On the Red Algal Genus Grateloupia in the Gulf of Mexico

Total Page:16

File Type:pdf, Size:1020Kb

On the Red Algal Genus Grateloupia in the Gulf of Mexico ON THE RED ALGAL GENUS GRATELOUPIA IN THE GULF OF MEXICO, FEATURING THE ORGANELLAR GENOMES OF GRATELOUPIA TAIWANENSIS by MICHAEL SCOTT DEPRIEST, JR. JUAN M. LÓPEZ-BAUTISTA, COMMITTEE CHAIR DEBASHISH BHATTACHARYA PHILLIP M. HARRIS MARTHA J. POWELL AMELIA K. WARD A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2015 Copyright Michael Scott DePriest, Jr., 2015 ALL RIGHTS RESERVED ABSTRACT Red algae (Rhodophyta) are economically useful for their gelling compounds, ecologically critical to marine benthic systems, and evolutionarily poised at the intersection of primary and secondary endosymbiotic lineages. Molecular sequencing has transformed our understanding of red algae, revealing genetic and genomic characteristics that had once been completely unknown. In Grateloupia, a red algal genus that is morphologically simple and notoriously difficult-to-identify, sequencing has greatly assisted in identification of species and phylogenetic placement of troublesome taxonomic groups. However, analysis of DNA has also proven useful for genomic comparisons on a larger scale, in order to resolve deep evolutionary questions in terms of overall genome architecture and gene content. Grateloupia is a prime candidate for genomic research, representing an order that had previously not been explored. In this study, sequencing-based analyses were applied at both levels, examining species of Grateloupia both within the genus and from a greater phylogenetic perspective. Phylogenetic analysis of the rbcL marker revealed the previously unknown species Grateloupia taiwanensis, first reporting this non-native alga from the Gulf of Mexico, and it showed that the species previously known as Grateloupia filicina in the Gulf of Mexico actually includes several species. The organellar genomes of Grateloupia taiwanensis were also sequenced and annotated; both the plastid and mitochondrial genome are typical of florideophyte red algae in size, gene content, and structure. Mauve genome alignments demonstrated a pattern of genomic rearrangements expected given the overall phylogeny of Rhodophyta. ii LIST OF ABBREVIATIONS aa Amino acid(s) BI Bayesian inference (of phylogeny) bp Base pair(s) cox1 Cytochrome c oxidase subunit alpha gene DCJ Double-cut-and-join (in Mauve alignments) e or e-value Expect value, used as a statistical significance threshold in BLAST results GC Guanine-cytosine content kb, kbp Kilobase-pairs (1,000 bp) LCB Locally collinear block (in Mauve alignments) ML Maximum likelihood (phylogenetic analysis) ORF Open reading frame rbcL Rubisco-1,5-bisphosphate carboxylase gene s.l. Sensu lato; in the broad sense (in taxonomy) s.s. Sensu stricto; in the strict sense (in taxonomy) iii ACKNOWLEDGMENTS First and foremost, I would like to thank the chairperson of this dissertation, Juan López- Bautista, for inspiring me with the fascinating world of algae since 2008, for his always useful advice on algal and academic issues, and for his patience with me during the preparation of this and other manuscripts. I thank my Ph.D. committee members—Debashish Bhattacharya, Phillip Harris, Martha Powell, and Amy Ward—all of whom have provided unique perspectives and recommendations for my graduate career, and from whom I have learned very much. I also thank my labmates Gabriela Garcia-Soto, Daryl Lam, Trey Melton, Ana Tronholm, and David Ward, who have graciously assisted me with collection trips, new samples of Grateloupia, and/or phylogenetic and genomic analyses. I thank all of my past undergraduate assistants in the PhycoLab, who spent many hours helping me with DNA extractions and reactions. Finally, I sincerely thank Mike Wynne, for his friendly and very detailed advice on the taxonomy of various groups of algae over the years. iv CONTENTS ABSTRACT .................................................................................................................................... ii LIST OF ABBREVIATIONS ........................................................................................................ iii ACKNOWLEDGMENTS ............................................................................................................. iv LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii 1. Sequencing of the rbcL Marker Reveals the Nonnative Red Alga Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) in Alabama .....................................................................................1 2. Grateloupia filicina Revisited: Molecular Phylogenetics of Grateloupia (Halymeniaceae, Rhodophyta) from the Gulf of Mexico ..........................................................................................14 3. The Plastid Genome of the Red Macroalga Grateloupia taiwanensis (Halymeniaceae) ..........27 4. The Mitochondrial Genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and Comparative Mitochondrial Genomics of Red Algae ...................................................................46 APPENDIX ....................................................................................................................................70 v LIST OF TABLES 1.1. List of Species Included in Phylogenetic Analysis of Grateloupia taiwanensis ....................13 2.1. List of Species Included in Phylogenetic Analysis of Grateloupia filicina ............................25 2.2. rbcL Pairwise Distances for Selected Grateloupia Species ...................................................26 3.1. Characteristics of Selected Red Algal Plastid Genomes .........................................................42 3.2. List of genes in G. taiwanensis Plastid Genome.....................................................................43 3.3. Comparison of tRNA Sequences in Red Algal Plastid Genomes ...........................................44 3.4. Novel ORFs in the G. taiwanensis Plastid Genome ...............................................................45 4.1 Characteristics of Selected Red Algal Mitochondrial Genomes ..............................................68 4.2. Comparison of Protein-coding Genes in Red Algal Mitochondrial Genomes .......................69 vi LIST OF FIGURES 1.1. Phylogenetic Tree of G. taiwanensis and Related Taxa .........................................................11 1.2. Photograph of G. taiwanensis .................................................................................................12 2.1. Phylogenetic Tree of G. filicina and Related Taxa .................................................................24 3.1. Phylogenetic Tree of Division Rhodophyta ............................................................................39 3.2. G. taiwanensis Plastid Genome ..............................................................................................40 3.3. Pairwise Mauve Genome Alignments of Red Algal Plastid Genomes ...................................41 4.1. G. taiwanensis Mitochondrial Genome ..................................................................................62 4.2. Mauve Genome Alignment of G. taiwanensis and G. angusta ..............................................63 4.3. Mauve Genome Alignment of G. taiwanensis with Rhodymeniophycidae ...........................64 4.4. Mauve Genome Alignment of G. taiwanensis and Sporolithon durum ..................................65 4.5. Mauve Genome Alignment of G. taiwanensis and Pyropia haitanensis ................................66 4.6. Mauve Genome Alignment of G. taiwanensis and Cyanidioschyzon merolae ......................67 vii Sequencing of the rbcL Marker Reveals the Nonnative Red Alga Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) in Alabama ABSTRACT Mobile Bay, AL has been the site for the introduction of several terrestrial and freshwater invasive species, including red imported fire ants (Solenopsis invicta) and spike-topped apple snails (Pomacea bridgesii). The Gulf of Mexico has also been invaded by several marine animal species, such as zebra mussels (Dreissena polymorpha). To date, no invasive marine macroalga has been reported in the Mobile Bay area. However, recent collections of an unusual species of Grateloupia (Halymeniaceae, Rhodophyta) in Alabama indicate that an introduction has been made. On the basis of phylogenetic analysis of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) marker, the species has been identified as Grateloupia taiwanensis S.M. Lin & H.Y. Liang. This is the first report of G. taiwanensis outside its native range. INTRODUCTION Grateloupia C. Agardh is a genus of benthic marine red algae (Rhodophyta), currently containing about 90 species (Guiry and Guiry, 2012). It is the largest genus in the family Halymeniaceae. Species of this genus occur throughout the world in warm temperate to tropical marine waters. Several Grateloupia species are known in the Gulf of Mexico, specifically Grateloupia gibbesii Harvey and Grateloupia pterocladina (M.J. Wynne) S. Kawaguchi & H.W. Wang, as well as many reports of unidentified Grateloupia species (see Fredericq et al., 2009). Wynne (2011) listed a total of 11 species in the western Atlantic, including G. gibbesii, G. 1 pterocladina, and Grateloupia
Recommended publications
  • Genetic Variation Within and Among Asexual Populations of Porphyra Umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA Renee L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNH Scholars' Repository University of New Hampshire University of New Hampshire Scholars' Repository New Hampshire Agricultural Experiment Station Research Institutes, Centers and Programs 1-13-2016 Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA Renee L. Eriksen University of New Hampshire, Durham Lindsay A. Green University of New Hampshire, Durham Anita S. Klein University of New Hampshire, Durham, [email protected] Follow this and additional works at: https://scholars.unh.edu/nhaes Recommended Citation Renée L. Eriksen, Lindsay A. Green and Anita S. Klein. Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA. Botanica Marina 2016; 59(1): 1–12. https://dx.doi.org/ 10.1515/bot-2015-0017 This Article is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in New Hampshire Agricultural Experiment Station by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Botanica Marina 2016; 59(1): 1–12 Renée L. Eriksen*, Lindsay A. Green and Anita S. Klein Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA DOI 10.1515/bot-2015-0017 Received 16 February, 2015; accepted 8 December, 2015; online first Introduction 13 January, 2016 The marine red alga Porphyra umbilicalis Kützing (Ban- Abstract: The intertidal marine red alga Porphyra umbili- giales, Rhodophyta) is found in the intertidal region on calis reproduces asexually in the Northwest Atlantic.
    [Show full text]
  • RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
    RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages.
    [Show full text]
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
    Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage).
    [Show full text]
  • A Review of Reported Seaweed Diseases and Pests in Aquaculture in Asia
    UHI Research Database pdf download summary A review of reported seaweed diseases and pests in aquaculture in Asia Ward, Georgia; Faisan, Joseph; Cottier-Cook, Elizabeth; Gachon, Claire; Hurtado, Anicia; Lim, Phaik-Eem; Matoju, Ivy; Msuya, Flower; Bass, David; Brodie, Juliet Published in: Journal of the World Aquaculture Society Publication date: 2019 The re-use license for this item is: CC BY The Document Version you have downloaded here is: Publisher's PDF, also known as Version of record The final published version is available direct from the publisher website at: 10.1111/jwas.12649 Link to author version on UHI Research Database Citation for published version (APA): Ward, G., Faisan, J., Cottier-Cook, E., Gachon, C., Hurtado, A., Lim, P-E., Matoju, I., Msuya, F., Bass, D., & Brodie, J. (2019). A review of reported seaweed diseases and pests in aquaculture in Asia. Journal of the World Aquaculture Society, [12649]. https://doi.org/10.1111/jwas.12649 General rights Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights: 1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research. 2) You may not further distribute the material or use it for any profit-making activity or commercial gain 3) You may freely distribute the URL identifying the publication in the UHI Research Database Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details; we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Xylans of Red and Green Algae: What Is Known About Their Structures and How They Are Synthesised?
    polymers Review Xylans of Red and Green Algae: What Is Known about Their Structures and How They Are Synthesised? Yves S.Y. Hsieh 1,* and Philip J. Harris 2,* 1 Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden 2 School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand * Correspondence: [email protected] (Y.S.Y.H.); [email protected] (P.J.H.); Tel.: +46-8-790-9937 (Y.S.Y.H.); +64-9-923-8366 (P.J.H.) Received: 30 January 2019; Accepted: 17 February 2019; Published: 18 February 2019 Abstract: Xylans with a variety of structures have been characterised in green algae, including chlorophytes (Chlorophyta) and charophytes (in the Streptophyta), and red algae (Rhodophyta). Substituted 1,4-β-D-xylans, similar to those in land plants (embryophytes), occur in the cell wall matrix of advanced orders of charophyte green algae. Small proportions of 1,4-β-D-xylans have also been found in the cell walls of some chlorophyte green algae and red algae but have not been well characterised. 1,3-β-D-Xylans occur as triple helices in microfibrils in the cell walls of chlorophyte algae in the order Bryopsidales and of red algae in the order Bangiales. 1,3;1,4-β-D-Xylans occur in the cell wall matrix of red algae in the orders Palmariales and Nemaliales. In the angiosperm Arabidopsis thaliana, the gene IRX10 encodes a xylan 1,4-β-D-xylosyltranferase (xylan synthase), and, when heterologously expressed, this protein catalysed the production of the backbone of 1,4-β-D-xylans.
    [Show full text]
  • Characterization and Expression Profiles of Small Heat Shock Proteins in the Marine Red Alga Pyropia Yezoensis
    Title Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis Author(s) Uji, Toshiki; Gondaira, Yohei; Fukuda, Satoru; Mizuta, Hiroyuki; Saga, Naotsune Cell Stress and Chaperones, 24(1), 223-233 Citation https://doi.org/10.1007/s12192-018-00959-9 Issue Date 2019-01 Doc URL http://hdl.handle.net/2115/76496 This is a post-peer-review, pre-copyedit version of an article published in Cell Stress and Chaperones. The final Rights authenticated version is available online at: http://dx.doi.org/10.1007/s12192-018-00959-9 Type article (author version) File Information manuscript-revised2018.12.13.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis Toshiki Uji1·Yohei Gondaira1·Satoru Fukuda2·Hiroyuki Mizuta1·Naotsune Saga2 1 Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan 2 Section of Food Sciences, Institute for Regional Innovation, Hirosaki University, Aomori, Aomori 038-0012, Japan Corresponding author: Toshiki Uji Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan Tel/Fax: +81-138-40-8864 E-mail: [email protected] Running title: Transcriptional profiling of small heat shock proteins in Pyropia 1 Abstract Small heat shock proteins (sHSPs) are found in all three domains of life (Bacteria, Archaea, and Eukarya) and play a critical role in protecting organisms from a range of environmental stresses. However, little is known about their physiological functions in red algae.
    [Show full text]
  • A Morphological and Phylogenetic Study of the Genus Chondria (Rhodomelaceae, Rhodophyta)
    Title A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) Author(s) Sutti, Suttikarn Citation 北海道大学. 博士(理学) 甲第13264号 Issue Date 2018-06-29 DOI 10.14943/doctoral.k13264 Doc URL http://hdl.handle.net/2115/71176 Type theses (doctoral) File Information Suttikarn_Sutti.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) 【紅藻ヤナギノリ属(フジマツモ科)の形態学的および系統学的研究】 Suttikarn Sutti Department of Natural History Sciences, Graduate School of Science Hokkaido University June 2018 1 CONTENTS Abstract…………………………………………………………………………………….2 Acknowledgement………………………………………………………………………….5 General Introduction………………………………………………………………………..7 Chapter 1. Morphology and molecular phylogeny of the genus Chondria based on Japanese specimens……………………………………………………………………….14 Introduction Materials and Methods Results and Discussions Chapter 2. Neochondria gen. nov., a segregate of Chondria including N. ammophila sp. nov. and N. nidifica comb. nov………………………………………………………...39 Introduction Materials and Methods Results Discussions Conclusion Chapter 3. Yanagi nori—the Japanese Chondria dasyphylla including a new species and a probable new record of Chondria from Japan………………………………………51 Introduction Materials and Methods Results Discussions Conclusion References………………………………………………………………………………...66 Tables and Figures 2 ABSTRACT The red algal tribe Chondrieae F. Schmitz & Falkenberg (Rhodomelaceae, Rhodophyta) currently
    [Show full text]
  • Biodata of Juan M. Lopez-Bautista, Author of “Red Algal Genomics: a Synopsis”
    Biodata of Juan M. Lopez-Bautista, author of “Red Algal Genomics: A Synopsis” Dr. Juan M. Lopez-Bautista is currently an Associate Professor in the Department of Biological Sciences of The University of Alabama, Tuscaloosa, AL, USA, and algal curator for The University of Alabama Herbarium (UNA). He received his PhD from Louisiana State University, Baton Rouge, in 2000 (under the advisory of Dr. Russell L. Chapman). He spent 3 years as a postdoctoral researcher at The University of Louisiana at Lafayette with Dr. Suzanne Fredericq. Dr. Lopez- Bautista’s research interests include algal biodiversity, molecular systematics and evolution of red seaweeds and tropical subaerial algae. E-mail: [email protected] 227 J. Seckbach and D.J. Chapman (eds.), Red Algae in the Genomic Age, Cellular Origin, Life in Extreme Habitats and Astrobiology 13, 227–240 DOI 10.1007/978-90-481-3795-4_12, © Springer Science+Business Media B.V. 2010 RED ALGAL GENOMICS: A SYNOPSIS JUAN M. LOPEZ-BAUTISTA Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA 1. Introduction The red algae (or Rhodophyta) are an ancient and diversified group of photo- autotrophic organisms. A 1,200-million-year-old fossil has been assigned to Bangiomorpha pubescens, a Bangia-like fossil suggesting sexual differentiation (Butterfield, 2000). Most rhodophytes inhabit marine environments (98%), but many well-known taxa are from freshwater habitats and acidic hot springs. Red algae have also been reported from tropical rainforests as members of the suba- erial community (Gurgel and Lopez-Bautista, 2007). Their sizes range from uni- cellular microscopic forms to macroalgal species that are several feet in length.
    [Show full text]
  • Seeding Nets with Neutral Spores Of
    Author's personal copy Aquaculture 270 (2007) 77–91 www.elsevier.com/locate/aqua-online Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kützing for use in integrated multi-trophic aquaculture (IMTA) ⁎ Nicolas Blouin a, , Fei Xiugeng b, Jiang Peng b, Charles Yarish c, Susan H. Brawley a a School of Marine Sciences, 5735 Hitchner Hall, University of Maine, Orono ME 04469, USA b Experimental Marine Biology Laboratory, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China c Department of Ecology and Evolutionary Biology, University of Connecticut, 1 University Place Stamford, CT 06901, USA Received 23 June 2006; received in revised form 5 March 2007; accepted 6 March 2007 Abstract Nets in traditional Porphyra mariculture are seeded with conchospores derived from the conchocelis phase, and spend a nursery period in culture tanks or calm coastal waters until they reach several centimeters in length. Some species of Porphyra can regenerate the foliose phase directly through asexual reproduction, which suggests that the time, infrastructure, and costs associated with conchocelis culture might be avoided by seeding nets with asexual spores. Here, we present work from a short-term mariculture study using nets seeded with asexual spores (neutral spores) of a native Maine species of Porphyra. Porphyra umbilicalis (L.) Kützing was selected for this proof of concept research because of its reproductive biology, abundance across seasons in Maine, and evidence of its promise as a mariculture crop. We studied the maturation, release, and germination of the neutral spores to develop an appropriate seeding protocol for nets, followed by development of a nursery raceway to provide an easily manipulated environment for the seeded nets.
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Seasonal Growth and Phenotypic Variation in Porphyra Linearis (Rhodophyta) Populations on the West Coast of Ireland1
    J. Phycol. 43, 90–100 (2007) r 2007 by the Phycological Society of America DOI: 10.1111/j.1529-8817.2006.00300.x SEASONAL GROWTH AND PHENOTYPIC VARIATION IN PORPHYRA LINEARIS (RHODOPHYTA) POPULATIONS ON THE WEST COAST OF IRELAND1 Elena Varela-A´lvarez2 Department of Botany and Martin Ryan Institute, National University of Ireland, Galway, Ireland Dagmar B. Stengel3 and Michael D. Guiry Department of Botany and Martin Ryan Institute, National University of Ireland, Galway, Ireland The phenology and seasonal growth of Porphyra The genus Porphyra was first established by C. Agardh linearis Grev. were investigated in two morphologic- in 1824, and presently there are 267 species names in the ally dissimilar populations from the west coast of AlgaeBase species data base, of which 113 are flagged as Ireland. Thallus size and reproductive status of in- current (Guiry and Guiry 2006). These species generally dividuals were monitored monthly between June occur intertidally or in the shallow subtidal attached to 1997 and June 1998. Both populations exhibited a rocks and other seaweeds. Porphyra (known commonly as similar phenology: gametophyte stages appeared nori in Japan, zicai in China, and purple laver in Great on the shore in October, with spermatangial and zy- Britain) is a major source of food for humans and is the gotosporangial sori appearing the following Febru- most valuable seaweed grown by mariculture in the ary; the gametophyte stage began to degenerate in world today (Hanisak 1998). Several species of Porphyra April and had disappeared completely by June. occur along the North Atlantic coast of Europe, but none However, significant differences in growth and re- of these are currently grown under artificial conditions production in the field and in cultures of plants (Varela-A´lvarez et al.
    [Show full text]