, 46: 398-403.

Kim, S. K., & Chojnacka, K. (Eds.). (2015). Marine Algae Extracts: processes, products, and applications, 2 Volume Set. John Wiley & Sons.

Kirkman, B. R., & Whelan, W. J. (1986). Glucosamine is a normal component of liver glycogen. FEBS Letters, 194: 6-11.

Kirst, G. O. (1980) Low MW carbohydrates and ions in Rhodophyceae: quantitative measurement of floridoside and digeneaside. Phytochemistry, 19: 1107-1110.

Kirst, G. O., & Bisson, M. A. (1979) Regulation of turgor pressure in marine algae: ions and low-molecular-weight organic compounds. Australian Journal of Plant Physiology, 6: 539-556.

Klein, J., & Stumm, G. (2011) Use of glucosyl glycerol. US20110207681 A1.

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44: 3358-3393.

Kremer, B. P. (1978). Patterns of photoassimilatory products in Pacific Rhodophyceae. Canadian Journal of Botany, 56: 1655-1659.

Lee, B. H., Yan, L., Phillips, R. J., Reuhs, B. L., Jones, K., Rose, D. R., Nichols, B. L., Quezada-Calvillo, R., Yoo, S. H., & Hamaker, B. R. (2013). Enzyme-synthesized 123

References highly branched maltodextrins have slow glucose generation at the mucosal α- glucosidase level and are slowly digestible in vivo. PloS One, 8.

Lee, C. K., Le, Q. T., Kim, Y. H., Shim, J. H., Lee, S. J., Park, J. H., lee, K. P., Song, S. H., Auh, J. H., Lee, S. H. & Park, K. H. (2007). Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. Journal of Agricultural and Food Chemistry, 56: 126-131.

Lee, Y. K. (2001). Microalgal mass culture systems and methods: their limitation and potential. Journal of Applied Phycology, 13: 307-315.

Li, S. Y., Lellouche, J. P., Shabtai, Y., & Arad, S. (2001). Fixed carbon partitioning in the red microalga Porphyridium sp.(Rhodophyta). Journal of Phycology, 37: 289-297.

Li, S. Y., Shabtai, Y., & Arad, S. (2002). Floridoside as a carbon precursor for the synthesis of cell wall polysaccharide in the red microalga Porphyridium sp.(Rhodophyta). Journal of Phycology, 38: 931-938.

Li, W., Li, C., Gu, Z., Qiu, Y., Cheng, L., Hong, Y., & Li, Z. (2016). Relationship between structure and retrogradation properties of corn starch treated with 1, 4-α-glucan branching enzyme. Food Hydrocolloids, 52: 868-875.

Li, Y. X., Li, Y., Lee, S. H., Qian, Z. J., & Kim, S. K. (2009). Inhibitors of oxidation and matrix metalloproteinases, floridoside, and D-isofloridoside from marine red alga Laurencia undulata. Journal of Agricultural and Food Chemistry, 58: 578-586.

Lichtenthaler, F. W., & Peters, S. (2004). Carbohydrates as green raw materials for the chemical industry. Comptes Rendus Chimie, 7: 65-90.

Lillie, S. H., & Pringle, J. R. (1980) Reserve carbohydrate metabolism in Saccharomyces cervisiae: responses to nutrient limitation. Journal of Bacteriology, 143: 1384-1394.

Lou, J., Dawson, K. A., & Strobel, H. J. (1997). Glycogen Formation by the ruminal bacterium Prevotella ruminicola. Applied and Environmental Microbiology, 63:1483- 1488.

Manners, D. J. (1991) Recent developments in our understanding of glycogen structure. Carbohydrate Polymers, 16: 37-82.

Manners, D. J., & Wright, A. (1962). 885. α-1, 4-Glucosans. Part XIV. The interaction of concanavalin-A with glycogens. Journal of the Chemical Society (Resumed), 4592- 4595.

Martinez-Garcia, M., & van der Maarel, M. J. E. C. (2016) Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express, 6:71. 124

References

Martinez-Garcia, M., Stuart M. C. A., & van der Maarel M. J. E. C. (2016). Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens. International Journal of Biological Macromolecules, 89: 12-18.

Matsui, M., Kakuta, M., & Misaki, A. (1993) Comparison of the unit-chain distribution of glycogens from different biological sources, revealed by anion exchange chromatography. Bioscience, Biotechnology and Biochemistry, 557: 623-627.

Maughan, R.J. (1998) The sports drinks as a functional food: formulations for successful performance. Proceedings of the Nutrition Society, 57, 15-23.

McCracken, D. A., & Cain, J. R. (1981). Amylose in floridean starch. New Phytologist, 88: 67-71.

Meeuse, B. J. D., Andries, M., & Wood, J. A. (1960). Floridean starch. Journal of Experimental Botany, 11: 129-140.

Meléndez, R., Meléndez-Hevia, E., & Cascante, M. (1997) How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. Journal of Molecular Evolution, 45: 446-455.

Melendez-Hevia, E., Waddell, T. G., & Shelton, E. D. (1993). Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochemical Journal, 295: 477-483.

Meng, J., & Srivastava, L. M. (1991). Partial purification and characterization of floridoside phosphate synthase from Porphyra perforata. Phytochemistry, 30: 1763- 1766.

Meng, J., & Srivastava, L. M. (1993) Variations in floridoside content and floridoside phosphate synthase activity in Porphyria perforata (Rhodophyta). Journal of Phycology, 29: 82-84.

Meng, J., Rosell, K. G., & Srivastava, L. M. (1987). Chemical characterization of floridosides from Porphyra perforata. Carbohydrate Research, 161: 171-180.

Merola, A., Castaldo, R., Luca, P. D., Gambardella, R., Musacchio, A., & Taddei, R. (1981). Revision of Cyanidium caldarium. Three species of acidophilic algae. Plant Biosystem, 115: 189-195.

Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97: 841-846.

Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., & Tanaka, K. (2004). Improvement of culture conditions and evidence for nuclear transformation by

125

References homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant and Cell Physiology, 45: 667-671.

Minoda, A., Sawada, H., Suzuki, S., Miyasita, S., Inagaki, K., Yamamoto, T., & Tsuzuki, M. (2015) Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Applied Microbiology and Biotechnology, 99: 1513-1519.

Mistry, C. D, & Gokal, R. (1993) Can ultrafiltration occur with a hypo-osmolar solution in peritoneal dialysis?: the role for “colloid”osmosis. Clinical Science, 85: 495- 500.

Mistry, C. D., & Gokal, R. (1994). The use of glucose polymer (icodextrin) in peritoneal dialysis: an overview. Peritoneal Dialysis International, 14: S158-S161.

Moberly, J., Mujais, S., Gehr, T., Hamburger, R., Sprague, S., Kucharski, A., Reynolds, R., Ogrinc, F., Martis, L., & Wolfson, M. (2002) Pharmacokinetics of icodextrin in peritoneal dialysis patients. Kidney International, 62: S23-S33.

Möllers, K. B., Cannella, D., Jørgensen, H., & Frigaard, N. U. (2014). Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels, 7.

Morales-Sánchez, D., Martinez-Rodriguez, O. A., & Martinez, A. (2016). Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. Journal of Chemical Technology and Biotechnology.

Moreira, D., Le Guyader, H., & Philippe, H. (2000). The origin of red algae and the evolution of chloroplasts. Nature, 405: 69-72.

Nagasaka, S., Nishizawa, N. K., Mori, S., & Yoshimura, E. (2004). Metal metabolism in the red alga Cyanidium caldarium and its relationship to metal tolerance. Biometals, 17: 177-181.

Nagashima, H., Nakamura, S., Nisizawa, K., & Hori, T. (1971). Enzymic synthesis of floridean starch in a red alga, Serraticardia maxima. Plant and Cell Physiology, 12: 243-253.

Nakamura, Y., Takahashi,J., Sakurau, A., Inaba, Y., Suzuki, E., Nihei, S., Fujiwara, S., Tsuzuki, M., Miyashita, H., Ikemoto, H., Kawachi, M., Sekiguchi, H., & Kurano, N. (2005) Some cyanobacteria synthesize semi-amylopectin type of α-polyglucans instead of glycogen. Plant Cell Physiology, 46: 539-545.

Nelson, N. (1944) A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153: 375-380.

126

References

Nevoigt, E., & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 21: 231-241.

Nordin, J. H., & Hansen, R. G. (1963). Isolation and characterization of galactose from hydrolysates of glycogen. Journal of Biological Chemistry, 238: 489-494.

Nyvall, P., Pelloux, J., Davies, H. V., Pedersén, M., & Viola, R. (1999). Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta, 209: 143-152.

Oesterhelt, C., Schnarrenberger, C., & Gross, W. (1999). Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. European Journal of Phycology, 34: 271-277.

Pade, N., Linka, N., Ruth, W., Weber, A. P. M., & Hagemann, M. (2015) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. NewPhytologist, 205: 1227-1238.

Pazur, J.H., & Ando, T. (1959) The action of an amyloglucosidase of Aspergillus niger on starch and malto-oligosaccharides. The Journal of Biological Chemistry, 234: 1966- 1970.

Peat, S., Turvey, J. R., & Evans, J. M. (1957). Isolation of nigerose from floridean starch. Nature ,179: 261 – 262.

Peat, S., Turvey, J. R., & Evans, J. M. (1959). The structure of floridean starch. Part I. Linkage analysis by partial acid hydrolysis. Journal of the Chemical Society, 653: 3223- 3227.

Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45: 11-36.

Posten, C., & Chen, S. F. (Eds.). (2016). Microalgae Biotechnology (Vol. 153). Springer.

Powell, P. O., Sullivan, M. A., Sheehy, J. J., Schulz, B. L., Warren, F. J., & Gilbert, R. G. (2015). Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles. PloS One, 10.

Preiss, J. (1984) Bacterial glycogen synthesis and its regulation. Annual Reviews of Microbiology, 38: 419-458.

Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65: 635-648.

127

References

Putaux, J. L., Buléon, A., Borsali, R., & Chanzy, H. (1999) Ultrastructural aspects of phytoglycogen from cryo-transmission electron microscopy and quasi-elastic light scattering data. International Journal of Biological Macromolecules, 26: 145-150.

Qian, P. Y., Xu, Y., & Fusetani, N. (2009). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26: 223-234.

Radmer, R. J. (1996). Algal diversity and commercial algal products. Bioscience, 46: 263-270.

Reed, R. H. (1985) Osmoacclimation in Bangia atropurpurea (Rhodophyta, Bangiales): the osmotic role of floridoside. Brithish Phycology Journal, 20: 211-218.

Reed, R. H., Collins, J. C., & Russell, G. (1980). The effects of salinity upon galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea (Roth) C. Ag. Journal of Experimental Botany, 31: 1539-1554.

Renn, D. (1997). Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends in Biotechnology, 15: 9-14.

Rigano, C., Fuggi, A., Rigano, V. D. M., & Aliotta, G. (1976). Studies on utilization of 2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium caldarium. Archives of Microbiology, 107: 133-138.

Roberts, M. F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1.

Röper, H. (2002). Renewable raw materials in Europe—industrial utilisation of starch and sugar. Starch/Stärke, 54: 89-99.

Rosenberg, J. N., Oyler, G. A., Wilkinson, L., & Betenbaugh, M. J. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19: 430-436.

Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409: 1092-1101.

Ryu, B. M., Li, Y. X., Kang, K. H., Kim, S. K., & Kim, D. G. (2015) Floridoside from Laurencia undulata promotes osteogenic differentiation in murine bone marrow mesenchymal cells. Journal of Functional Foods, 19: 505-511.

Sakarika, M., & Kornaros, M. (2016). Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresource Technology, 219: 694-701.

Sakurai, T., Aoki, M., Ju, X., Ueda, T., Nakamura, Y., Fujiwara, S., Umemura, T., Tsuzuki, M., & Minoda, A. (2016). Profiling of lipid and glycogen accumulations under 128

References different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresource Technology, 200: 861-866.

Santos, H., & Da Costa, M. S. (2002). Compatible solutes of organisms that live in hot saline environments. Environmental Microbiology, 4: 501-509.

Sarian, F. D., Rahman, D. Y., Schepers, O. & van der Maarel, M. J. E. C (2016). Effects of oxygen limitation on the biosynthesis of photo pigments in the red microalgae Galdieria sulphuraria strain 074G. PloS One, 11.

Sauer, T., & Galinski, E. A. (1998). Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnology and Bioengineering, 57: 306-313.

Sawangwan, T., Goedl, C., & Nidetzky, B. (2010). Glucosylglycerol and glucosylglycerate as enzyme stabilizers. Biotechnology Journal, 5: 187-191.

Scherp, H. W. (1955). Neisseria and neisserial infections. Annual Reviews in Microbiology, 9: 319-334.

Schmidt, R. A., Wiebe, M. G., & Eriksen, N. T. (2005) Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnology and Bioengineering, 90:77-84.

Schönknecht, G., Chen, W. H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M., Bräutigam, A., Baker, B. J., Banfield, J. F., Garavito, R. M., Carr, K., Wilkerson, C., Rensing, S. A., Gagneul, D., Dickenson, N. E., Oesterhelt, C., Lercher, M. J., & Weber, A. P. M. (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic . Science, 339: 1207-1209.

Schwarz, T.; Klein, J. (2011) Compositions containing glucosyl glycerol. US 2011/0306568 A1.

Scigelova, M., Singh, S., & Crout, D. H. G. (1999) Glycosidases – a great synthetic tool. Journal of Molecular Catalysis, 6: 483-494.

Seckbach, J. (1987). Evolution of eukaryotic cells via bridge algae. Annals of the New York Academy of Sciences, 503: 424-437.

Seckbach, J. (1999). The Cyanidiophyceae: hot spring acidophilic algae. In Enigmatic microorganisms and Life in Extreme Environments (pp. 425-435). Springer Netherlands.

Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20: 113-136.

129

References

Sentsova, O. Y. (1991). Diversity of acido-theromphilic unicellular algae of the genus Galdieria (Rhodophyta, Cyanidiophyceae). Botanicheskii Zhurnal, 76: 69-79.

Sheath, R. G., Hellebust, J. A., & Sawa, T. (1981). Floridean starch metabolism of Porphyridium purpureum (Rhodophyta) III. Effects of darkness and metabolic inhibitors. Phycologia, 20: 22-31.

Shimonaga, T., Fujiwara, S., Kaneko, M., Izumo, A., Nihei, S., Francisco Jr, P. B., Satoh, A., Fujita, N., Nakamura, Y., & Tsuzuki, M. (2007). Variation in storage α- polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Marine Biotechnology, 9: 192-202.

Shimonaga, T., Konoshi, M., Oyama, Y., Fujiwara, S., Satoh, A., Fujita, N., Colleoni, C., Buléon, A., Putaux, J. L., Ball, S. G., Yokoyama, A., Hara, Y., Nakamura, Y., & Tsuzuki, M. (2008) Variation in storage α-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiology, 49: 103-116.

Shinoahara, M. L., Ihara, M., Abo, M. Hashida, M., Takagi, S., & Beck, T. C. (2001) A novel thermostable branching enzyme from an extremely thermophilic bacterial species, Rhodotermus obamensis. Applied Microbiology and Biotechnology, 57: 653- 659.

Simon-Colin, C., Kervarec, N., & Deslandes, E. (2004) NMR 13C-isotopic enrichment to study carbon partitioning into organic solutes in the red alga Grateloupia doryphore. Plant Physiology and Biochemistry, 42:21-26.

Simon-Colin, C., Kervarec, N., Pichon, R., & Deslandes, E. (2002) Complete 1H and 13C spectral assignment of floridoside. Carbohydrate Research, 337: 179-280.

Smythe, C., & Cohen, P. (1991). The discovery of glycogenin and the priming mechanism for glycogen biogenesis. In EJB Reviews 1991 (pp. 149-155). Springer Berlin Heidelberg.

Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and Biotechnology, 1-11.

Stadnichuk, I. N., Rakhimberdieva, M. G., Bolychevtseva, Y. V., Yurina, N. P., Karapetyan, N. V., & Selyakh, I. O. (1998). Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation. Plant science, 136: 11-23.

Stadnichuk, I. N., Semenova, L. R., Smirnova, G. P., & Usov, A. I. (2007). A highly branched storage polyglucan in the thermoacidophilic red microalga Galdieria maxima cells. Applied Biochemistry and Microbiology, 43: 78-83.

130

References

Stiller, J. W. & Hall, B.D. (1997) The origin of red algae: implications for plastid evolution. Proceeding of the National Academy of Science of USA, 94: 4520-4525.

Takenaka, F., & Uchiyama, H. (2000) Synthesis of α-glucosylglycerol by α- glucosidase and some of its characteristics. Bioscience, Biotechnology and Biochemistry, 64: 1321-1326.

Takii, H., Ishihara, K., Kometani, T. Okada, S., & Fushiki, T. (1999). Enhancement of swimming endurance in mice by highly branched cyclodextrin. Bioscience, Biotechnology and Biochemistry, 63: 2045-2052.

Takii, H., Takii, Y., Kometani, T., Nishimura, T., Nakae, T., Kuriki, T., Fushiki, T. (2005) Fluids containing a highly branched cyclic dextrin influence the gastric emptying rate. International Journal of Sports Medicine, 26: 314-319.

Thiem, J., Scheel, O., & Schneider, G. (1999) Cosmetic formulations having an effective content of glycosylglycerides. US005891854A.

Thompson, D. B. (2000) On the non-random nature of amylopectin branching. Carbohydrate Polymers, 43: 223-239.

Tischendorf, G., Oesterhelt, C., Hoffmann, S., Girnus, J., Schnarrenberger, C., & Gross, W. (2007). Ultrastructure and enzyme complement of proplastids from heterotrophically grown cells of the red alga Galdieria sulphuraria. European Journal of Phycology, 42: 243-251.

Toplin, J. A., Norris, T. B., Lehr, C. R., McDermott, T. R., & Castenholz, R. W. (2008). Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Applied and Environmental Microbiology, 74: 2822-2833.

Usui, T., Yokoyama, M., Yamaoka, N., Matsuda, K., Tuzimira, K., Sugiyama, H., & Seto, S. (1999) , Proton magnetic resonance spectra of D-gluco-oligosaccharides and D- glucans. Carbohydrate Research, 33: 105-116.

Van der Maarel, M. J., & Leemhuis, H. (2013). Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydrate Polymers, 93: 116-121.

Van der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94: 137-155.

Viola, R., Nyvall, P., & Pedersén, M. (2001). The unique features of starch metabolism in red algae. Proceedings of the Royal Society of London B: Biological Sciences, 268: 1417-1422.

131

References

Wang, L., & Wise, M. J. (2011). Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften, 98:719-729.

Weber, A., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H., Voll, L. M., Zimmermann, M., Jamai, A., Riekhof, W. R., Yu, B., Garavito,, M., & Benning, C. (2004). EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology, 55: 17-32.

Weber, M., & Wöber, G. (1975) The fine structure if the branched α-glucan from the blue green alga Anacystis nidulans: comparison with other bacterial glycogens and phytoglycogen. Carbohydrate Research, 39: 395-302.

Wei, W., Qi, D., Zhao, H. Z., Lu, Z. X., Fengxia, L. V., & Bie, X. (2013) Synthesis and characterization of galactosylglycerol by β-galactosidase catalyzed reverse hydrolysis of galactose and glycerol. Food Chemistry, 141: 3085-3092.

Weïwer, M., Sherwood, T., & Linhardt, R. J. (2008). Synthesis of floridoside. Journal of Carbohydrate Chemistry, 27:, 420-427.

Whyte, J. N. C., & Strasdine, G. A. (1972). An intracellular α-D-glucan from Clostridium botulinum, type E. Carbohydrate Research, 25: 435-441.

Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329: 796-799.

Wilson, W. A., Roach, P. J., Montero, M., Baroja-Fernández, E., Muñoz, F. J., Eydallin, G., Viale, A. M., & Pozueta-Romero, J. (2010). Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews, 34: 952-985.

Wind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: metabolite and signaling molecule. Phytochemistry, 71:1610-1614.

Yang, E. C., Boo, S. M., Bhattacharya, D., Saunders, G. W., Knoll, A. H., Fredericq, S., Graf, L. & Yoon, H. S. (2016). Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports, 6.

Yoo, S. H., Keppel, C., Spalding, M., & Jane, J. L. (2007). Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp. PCC6803. International Journal of Biological Macromolecules, 40: 498-504.

Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D., & Bhattacharya, D. (2006) Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42: 482- 492.

132

References

Yoon, H., Ciniglia, C., Wu, M., Comeron, J. M., Pinto, G., Pollio, A., & Bhattacharya, D. (2006). Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evolutionary Biology, 6.

Yoshimura, E., Nagasaka, S., Sato, Y., Satake, K., & Mori, S. (1999). Extraordinary high aluminium tolerance of the acidophilic thermophilic alga, Cyanidium caldarium. Soil Science and Plant Nutrition, 45: 721-724.

Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C. E., & Engelsen, S. B. (2002). Physico-chemical characterization of floridean starch of red algae. Starch/Stärke, 54: 66-74.

Zevenhuizen, L. P. T. M (1966) Formation and function of the glycogen-like polysaccharide of Arthrobacter. Antonie van Leeuwenhoek, 32: 356-372.

Zierer, M. S., Vieira, R. P., Mulloy, B., & Mourão, P. A. (1995). A novel acidic glycogen extracted from the marine sponge Aplysina fulva (porifera- demospongiae). Carbohydrate Research, 274: 233-244.

133