Pyropia Orbicularis Sp. Nov. (Rhodophyta, Bangiaceae) Based
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Variation Within and Among Asexual Populations of Porphyra Umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA Renee L
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNH Scholars' Repository University of New Hampshire University of New Hampshire Scholars' Repository New Hampshire Agricultural Experiment Station Research Institutes, Centers and Programs 1-13-2016 Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA Renee L. Eriksen University of New Hampshire, Durham Lindsay A. Green University of New Hampshire, Durham Anita S. Klein University of New Hampshire, Durham, [email protected] Follow this and additional works at: https://scholars.unh.edu/nhaes Recommended Citation Renée L. Eriksen, Lindsay A. Green and Anita S. Klein. Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA. Botanica Marina 2016; 59(1): 1–12. https://dx.doi.org/ 10.1515/bot-2015-0017 This Article is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in New Hampshire Agricultural Experiment Station by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Botanica Marina 2016; 59(1): 1–12 Renée L. Eriksen*, Lindsay A. Green and Anita S. Klein Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA DOI 10.1515/bot-2015-0017 Received 16 February, 2015; accepted 8 December, 2015; online first Introduction 13 January, 2016 The marine red alga Porphyra umbilicalis Kützing (Ban- Abstract: The intertidal marine red alga Porphyra umbili- giales, Rhodophyta) is found in the intertidal region on calis reproduces asexually in the Northwest Atlantic. -
RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages. -
Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage). -
A Review of Reported Seaweed Diseases and Pests in Aquaculture in Asia
UHI Research Database pdf download summary A review of reported seaweed diseases and pests in aquaculture in Asia Ward, Georgia; Faisan, Joseph; Cottier-Cook, Elizabeth; Gachon, Claire; Hurtado, Anicia; Lim, Phaik-Eem; Matoju, Ivy; Msuya, Flower; Bass, David; Brodie, Juliet Published in: Journal of the World Aquaculture Society Publication date: 2019 The re-use license for this item is: CC BY The Document Version you have downloaded here is: Publisher's PDF, also known as Version of record The final published version is available direct from the publisher website at: 10.1111/jwas.12649 Link to author version on UHI Research Database Citation for published version (APA): Ward, G., Faisan, J., Cottier-Cook, E., Gachon, C., Hurtado, A., Lim, P-E., Matoju, I., Msuya, F., Bass, D., & Brodie, J. (2019). A review of reported seaweed diseases and pests in aquaculture in Asia. Journal of the World Aquaculture Society, [12649]. https://doi.org/10.1111/jwas.12649 General rights Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights: 1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research. 2) You may not further distribute the material or use it for any profit-making activity or commercial gain 3) You may freely distribute the URL identifying the publication in the UHI Research Database Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details; we will remove access to the work immediately and investigate your claim. -
Evolutionary History and the Life Cycle of Seaweeds
Evolutionary history and the life cycle of seaweeds Evolution Technical and As discussed near the beginning of this book, the impact of algae on the global scientific details ecosystem is enormous. It is estimated that they are currently responsible for about 90% of the oxygen that is released into the atmosphere. Furthermore, their contribution to the physical conditions on Earth were vitally important in setting the stage for the evolution of higher organisms. The first signs of life on our planet date back to a time when it was still very young. Earth was formed about 4.5 billion years ago and it is thought that the earliest organisms had already appeared more than 3.8 billion years ago. During this period, the conditions on Earth were very different from those of today. A particular indication of the physical state of the planet was the nearly total absence of oxygen in the atmosphere, less than one part in ten billion. Life consisted of simple, unicellular organisms, the so-called prokaryotes, which most closely resemble present-day bacteria. The prokaryotes encom- pass two separate domains (or superkingdoms): the Bacteria and the Archaea. Y, ffThe evolution of microal- Earth is formed Present day gae and macroalgae on Earth. 4 3 2 1 0 The thick lines indicate times Blue-green microalgae during which there was a rapid ■ increase in the occurrence of ■ Brown algae these species. Macroalgae became prevalent about 500 ■ Red algae to 800 million years ago. ■ Green algae About 2.5 to 1.5 billion years ago, there was a noticeable change in the Earth’s atmosphere, as the amount of oxygen in it started to increase. -
Characterization and Expression Profiles of Small Heat Shock Proteins in the Marine Red Alga Pyropia Yezoensis
Title Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis Author(s) Uji, Toshiki; Gondaira, Yohei; Fukuda, Satoru; Mizuta, Hiroyuki; Saga, Naotsune Cell Stress and Chaperones, 24(1), 223-233 Citation https://doi.org/10.1007/s12192-018-00959-9 Issue Date 2019-01 Doc URL http://hdl.handle.net/2115/76496 This is a post-peer-review, pre-copyedit version of an article published in Cell Stress and Chaperones. The final Rights authenticated version is available online at: http://dx.doi.org/10.1007/s12192-018-00959-9 Type article (author version) File Information manuscript-revised2018.12.13.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis Toshiki Uji1·Yohei Gondaira1·Satoru Fukuda2·Hiroyuki Mizuta1·Naotsune Saga2 1 Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan 2 Section of Food Sciences, Institute for Regional Innovation, Hirosaki University, Aomori, Aomori 038-0012, Japan Corresponding author: Toshiki Uji Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan Tel/Fax: +81-138-40-8864 E-mail: [email protected] Running title: Transcriptional profiling of small heat shock proteins in Pyropia 1 Abstract Small heat shock proteins (sHSPs) are found in all three domains of life (Bacteria, Archaea, and Eukarya) and play a critical role in protecting organisms from a range of environmental stresses. However, little is known about their physiological functions in red algae. -
Safety Assessment of Red Algae-Derived Ingredients As Used in Cosmetics
Safety Assessment of Red Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 21, 2020 Panel Meeting Date: September 14 – 15, 2020 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Scientific Analyst/Writer, CIR. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Algal diversity and application. Rex L. Lowe Bowling Green State University Presentation Roadmap What are these things called algae? Species diversity & properties Ecosystem services, Ecosystem hazards Algal communities might look homogeneous but are very complex A stone this size may contain hundreds of species in a very complex community. A complex community of epilithic algae A complex community of epiphytic algae on Cladophora Ra = Rhoicosphenia abbreviata Esp = Epithemia sp. Es = Epithemia sorex Am = Achnanthidium minutissimum Cp = Cocconeis pediculus Cpl = Cocconeis placentula C = Cladophora What are algae? Algos = Latin seaweed Phycos = Greek seaweed ♦Thalloid organisms bearing chlorophyll a, lacking multicellular gametangia and their colorless relatives. ♦Morphologically diverse: ♦Prokaryotes, mesokaryotes, eukaryotes ♦Largest to smallest phototrophs (0.5µm-220 m) ♦Physiologically diverse: autotrophs, facultative heterotrophs, obligate heterotrophs (molecules or particles), parasites). -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Elliott Bay Seawall Habitat Features -- Initial Monitoring Results for Nearshore Ecosystem
Western Washington University Western CEDAR Salish Sea Ecosystem Conference 2020 Salish Sea Ecosystem Conference Apr 21st, 9:00 AM - Apr 22nd, 4:45 PM Elliott Bay Seawall Habitat Features -- Initial Monitoring Results for Nearshore Ecosystem Merri Martz Anchor QEA, LLC, [email protected] Follow this and additional works at: https://cedar.wwu.edu/ssec Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons Martz, Merri, "Elliott Bay Seawall Habitat Features -- Initial Monitoring Results for Nearshore Ecosystem" (2020). Salish Sea Ecosystem Conference. 30. https://cedar.wwu.edu/ssec/2020ssec/allsessions/30 This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Elliott Bay Seawall Innovative Habitat Design: Merri Martz, Anchor QEA Jill Macik, Seattle Department of Transportation Jeff Bertram, Seattle Department of Transportation Calvin Douglas, Anchor QEA Initial Results of Monitoring the Nearshore Ecosystem Sarah Montgomery, Anchor QEA Nicole Stout, Anchor QEA OVERVIEW 2. RESULTS The Elliott Bay Seawall protects the downtown Vancouver increased between April, June, and August. Green string lettuce (Ulva linza), B R I T I S H C O L U M B I A , C A Invertebrate and Algal Attachment on the Textured Seawall Seattle urban waterfront from storm and seismic A total of 20 species or families of algae or invertebrates were recorded sea lettuce (Ulva sp.), black tar (Mastocarpus papillatus), and biofilm were forces. -
The Bladed Bangiales (Rhodophyta) of the South Eastern Pacific: Molecular Species Delimitation Reveals Extensive Diversity Q
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282253048 Una nueva mirada sobre la diversidad y el endemismo de las Bangiales foliosas a lo largo de la costa de Chile Conference Paper · April 2014 CITATIONS READS 0 236 8 authors, including: Marie-Laure Guillemin Juliet Brodie Universidad Austral de Chile Natural History Museum, London 109 PUBLICATIONS 979 CITATIONS 182 PUBLICATIONS 3,169 CITATIONS SEE PROFILE SEE PROFILE María Eliana Ramírez Erasmo C Macaya University of Concepción 30 PUBLICATIONS 286 CITATIONS 108 PUBLICATIONS 1,476 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Clonix View project Taxonomy and phylogenetics of the Bangiales (Rhodophyta) View project All content following this page was uploaded by Loretto Contreras-Porcia on 24 March 2017. The user has requested enhancement of the downloaded file. Molecular Phylogenetics and Evolution 94 (2016) 814–826 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: Molecular species delimitation reveals extensive diversity q Marie-Laure Guillemin a,b, Loretto Contreras-Porcia c,d, María Eliana Ramírez c,e, Erasmo C. Macaya f,g, ⇑ Cristian Bulboa Contador c, Helen Woods h,i, Christopher Wyatt j,k, Juliet Brodie h, a Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, -
Enhancement of Xanthophyll Synthesis in Porphyra/Pyropia Species (Rhodophyta, Bangiales) by Controlled Abiotic Factors: a Systematic Review and Meta-Analysis
marine drugs Review Enhancement of Xanthophyll Synthesis in Porphyra/Pyropia Species (Rhodophyta, Bangiales) by Controlled Abiotic Factors: A Systematic Review and Meta-Analysis Florentina Piña 1,2,3,4 and Loretto Contreras-Porcia 1,2,3,4,* 1 Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; fl[email protected] 2 Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile 3 Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile 4 Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile * Correspondence: [email protected] Abstract: Red alga species belonging to the Porphyra and Pyropia genera (commonly known as Nori), which are widely consumed and commercialized due to their high nutritional value. These species have a carotenoid profile dominated by xanthophylls, mostly lutein and zeaxanthin, which have relevant benefits for human health. The effects of different abiotic factors on xanthophyll synthesis in these species have been scarcely studied, despite their health benefits. The objectives of this study were (i) to identify the abiotic factors that enhance the synthesis of xanthophylls in Porphyra/Pyropia species by conducting a systematic review and meta-analysis of the xanthophyll content found in the literature, and (ii) to recommend a culture method that would allow a significant accumulation of Citation: Piña, F.; Contreras-Porcia, these compounds in the biomass of these species. The results show that salinity significantly affected L. Enhancement of Xanthophyll the content of total carotenoids and led to higher values under hypersaline conditions (70,247.91 µg/g Synthesis in Porphyra/Pyropia Species dm at 55 psu). -
Seaweed Aquaculture in Washington State
Seaweed Aquaculture in Washington State Thomas Mumford Marine Agronomics, LLC Olympia, Washington [email protected] Outline of Presentation • What are seaweeds? • Seaweeds of Washington • Approaches to Seaweed Aquaculture • Uses/products • Overview of how to grow seaweeds • Where are we going in the future? • Resources WhatWhat are “seaweeds?Algae”? •Seaweed (a kind of alga) •Kelp (a kind of seaweed) Algae Seaweeds Kelp Rhodophyta, Phaeophyta, Chlorophyta •Red Seaweeds (Rhodophyta) •Pyropia, Chondrus, Mazzaella •Brown Seaweeds (Phaeophyta) •Kelp •Sargassum •Green Seaweeds (Chlorophyta) •Ulva Supergroups containing “Algae” Graham 2016, Fig 5.1 The Bounty of Washington • Over 600 species of seaweeds • One of the most diverse kelp floras in the world- 22 species Seaweed Uses =Ecosystem Functions -Primary Producers • Food Detritus Dissolved organic materials -Structuring Elements (biogenic habitats) • Kelp beds -Biodiversity Function • Seaweed species themselves • Other species in, on and around seaweeds Traditional Coast Salish Uses Food, tools, culture Fishing Line made from Nereocystis stipes 11/21/19 Herring-roe-on-kelp (Macrocystis) Slide 8 • Food - nori, kombu, wakame, others • Fodder – feed supplements, forage Economic • Fiber – alginate fiber, kelp baskets Seaweed Uses • Fertilizer and Soil Conditioners– seaweed meal (kelp, rockweeds) • Drugs – iodine, kainic and domoic acids • Chemicals – “kelp”, potash, iodine, acetone • Biochemicals – alginate, carrageenan, agar, agarose • Cosmetics – alginate, carrageenan • Biomass – for