Biogeochemical and Omic Evidence for Paradoxical Methane Production

Total Page:16

File Type:pdf, Size:1020Kb

Biogeochemical and Omic Evidence for Paradoxical Methane Production bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225276; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Biogeochemical and omic evidence for paradoxical methane production via multiple 2 co-occurring mechanisms in aquatic ecosystems 3 4 Authors 5 Elisabet Perez-Coronel1,2*, J. Michael Beman1 6 1Environmental Systems Graduate Group, and Sierra Nevada Research Institute, University of 7 California Merced, Merced, USA. 8 2Ecology, Behavior and Evolution Section, University of California San Diego, La Jolla, USA. 9 10 11 *Corresponding author: Elisabet Perez-Coronel. University of California San Diego. 9500 12 Gilman Dr, La Jolla, CA, 92093 USA 13 e-mail for correspondence: [email protected] 14 Phone: +12093558131 15 16 17 Abstract 18 Aquatic ecosystems are globally significant sources of the greenhouse gas methane (CH4) to the 19 atmosphere. However, CH4 is produced ‘paradoxically’ in oxygenated water via poorly 20 understood mechanisms, fundamentally limiting our understanding of overall CH4 production. 13 21 Here we resolve paradoxical CH4 production mechanisms through CH4 measurements, δ CH4 22 analyses, 16S rRNA sequencing, and metagenomics/metatranscriptomics applied to freshwater 23 incubation experiments with multiple time points and treatments (addition of a methanogenesis 24 inhibitor, dark, high-light). We captured significant paradoxical CH4 production, as well as 25 consistent metabolism of methylphosphonate by abundant bacteria—resembling observations 13 26 from marine ecosystems. Metatranscriptomics and δ CH4 analyses applied to experimental 27 treatments identified an additional CH4 production mechanism associated with 28 (bacterio)chlorophyll metabolism and photosynthesis by Cyanobacteria, and especially by 29 Proteobacteria. Both mechanisms occured together within metagenome-assembled genomes, 30 and appear widespread in freshwater. Our results indicate that multiple, co-occurring, and 31 broadly-distributed bacterial groups and metabolic pathways produce CH4 in aquatic ecosystems. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225276; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 32 Introduction 33 Atmospheric concentrations of the potent greenhouse gas methane (CH4) have increased 34 significantly due to anthropogenic activity, representing an important component of climate 35 change (1). However, these increases are superimposed on substantial spatial and temporal 36 variability in natural sources of CH4 to the atmosphere. Of all natural CH4 sources, freshwater 37 lakes are particularly important but poorly understood, with their estimated contribution ranging 38 from 6 to 16% of all natural CH4 emissions—despite accounting for only ~0.9% of the Earth’s 39 surface area (2). CH4 emissions from lakes are conventionally viewed to be regulated by CH4 40 production (occurring predominantly in anoxic sediments) and subsequent CH4 oxidation in 41 surface sediments and the water column (3). However, oversaturation of CH4 has been 42 consistently observed in oxygenated waters of aquatic systems (4). This observation indicates 43 that CH4 is produced under oxic conditions, and that the rate of CH4 production exceeds CH4 44 oxidation. Since archaeal methanogenesis is an obligate anaerobic process (5), oxic CH4 45 production is typically referred to as the “methane paradox,” and has been observed in oceans (6, 46 7), lakes (8, 9, 10), and aerobic wetland soils (11). Notably, paradoxical CH4 production occurs 47 near the surface, and so any produced CH4 may readily flux to the atmosphere. Identifying which 48 mechanisms produce CH4 in oxygenated waters is therefore essential for our understanding of 49 CH4 fluxes and their contribution to climate change. 50 Although multiple mechanisms for paradoxical aerobic CH4 production have been 51 proposed, the degree to which these are active in freshwater lakes remains unknown. Initial 52 studies suggested that CH4 production under oxygenated conditions could be occurring in anoxic 53 microsites in the water column—such as fecal pellets, detritus, and the gastrointestinal tracts of 54 larger organisms such as fish or zooplankton (12, 13, 14). Several studies have also demonstrated 55 a correlation between phytoplankton or primary production and CH4 production (8, 9, 10). 56 However, the underlying reason(s) for this relationship is unknown. One possibility is that 57 methanogens reside on the surface of phytoplankton cells and produce CH4 in presumably anoxic 58 microsites (8). Bogard et al. (9) and Donis et al. (15) also hypothesized that several groups of 59 methanogens have oxygen-tolerant or detoxifying pathways that could aid in CH4 production in 60 the presence of oxygen. For example, Angle et al. (11) characterized a methanogen candidate 61 that possesses the enzymes to detoxify oxygen and produce CH4 under aerobic conditions. 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225276; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 62 In contrast, the current prevailing view of marine ecosystems is that methylphosphonate 63 (MPn) is the main precursor of CH4 production under oxic conditions—particularly in 64 phosphorus (P)-stressed ecosystems such as the open ocean (6, 16). MPn is the simplest form of 65 organic carbon (C)-P bonded compounds in aquatic ecosystems; microbial utilization of MPn, 66 and the consequent breakdown of the C-P bond, releases CH4 as a by-product (6, 16, 17). A 67 broad range of marine and freshwater bacteria have the genomic potential to metabolize MPn 68 and produce CH4, based on the presence of the multi-gene C-P lyase pathway in their 69 genomes. This includes multiple groups of Proteobacteria, Firmicutes, Bacteroidetes, 70 Chloroflexi, and Cyanobacteria (17, 18, 19). While expression of this pathway is thought to be 71 regulated by phosphate availability (17, 18, 19), the degree to which this occurs in freshwater 72 ecosystems is not well known (20, 21, 22). Finally, recent work indicates that cultures of marine 73 and freshwater Cyanobacteria can directly produce CH4 (23). However, outside of a single 74 experiment (24), this has not been examined in aquatic ecosystems. More significantly, the exact 75 mechanism by which this occurs remains unknown. Given the widespread distribution of 76 cyanobacteria in the ocean and freshwater, identifying the potential mechanism(s) by which 77 cyanobacteria produce methane—and whether this capability may be present in other 78 photosynthetic organisms—is of broad relevance. 79 These proposed mechanisms for CH4 production—(1) methanogenesis aided by 80 detoxifying genes or in anoxic microsites, (2) CH4 production by breakdown of methylated 81 compounds, and (3) CH4 production by Cyanobacteria—point to multiple mechanisms by which 82 CH4 can be produced under oxygenated conditions. Many of these are recently discovered and 83 therefore poorly understood, and the degree to which they occur within different aquatic 84 ecosystems is largely unknown. We developed an experimental approach to disentangle these 85 mechanisms and determine which may produce CH4 in freshwater lakes. We conducted 86 incubation experiments using surface waters from high-elevation lakes, in order to rule out 87 physical transport and focus on potential biological mechanisms of oxic CH4 production. We 88 investigated specific mechanisms using a combination of CH4 measurements over time, 89 experimental treatments and inhibitors, and 16S rRNA gene and transcript sequencing, while 90 also applying stable isotope analyses and metagenome and metatranscriptome sequencing to 91 selected experiments. Paradoxical CH4 production was evident in multiple experiments and 92 experimental treatments, and could be attributed to MPn breakdown via widely-distributed 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225276; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 93 members of the Comamonadaceae family. However, experimental treatments, stable isotope 13 94 δ C signatures of CH4, and metatranscriptomic data also point to a new potential mechanism of 95 aerobic CH4 production carried out by photosynthetic bacteria. 96 97 Results and Discussion 98 Our experiments provide multiple lines of evidence for paradoxical CH4 production in freshwater 99 lakes. Out of 19 total experiments conducted in five lakes in Yosemite National Park, 26% of 100 experiments showed unequivocal, monotonic CH4 production in unamended controls; 16% 101 showed net oxidation in controls; 21% exhibited significant nonlinear patterns; and at least one 102 experimental treatment in 37% of experiments also
Recommended publications
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Short Communication Biofilm Formation and Degradation of Commercially Available Biodegradable Plastic Films by Bacterial Consortiums in Freshwater Environments
    Microbes Environ. Vol. 33, No. 3, 332-335, 2018 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18033 Short Communication Biofilm Formation and Degradation of Commercially Available Biodegradable Plastic Films by Bacterial Consortiums in Freshwater Environments TOMOHIRO MOROHOSHI1*, TAISHIRO OI1, HARUNA AISO2, TOMOHIRO SUZUKI2, TETSUO OKURA3, and SHUNSUKE SATO4 1Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7–1–2 Yoto, Utsunomiya, Tochigi 321–8585, Japan; 2Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321–8505, Japan; 3Process Development Research Laboratories, Plastics Molding and Processing Technology Development Group, Kaneka Corporation, 5–1–1, Torikai-Nishi, Settsu, Osaka 556–0072, Japan; and 4Health Care Solutions Research Institute Biotechnology Development Laboratories, Kaneka Corporation, 1–8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676–8688, Japan (Received March 5, 2018—Accepted May 28, 2018—Published online August 28, 2018) We investigated biofilm formation on biodegradable plastics in freshwater samples. Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) (PHBH) was covered by a biofilm after an incubation in freshwater samples. A next generation sequencing analysis of the bacterial communities of biofilms that formed on PHBH films revealed the dominance of the order Burkholderiales. Furthermore, Acidovorax and Undibacterium were the predominant genera in most biofilms. Twenty-five out of 28 PHBH-degrading
    [Show full text]
  • Phage-Induced Lysis Enhances Biofilm Formation in Shewanella Oneidensis MR-1
    The ISME Journal (2011) 5, 613–626 & 2011 International Society for Microbial Ecology All rights reserved 1751-7362/11 www.nature.com/ismej ORIGINAL ARTICLE Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1 Julia Go¨deke, Kristina Paul, Ju¨ rgen Lassak and Kai M Thormann Department of Ecophysiology, Max-Planck-Institut fu¨r Terrestrische Mikrobiologie, Marburg, Germany Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. The ISME Journal (2011) 5, 613–626; doi:10.1038/ismej.2010.153; published online 21 October 2010 Subject Category: microbe–microbe and microbe–host interactions Keywords: Shewanella; biofilm; eDNA; lysis; phage Introduction been demonstrated to adhere to various surfaces and form biofilms (Bagge et al., 2001; Thormann et al., Shewanella oneidensis MR-1 belongs to the Gram- 2004, 2005, 2006; Teal et al., 2006; McLean et al., negative g-proteobacteria and is characterized by an 2008a; Zhang et al., 2010).
    [Show full text]
  • Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
    Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method.
    [Show full text]
  • Acidovorax Citrulli
    Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 444–462 ISSN 0250-8052. DOI: 10.1111/epp.12330 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/127 (1) Diagnostics Diagnostic PM 7/127 (1) Acidovorax citrulli Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2016-09. Acidovorax citrulli.1 This Standard should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. strain, were mainly isolated from non-watermelon, cucurbit 1. Introduction hosts such as cantaloupe melon (Cucumis melo var. Acidovorax citrulli is the causal agent of bacterial fruit cantalupensis), cucumber (Cucumis sativus), honeydew blotch and seedling blight of cucurbits (Webb & Goth, melon (Cucumis melo var. indorus), squash and pumpkin 1965; Schaad et al., 1978). This disease was sporadic until (Cucurbita pepo, Cucurbita maxima and Cucurbita the late 1980s (Wall & Santos, 1988), but recurrent epi- moschata) whereas Group II isolates were mainly recovered demics have been reported in the last 20 years (Zhang & from watermelon (Walcott et al., 2000, 2004; Burdman Rhodes, 1990; Somodi et al., 1991; Latin & Hopkins, et al., 2005). While Group I isolates were moderately 1995; Demir, 1996; Assis et al., 1999; Langston et al., aggressive on a range of cucurbit hosts, Group II isolates 1999; O’Brien & Martin, 1999; Burdman et al., 2005; Har- were highly aggressive on watermelon but moderately ighi, 2007; Holeva et al., 2010; Popovic & Ivanovic, 2015). aggressive on non-watermelon hosts (Walcott et al., 2000, The disease is particularly severe on watermelon (Citrullus 2004).
    [Show full text]
  • Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
    Supplemental Material for: Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Supplemental Tables 2 Supplemental Table 1. Phylogenetic signal lambda . .2 Supplemental Table 2. Syncom strains . .3 Supplemental Table 3. PERMANOVA . .6 Supplemental Table 4. PERMANOVA comparing only two treatments . .7 Supplemental Table 5. ANOVA: Observed taxa . .8 Supplemental Table 6. Observed diversity means and pairwise comparisons . .9 Supplemental Table 7. ANOVA: Shannon Diversity . 11 Supplemental Table 8. Shannon diversity means and pairwise comparisons . 12 Supplemental Table 9. Correlation between change in relative abundance and change in growth . 14 Figures 15 Supplemental Figure 1 . 15 Supplemental Figure 2 . 16 Supplemental Figure 3 . 17 Supplemental Figure 4 . 18 1 Supplemental Tables Supplemental Table 1. Phylogenetic signal lambda Class Order Family lambda p.value All - All All All All 0.763 0.0004 * * Gram Negative - Proteobacteria All All All 0.817 0.0017 * * Alpha All All 0 0.9998 Alpha Rhizobiales All 0 1.0000 Alpha Rhizobiales Phyllobacteriacae 0 1.0000 Alpha Rhizobiales Rhizobiacaea 0.275 0.8837 Beta All All 1.034 0.0036 * * Beta Burkholderiales All 0.147 0.6171 Beta Burkholderiales Comamonadaceae 0 1.0000 Gamma All All 1 0.0000 * * Gamma Xanthomonadales All 1 0.0001 * * Gram Positive - Actinobacteria Actinomycetia Actinomycetales All 0 1.0000 Actinomycetia Actinomycetales Intrasporangiaceae 0.98 0.2730 Actinomycetia Actinomycetales Microbacteriaceae 1.054 0.3751 Actinomycetia Actinomycetales Nocardioidaceae 0 1.0000 Actinomycetia All All 0 1.0000 Gram Positive - All All All All 0.421 0.0325 * Gram Positive - Firmicutes Bacilli All All 0 1.0000 2 Supplemental Table 2.
    [Show full text]
  • Phenotypic and Genetic Diversity of Pseudomonads
    PHENOTYPIC AND GENETIC DIVERSITY OF PSEUDOMONADS ASSOCIATED WITH THE ROOTS OF FIELD-GROWN CANOLA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon By Danielle Lynn Marie Hirkala © Copyright Danielle Lynn Marie Hirkala, November 2006. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 i ABSTRACT Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria.
    [Show full text]
  • Genomic Features of Bacterial Adaptation to Plants
    ARTICLES https://doi.org/10.1038/s41588-017-0012-9 Genomic features of bacterial adaptation to plants Asaf Levy 1, Isai Salas Gonzalez2,3, Maximilian Mittelviefhaus4, Scott Clingenpeel 1, Sur Herrera Paredes 2,3,15, Jiamin Miao5,16, Kunru Wang5, Giulia Devescovi6, Kyra Stillman1, Freddy Monteiro2,3, Bryan Rangel Alvarez1, Derek S. Lundberg2,3, Tse-Yuan Lu7, Sarah Lebeis8, Zhao Jin9, Meredith McDonald2,3, Andrew P. Klein2,3, Meghan E. Feltcher2,3,17, Tijana Glavina Rio1, Sarah R. Grant 2, Sharon L. Doty 10, Ruth E. Ley 11, Bingyu Zhao5, Vittorio Venturi6, Dale A. Pelletier7, Julia A. Vorholt4, Susannah G. Tringe 1,12*, Tanja Woyke 1,12* and Jeffery L. Dangl 2,3,13,14* Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then com- pared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe–microbe competition between plant-associated bacteria. We also identified 64 plant-associated pro- tein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant–microbe interactions and provides potential leads for efficient and sustain- able agriculture through microbiome engineering.
    [Show full text]
  • Diaphorobacter Nitroreducens Gen. Nov., Sp. Nov., a Poly (3
    J. Gen. Appl. Microbiol., 48, 299–308 (2002) Full Paper Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge Shams Tabrez Khan and Akira Hiraishi* Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441–8580, Japan (Received August 12, 2002; Accepted October 23, 2002) Three denitrifying strains of bacteria capable of degrading poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were isolated from activated sludge and characterized. All of the isolates had almost identical phenotypic characteristics. They were motile gram-negative rods with single polar flagella and grew well with simple organic com- pounds, as well as with PHB and PHBV, as carbon and energy sources under both aerobic and anaerobic denitrifying conditions. However, none of the sugars tested supported their growth. The cellular fatty acid profiles showed the presence of C16:1w7cis and C16:0 as the major com- ponents and of 3-OH-C10:0 as the sole component of hydroxy fatty acids. Ubiquinone-8 was de- tected as the major respiratory quinone. A 16S rDNA sequence-based phylogenetic analysis showed that all the isolates belonged to the family Comamonadaceae, a major group of b-Pro- teobacteria, but formed no monophyletic cluster with any previously known species of this fam- (DSM 13225؍) ily. The closest relative to our strains was an unidentified bacterium strain LW1 (99.9% similarity), reported previously as a 1-chloro-4-nitrobenzene degrading bacterium. DNA- DNA hybridization levels among the new isolates were more than 60%, whereas those between our isolates and strain DSM 13225 were less than 50%.
    [Show full text]
  • Olabode Ope Samuel.Pdf (6.682Mb)
    Faculty of Science and Technology MASTER’S THESIS Study program/ Specialization: Spring Semester, 2017 Master´s degree in Biological Chemistry Open/Restricted Writer: Ope Samuel Olabode ………………………………………………….. (Writer’s signature) Faculty Supervisor: Prof. Cathrine Lillo External Supervisor(s): Title of Thesis: The effect of plant growth-promoting bacteria on wild type, protein phosphatase 2A catalytic subunit mutants of Arabidopsis thaliana and Solanaceae lycopersicum (Gemini tomato) Credits (ECTS): 60 Key words: Arabidopsis Pages:54 thaliana, PP2A, RT-PCR, VOCs, ISR, + Enclosures:77 Stavanger, June 15, 2017 Date/Year Table of contents Table of contents .....................................................................................................................................i-iii Acknowledgement .................................................................................................................................... iv Abstracts ..................................................................................................................................................... v Abbreviation ............................................................................................................................................. vi List of Figures ................................................................................................................................... vii-viii List of Tables ............................................................................................................................................
    [Show full text]
  • Transfer of Several Phytopathogenic Pseudomonas Species to Acidovorax As Acidovorax Avenae Subsp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1992, p. 107-119 Vol. 42, No. 1 0020-7713/92/010107-13$02 .OO/O Copyright 0 1992, International Union of Microbiological Societies Transfer of Several Phytopathogenic Pseudomonas Species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov. , Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci A. WILLEMS,? M. GOOR, S. THIELEMANS, M. GILLIS,” K. KERSTERS, AND J. DE LEY Laboratorium voor Microbiologie en microbiele Genetica, Rijksuniversiteit Gent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium DNA-rRNA hybridizations, DNA-DNA hybridizations, polyacrylamide gel electrophoresis of whole-cell proteins, and a numerical analysis of carbon assimilation tests were carried out to determine the relationships among the phylogenetically misnamed phytopathogenic taxa Pseudomonas avenue, Pseudomonas rubrilineans, “Pseudomonas setariae, ” Pseudomonas cattleyae, Pseudomonas pseudoalcaligenes subsp. citrulli, and Pseudo- monas pseudoalcaligenes subsp. konjaci. These organisms are all members of the family Comamonadaceae, within which they constitute a separate rRNA branch. Only P. pseudoalcaligenes subsp. konjaci is situated on the lower part of this rRNA branch; all of the other taxa cluster very closely around the type strain of P. avenue. When they are compared phenotypically, all of the members of this rRNA branch can be differentiated from each other, and they are, as a group, most closely related to the genus Acidovorax. DNA-DNA hybridization experiments showed that these organisms constitute two genotypic groups. We propose that the generically misnamed phytopathogenic Pseudomonas species should be transferred to the genus Acidovorax as Acidovorax avenue and Acidovorax konjaci. Within Acidovorax avenue we distinguished the following three subspecies: Acidovorax avenue subsp.
    [Show full text]
  • Physiological and Genomic Features of Highly Alkaliphilic Hydrogen-Utilizing Betaproteobacteria from a Continental Serpentinizing Site
    ARTICLE Received 17 Dec 2013 | Accepted 16 Apr 2014 | Published 21 May 2014 DOI: 10.1038/ncomms4900 OPEN Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site Shino Suzuki1, J. Gijs Kuenen2,3, Kira Schipper1,3, Suzanne van der Velde2,3, Shun’ichi Ishii1, Angela Wu1, Dimitry Y. Sorokin3,4, Aaron Tenney1, XianYing Meng5, Penny L. Morrill6, Yoichi Kamagata5, Gerard Muyzer3,7 & Kenneth H. Nealson1,2 Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. 1 J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California 92037, USA. 2 University of Southern California, 835 W. 37th St. SHS 560, Los Angeles, California 90089, USA. 3 Delft University of Technology, Julianalaan 67, Delft, 2628BC, The Netherlands.
    [Show full text]