Developmental Mechanisms in Heterospory: Cytochemical Demonstration of Spore-Wall Enzymes Associated with /?-Lectins, Polysaccharides and Lipids in Water Ferns

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Mechanisms in Heterospory: Cytochemical Demonstration of Spore-Wall Enzymes Associated with /?-Lectins, Polysaccharides and Lipids in Water Ferns J. Cell Sci. 38, 61-82 (1979) Printed in Great Britain © Company of Biologists Limited DEVELOPMENTAL MECHANISMS IN HETEROSPORY: CYTOCHEMICAL DEMONSTRATION OF SPORE-WALL ENZYMES ASSOCIATED WITH /?-LECTINS, POLYSACCHARIDES AND LIPIDS IN WATER FERNS J.M. PETTITT Department of Botany, British Museum (Natural History), Cromwell Road, London SW7 5BD, England SUMMARY Cytochemical methods are used to examine the distribution and localization of acid phos- phatase, non-specific esterase, ribonuclease and peroxidase activity in the walls of the spores of the heterosporous Marsileaceae before and during germination. In the quiescent spore, the principal activity is associated with the perine layer of the wall and the intine, with some acti- vity in the outer, gelatinous wall layer, but none in the exine. The microspores of Marsilea and Pilularia have non-specific esterase activity concentrated in the intine in the immediate vicinity of the germinal site; that is, above the position of the future male gametangia. The enzymes are not leached from the wall during hydration of the spores, although ribonuclease is redistributed during imbibition with a high concentration of activity remaining in or around the germinal site. The wall enzymes occur together with PAS-reactive and acidic carbohydrates, lipids, and in the microspore perine, /?-lectins. Following the enzyme pattern, the /?-lectins are found to be concentrated in the region of the germinal site. /¥-lectin activity is absent from the megaspore wall. Acidic carbohydrates are confined to the gelatinous wall layer and this layer also binds con- canavalin A. In contrast to what has been found for other plant cells, the spore-wall /9-lectins are not water-labile; the activity is not significantly diminished after hydration. This surprising stability suggests that these molecules, together with the enzymes, may be retained in position in the wall by the waterproof overlay of lipid. From the evidence of preliminary developmental studies, it appears that the enzymes as- sociated with the perine layer of the wall originate in the sporophytic tapetal periplasmodium and inclusion of the activity is concurrent with wall differentiation, while the activity associated with the intine is derived from the gametophyte. It is possible, however, in the megaspore at least, that the distribution of the activity may to some extent be influenced by a system of exine channels which communicates between the two domains of the wall during sporogenesis. No definite information is obtained concerning the utility of the enzymes and associated molecules in the life of the spore. Acting separately or in co-operation, their role could con- ceivably be connected with one or more of four processes; wall differentiation, gametophyte nutrition, gametophyte protection or reproduction. Each of these possibilities is discussed. INTRODUCTION The evidence is now quite unequivocal that the pollen walls of many species of flowering plants and some gymnosperms contain proteins with cytochemically 5 CEL 38 62 J. M. Pettitt detectable enzymic activity (Tsinger & Petrovskaya-Baranova, 1961; Knox & Heslop- Harrison, 1969, 1970, 1971a, b; Knox, 1971; Heslop-Harrison, Heslop-Harrison, Knox & Howlett, 1973; Knox, Heslop-Harrison & Heslop-Harrison, 1975; Pettitt, 1976a, 1977a; Vithanage & Knox, 1976; Ducker, Pettitt & Knox, 1978). A range of hydrolases, but principally acid phosphatase and non-specific esterase, has been found to be concentrated in the intine, the inner, cellulosic wall layer of spermatophyte pollen (Knox & Heslop-Harrison, 1970, 1971 a, b; Heslop-Harrison et al. 1973; Knox et al. 1975; Vithanage & Knox, 1976; Pettitt, 1977a), while non-specific esterase, dehydrogenase and oxidase activities have been detected in the exine, the resistant, outer wall layer (Tsinger & Petrovskaya-Baranova, 1961; Knox & Heslop-Harrison, 1969, 1970; Knox, 1971; Vithanage & Knox, 1976). There is evidence from develop- mental studies to show that the intine proteins in the flowering plants are direct pro- ducts of the haploid gametophyte inserted into the wall during deposition of the intine layer. The proteins carried in the exine are, on the other hand, derived from the anther tapetum, a tissue of the parental sporophyte, and are injected into the wall during the final maturation of the grain. A seemingly constant feature in the flowering plant species is the occurrence with the exine proteins of other classes of material, including glycoproteins and lipids (Knox, 1971; Knox & Heslop-Harrison, 19716; Heslop-Harrison et al. 1973; Knox et al. 1975; Vithanage & Knox, 1976). A number of roles have been proposed for the well-circumscribed system of wall enzymes in the biology of the angiosperm pollen grain and it would seem, both from the distribution and the speed of release when the grain is moistened, that their programme concerns germination and degradation of the stigma cuticle as well as early growth of the pollen tube; the quintessence, in fact, of siphonogamy (Knox & Heslop-Harrison, 1970; Heslop-Harrison, 1975; Knox et al. 1975). It has been sugges- ted, too, that the elaborately chambered pollen exine characteristic of flowering plants may have evolved, rather than been exploited, expressly as a conveyance of sporophytic materials (J. Heslop-Harrison, 1976). Proteins with enzymic activity have now been recognized in the spore walls of some rather distinctive heterosporous pteridophytes, members of the infelicitously called water ferns. The fern spore enzymes are, moreover, topologically associated with /Mectins, carbohydrates and lipids and the activity is retained in the wall during germ- ination. This paper reports on the cytochemical localization and characterization of these molecules in three genera of the Marsileaceae. MATERIALS AND METHODS Spores were taken from ripe, dry sporocarps of Marsilea drummondii A. Br., M. mutica Mett. M. berhautii Tardieu, Pilularia globulifera L., P. novae-hollandiae A. Br. and Regnellidium diphy- llum Lindm. and encased in a mixture of 15% (w/v) gslatin and 2% (v/v) glycerol (Knox, 1970) for freeze-sectioning at 8 /im in a cryostat. Alternatively, the dry spores were fixed in chilled 2-5 % glutaraldehyde buffered in o-i M cacodylate-HCl at pH 7'2, 450 mosM, and rinsed in buffer before being encased in gelatin-glycerol. This brief period of fixation improved the cutting quality of the spores, but exposure to the fixative solution was found not to influence the distribution of the wall enzymes. To determine the distribution of the wall enzymes and other wall-associated components during the initial stage of spore germination, ripe sporocarps were scarified and cast into dishes Spore-wall enzymes in ferns 63 of filtered pond water at room temperature. Imbibition and swelling commenced immediately and the sporangia emerged from the open sporocarp within 15-20 min. The course of hydration, the process which actuates gametogenesis in the plants, was monitored under a dissecting micro- scope and germination was allowed to continue for 2'5 h before the spores were harvested to be either fixed for 1-5 h in chilled glutaraldehyde or quenched in isopentane in liquid nitrogen and freeze-dried in a Speedivac-Pearse tissue dryer. The specimens were then encased in gelatin- glycerol for freeze-sectioning. Water was taken up rapidly by the contents of the sporocarps and the fully imbibed spores were liberated within 15-30 min of opening. The 2-5~h interval, there- fore, was more than sufficient time to ensure complete hydration in all the species. Machlis & Rawitscher-Kunkel (1967a) provide a detailed description of the course of spore hydration in Marsilea. Polysaccharide, ji-lectin, protein and lipid localization The standard periodic acid-Schiff (PAS) reaction (Pearse, 1968) was used to detect poly- saccharides containing vicinal glycol groups. Control sections were not subjected to the acid oxidation step. Polyanions were localized for light microscopy by staining cryostat sections with Alcian blue 8GX at pH 2'5 (Mowry, 1963) and for electron microscopy by the addition of puri- fied ruthenium red to the primary aldehyde and secondary osmium fixative solutions (Luft, 1971; Pettitt, 19776). Acceptor molecules for concanavalin A (Con A) were detected in section of unfixed spores with Con A conjugated to fluorescein isothiocyanate (FITC-Con A). The sections were flooded with FITC-Con A (L'Industrie Biologique Francaise) at 10 mg/ml in. phosphate-buffered saline for 15 min, rinsed in buffered saline and examined in a fluorescence microscope transmitting in the blue range. Control sections were incubated in the competitive inhibitor a-methyl-D-mannoside, 0-2 M for 15 min, before treatment with FITC-Con A con- taining 0-2 M inhibitor. The sites of /?-lectin activity were detected in sections and whole mounts of unfixed spores by staining in /?-glucosyl (/?-GLU) Yariv artificial carbohydrate antigen (Jermyn & Yeow, 1975) according to the procedure employed by Clarke, Knox & Jermyn (1975). Negative and ambi- guous results were re-investigated by observing response in whole spores or sections previously treated with hot ethanol to remove possible low molecular mass inhibitors that are known to interfere with artificial antigen-/?-lectin binding (Clarke, Gleeson, Jermyn & Knox, 1978). The specificity of the staining was assessed by treating parallel sections with the a-galactosyl (a-GAL) Yariv derivative (Clarke et al. 1975). Proteins were detected in fixed, freeze-sectioned spores with 0-25 % Coomassie blue in
Recommended publications
  • Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
    Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany.
    [Show full text]
  • Conifer Reproductive Biology Claire G
    Conifer Reproductive Biology Claire G. Williams Conifer Reproductive Biology Claire G. Williams USA ISBN: 978-1-4020-9601-3 e-ISBN: 978-1-4020-9602-0 DOI: 10.1007/978-1-4020-9602-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927085 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover Image: Snow and pendant cones on spruce tree (reproduced with permission of Photos.com). Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword When it comes to reproduction, gymnosperms are deeply weird. Cycads and coni- fers have drawn out reproduction: at least 13 genera take over a year from pollina- tion to fertilization. Since they don’t apparently have any selection mechanism by which to discriminate among pollen tubes prior to fertilization, it is natural to won- der why such a delay in reproduction is necessary. Claire Williams’ book celebrates such oddities of conifer reproduction. She has written a book that turns the context of many of these reproductive quirks into deeper questions concerning evolution. The origins of some of these questions can be traced back Wilhelm Hofmeister’s 1851 book, which detailed the revolutionary idea of alternation of generations.
    [Show full text]
  • Heterospory and Seed Habit Heterospory in Pteridophytes: Most of the Pteridophytes Produce One Kind of Similar Spore
    Heterospory and Seed Habit Heterospory in Pteridophytes: Most of the Pteridophytes produce one kind of similar spore. Such Peridophytes are known as homosporous and this phenomenon is known as homospory. However, there are some Pteridophytes which produce two different types of spores (differing in size, structure and function). Such Pteridophytes are known as heterosporous and the phenomenon is known as heterospory. The two types of spores are microspores and megaspores. Microspores are smaller in size and develop into the male gametophyte while the megaspores are large and develop into female gametophyte. According to Rashid (1976) only 9 genera of Pteridophytes are heterosporous. These are Selaginella, Isoetes, Stylites, Marsilea, Pilularia, Regnellidium, Salvinia, Azoll and Platyzoma. Origin of Heterospory: The origin of heterospory can be better discussed on the basis of evidences from paleobotany, developmental and experimental studies. 1. Palaeobotanical evidences: It has been suggested that heterospory arose due to degeneration of some spores in a few sporangia. As more nutrition becomes available to less number of spores, the surviving spore grow better, hence increase in their size. Palaeobotanical evidences show that the earlier vascular plants wert all homosporous and the heterosporous condition appeared subsequently in the lowermost upper Devonian. Anumber of heterosporous genera belonging to the Lycopsida, Sphenopsida and Pteropsia were known in the late Devonian and early Carboniferous periods. During this period important heterosporous genera were Lepidocarpon, Lepidostrobus, Mazocarpon, Plaeuromeia, Sigillariostrobiis (members of Lycopsid) Calamocarpon, Calamostachys, Palaeostachys (members of Sphenosida). Some of these forms even arrived at the seed stage. According to Williamson and Scot (1894) two species of Calamostachys form the initial stage that might lead to the heterospory.
    [Show full text]
  • 81 Vascular Plant Diversity
    f 80 CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS UNIT II EVOLUTION AND DIVERSITY OF PLANTS 81 LYCOPODIOPHYTA Gleicheniales Polypodiales LYCOPODIOPSIDA Dipteridaceae (2/Il) Aspleniaceae (1—10/700+) Lycopodiaceae (5/300) Gleicheniaceae (6/125) Blechnaceae (9/200) ISOETOPSIDA Matoniaceae (2/4) Davalliaceae (4—5/65) Isoetaceae (1/200) Schizaeales Dennstaedtiaceae (11/170) Selaginellaceae (1/700) Anemiaceae (1/100+) Dryopteridaceae (40—45/1700) EUPHYLLOPHYTA Lygodiaceae (1/25) Lindsaeaceae (8/200) MONILOPHYTA Schizaeaceae (2/30) Lomariopsidaceae (4/70) EQifiSETOPSIDA Salviniales Oleandraceae (1/40) Equisetaceae (1/15) Marsileaceae (3/75) Onocleaceae (4/5) PSILOTOPSIDA Salviniaceae (2/16) Polypodiaceae (56/1200) Ophioglossaceae (4/55—80) Cyatheales Pteridaceae (50/950) Psilotaceae (2/17) Cibotiaceae (1/11) Saccolomataceae (1/12) MARATTIOPSIDA Culcitaceae (1/2) Tectariaceae (3—15/230) Marattiaceae (6/80) Cyatheaceae (4/600+) Thelypteridaceae (5—30/950) POLYPODIOPSIDA Dicksoniaceae (3/30) Woodsiaceae (15/700) Osmundales Loxomataceae (2/2) central vascular cylinder Osmundaceae (3/20) Metaxyaceae (1/2) SPERMATOPHYTA (See Chapter 5) Hymenophyllales Plagiogyriaceae (1/15) FIGURE 4.9 Anatomy of the root, an apomorphy of the vascular plants. A. Root whole mount. B. Root longitudinal-section. C. Whole Hymenophyllaceae (9/600) Thyrsopteridaceae (1/1) root cross-section. D. Close-up of central vascular cylinder, showing tissues. TABLE 4.1 Taxonomic groups of Tracheophyta, vascular plants (minus those of Spermatophyta, seed plants). Classes, orders, and family names after Smith et al. (2006). Higher groups (traditionally treated as phyla) after Cantino et al. (2007). Families in bold are described in found today in the Selaginellaceae of the lycophytes and all the pericycle or endodermis. Lateral roots penetrate the tis detail.
    [Show full text]
  • Heterospory and Seed Habit Heterospory Is a Phenomenon in Which Two Kinds of Spores Are Borne by the Same Plant
    Biology and Diversity of Algae, Bryophyta and Pteridophytes Paper Code: BOT-502 BLOCK – IV: PTERIDOPHYTA Unit –19: Hetrospory and Seed Habit Unit–20: Fossil Pteridophytes By Dr. Prabha Dhondiyal Department of Botany Uttarakhand Open University Haldwani E-mail: [email protected] Contents ❑ Introduction to Heterospory ❑ Origin of Heterospory ❑ Significance of Heterospory ❑ General accounts of Fossil pteridophytes ❑ Fossil Lycopsids ❑ Fossil Sphenophytes ❑ Fossil Pteridopsis ❑Glossary ❑Assessment Questions ❑Suggested Readings Heterospory and Seed habit Heterospory is a phenomenon in which two kinds of spores are borne by the same plant. The spores differ in size, structure and function. The smaller one is known as microspore and larger one is known as megaspore. Such Pteridophytes are known as heterosporous and the phenomenon is known as heterospory. Most of the Pteridophytes produce one kind of similar spores, Such Peridophytes are known as homosporous and this phenomenon is known as homospory. The sporangia show greater specialization. They are differentiated into micro and megasporangia. The microsporangia contaion microspores whereas megasporangia contain megaspores. The production of two types of sproes with different sexuality was first evolved in pteridophytes. Even though, the condition of heterospory is now represented only by eight living species of pteridophytes, they are Selaginella, Isoetes, Marsilea, Salvinia, Azolla, Regnellidium, Pilularia and Stylites. Origin of heterospory The fossil and developmental studies explain about the origin of heterospory. A number of fossil records proved that heterospory existed in many genera of Lycopsida, Sphenopsida and Pteropsida. They are very common in late Devonian and early Carboniferous periods. During this period the important heterosporous Licopsids genera were Lepidocarpon, Lepidodemdron, Lipidostrobus, Pleoromea, Sigilariosrobus etc.
    [Show full text]
  • Plants II – Reproduction: Adaptations to Life on Land
    Plants II – Reproduction: Adaptations to Life on Land Objectives: • Understand the evolutionary relationships between plants and algae. • Know the features that distinguish plants from algae. • Understand the evolutionary relationships of embryophytes. • Know the phylogeny of plants and when major events in the evolution of plant reproduction occurred. • Understand alternation of generations and know the life-cycles of all the major groups of plants. Be sure to understand when mitosis and meiosis are occurring, and what their products are. • Be able to identify antheridia and archegonia and know what they produce. • Understand the difference between homospory and heterospory • Understand the selective advantages of seeds, fruits and flowers. • Know the anatomy of flowers and the different types of flowers. • Know how fruit is formed and what the major types of fruit are. • Understand what endosperm is and how it is formed. • Know the differences between monocots and “dicots” in terms of floral and seed structure. Plant Reproduction As you work through this lab you should place the characters/events listed to the right of the phylogeny given bellow in the correct positions on the tree. Plants II - Reproduction 2 1) Alternation of Generations w/a multicellular sporophyte that is dependent on Gametophyte resources 2) Spores 3) Sporophyte becomes independent of gametophyte 4) Seeds 5) Endosperm 6) Flowers & Fruits Multicellular Sporophyte: Many algae have what is termed alternation of generations . That is they alternate between a haploid (N) stage called the gametophyte (this is the stage that produces gametes) and a diploid (2N) stage called the sporophyte . Plants are often referred to as embryophytes because the multicellular sporophyte is dependent on resources from the gametophyte.
    [Show full text]
  • Biol 211 (2) Chapter 31 October 9Th Lecture
    S.I. Biol 211 Biology 211 (2) Week 7! Chapter 31! ! VOCABULARY! Practice: http://www.superteachertools.us/speedmatch/speedmatch.php? gamefile=4106#.VhqUYGRVhBc ! Alternation of Angiosperm: A Antheridia: The Archegonia: The generations: A life cycle flowering vascular sperm producing egg-producing involving alternation of a plant that produces structure in most structure in most multicellular haploid seed within mature land plants except land plants except ovaries (fruits). The angiosperms angiosperms stage (gametophyte) with angiosperms form a a multicellular diploid single lineage stage (sporophyte). Occurs in most plants and some protists. Artificial selection: Bisexual Carpel: The female Diploid: Having two Deliberate manipulation gametophyte: One reproductive organ sets of by humans, as in animal gametophyte that in a flower, chromosomes (2n) and plant breeding, of produces both eggs contains the ovary, the genetic composition and sperm which contains of a population by ovules, which allowing only individuals contain the with desirable traits to megasporangia reproduce Double fertilization: An Endosperm: A Fruit: In Gametangia: The unusual form of triploid (3n) tissue angiosperms, a gamete-forming reproduction seen in in the seed of a mature, ripened structure found in flowering plants, in which flowering plant plant ovary, along all land plants one sperm cell fuses with an (angiosperm) that with the seeds it except angiosperms. egg to form a zygote and the serves as food for contains and Contains an other sperm cell fuses with two polar nuclei to form the the plant embryo. adjacent fused antheridium and triploid endosperm Functionally parts, often archegonium. analogous to the functions in seed yolk of an egg dispersal Gametophyte: In Gymnosperm: A Haploid: Having Heterospory: In organisms undergoing vascular plant that one set of seed plants, the alternation of makes seeds but chromosomes production of two generations, the does not produce distinct types of multicellular haploid form flowers.
    [Show full text]
  • Magallon2009chap11.Pdf
    Land plants (Embryophyta) Susana Magallóna,* and Khidir W. Hilub species) include whisk ferns, horsetails, and eusporang- aDepartamento de Botánica, Instituto de Biología, Universidad iate and leptosporangiate ferns. Spermatophytes include Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, cycads (105 species), ginkgos (one species), conifers (540 b Del. Coyoacán, México D.F. 04510, Mexico; Department of Biological species), gnetophytes (96 species), which are the gymno- Sciences, Virginia Tech, Blacksburg, VA, 24061, USA sperms, and angiosperms (Magnoliophyta, or P owering *To whom correspondence should be addressed (s.magallon@ plants, 270,000 species). Angiosperms represent the vast ibiologia.unam.mx) majority of the living diversity of embryophytes. Here, we review the relationships and divergence times of the Abstract major lineages of embryophytes. We follow a classiA cation of embryophytes based on The four major lineages of embryophyte plants are liver- phylogenetic relationships among monophyletic groups worts, mosses, hornworts, and tracheophytes, with the lat- (2, 3). Whereas much of the basis of the classiA cation is ter comprising lycophytes, ferns, and spermatophytes. Their robust, emerging results suggest some reA nements of high- relationships have yet to be determined. Different stud- er-level relationships among the four major groups. 7 is ies have yielded widely contrasting views about the time includes the inversion of the position of Bryophyta and of embryophyte origin and diversifi cation. Some propose Anthocerophyta, diB erent internal group relationships an origin of embryophytes, tracheophytes, and euphyllo- within ferns, and diB erent relationships among spermato- phytes (ferns + spermatophytes) in the Precambrian, ~700– phytes. 7 e phylogenetic classiA cation provides charac- 600 million years ago (Ma), whereas others have estimated ters that are useful for establishing taxonomic deA nitions younger dates, ~440–350 Ma.
    [Show full text]
  • 6.5 X 11 Double Line.P65
    Cambridge University Press 978-0-521-87411-3 - Biology and Evolution of Ferns and Lycophytes Edited by Tom A. Ranker and Christopher H. Haufler Index More information Index Abrodictyum 403, 425 A. diaphanum 21 A. firma 206, 207, 215 Acrophorus 439 A. latifolium 237, 376 A. salvinii 202, 206, 380 Acrorumohra 440 A. pedatum 308, 378 A. setosa 208 Acrosorus 444 A. philippense 203 A. spinulosa 115 Acrostichaceae 434 A. reniforme 203 Alsophilaceae 431 Acrostichum 210, 434, 435 A. tenerum 292 Amauropelta 437 A. aureum 210 Aenigmopteris 442 Amazonia 370 A. danaeifolium 203, 204, Afropteris 435 Ampelopteris 437 210 agamospory 307 Amphiblestra 442 A. speciosum 210 Aglaomorpha 212, 444 Amphineuron 437 actin 30 A. cornucopia 268 Anachoropteris clavata see Actiniopteridaceae 434 Aleuritopteris 434 Kaplanopteris clavata Actiniopteris 434 alleles Ananthacorus 227, 434 Actinostachys 427 deleterious 110 Anarthropteris 444 Acystopteris 438 recessive 110 Anchistea 439 Adenoderris 439 allohomoploidy Andes 371 Adenophorus 444 lycophytes and 319 Anemia 9, 135, 138, 140, 142, A. periens 115 secondary speciation 143, 351, 427 Adiantaceae 354, 434, 435 through (see also A. fremontii 352, 353 Adiantoideae 435 speciation, secondary) A. phyllitidis 138, 139, Adiantopsis 434 318--320 150 Adiantopteris 354 tree ferns and 318--319 Anemiaceae 404, 427 Adiantum 161--162, 165, 311, Alloiopteris 341 Anetium 434 434, 435 allopolyploidy Angiopteridaceae 423 plastid genome of 163 secondary speciation Angiopteris 82, 86, 163, 165, A. capillus-veneris 6, 7, 8, 9, through (see also 423 10, 11, 12, 15, 17, 18, 19, speciation, secondary) A. lygodiifolia 76 21, 22, 22, 25, 27, 29, 30, 320--321 Ankyropteris 349 31, 32, 33, 34--35, 37, 38, Alsophila 405, 431 A.
    [Show full text]
  • Chapter 30: Plant Diversity II – the Evolution of Seed Plants
    Chapter 30: Plant Diversity II – The Evolution of Seed Plants 1. General Features of Seed-Bearing Plants 2. Survey of the Plant Kingdom II A. Gymnosperms B. Angiosperms The 10 Phyla of Existing Plants Chapter 29 Chapter 30 1. General Features of Seed-bearing Plants Key Adaptations for Life on Land Plant life on land is dominated by seed plants due to the following 5 derived characters: 1. SEEDS 2. REDUCED GAMETOPHYTES 3. HETEROSPORY 4. OVULES 5. POLLEN Advantages of Seeds A seed is a sporophyte embryo surrounded by nutrients packaged in a protective seed coat which provides the following advantages for the embryo: • the fruit surrounding the seed can facilitate its dispersal over long distances • the embryo can survive for years in a dormant state until conditions are favorable for germination Fireweed seed • nutrients to sustain the embryo during early growth Advantages of Reduced Gametophytes Seed plants have microscopic gametophytes that are fully contained within the sporangium of the sporophyte. This provides the following advantages: • the reproductive tissues of the sporangium protect the gametophyte from environmental stresses (e.g., UV exposure, loss of moisture, extreme temperature) • the sporophyte can provide nourishment to sustain the gametophyte PLANT GROUP Ferns and Mosses and other other seedless Seed plants (gymnosperms and angiosperms) nonvascular plants vascular plants Reduced, Independent Reduced (usually microscopic), dependent on Gametophyte Dominant (photosynthetic surrounding sporophyte tissue for nutrition and
    [Show full text]
  • Heterospory and Seed Habit Heterospory
    HETEROSPORY AND SEED HABIT HETEROSPORY • The phenomenon where two types of spores differing in size, structure and function are formed on the same plant is known as heterospory. • The smaller spores are called microspores and the larger spores are known as megaspores. • Heterospory has not evolved in living forms but was also present in fossil plants, and • It originated due to disintegration of some spores in a sporangium IMPORTANCE OF HETEROSPORY • Heterospory expresses sex determining capability of the plant e.g. a microspore always gives rise to male gametophyte and a megaspore to female gametophyte. • In heterosporous forms development of gametophyte is endosporic and the nutrition for the developing gametophyte is derived from the sporophyte. So the development of gametophyte is not affected by ecological factors as in case of independently growing gametophytes. • Megaspore is retained by the parent even after fertilization. This ensures nutrition for the developing embryo, • SEED HABIT • The requirements for the formation seed are as follows- • Formation of two types of spores microspores and megaspores (heterospory) • Reduction in the number of functional megaspores to one per megasporangium. • Retention of megaspore in the megasporangium until embryo development. • Elaboration of the apical part of megasporangium to receive microspores or pollen grains. • In Selaginella, the most common genus of the heterosporous pteridophytes, provides the best examples. Most of the species of Selaginella are heterosporous and they have only one functional megaspore mother cell which gives rise to 4 megaspores after meiosis. Only a single functional megaspore in a sporangium is present in Selaginella rupestris, S. monospora and S. erythropus.
    [Show full text]
  • Laboratory 2: Reproductive Morphology
    IB 168 (Plant Systematics) Laboratory 2: Reproductive Morphology A Review of the Plant Life Cycle All plants have a very characteristic life cycle composed of two distinct phases or generations: a haploid (1N) gametophyte generation and a diploid (2N) sporophyte generation. The gametophyte generation produces gametes (by mitosis) which fuse in the process of fertilization to produce a diploid sporophyte. The sporophyte, in turn, produces haploid spores (by meiosis) which gives rise to new gametophytes. Because the two generations alternate with one another, this kind of life cycle is often referred to as alternation of generations (see FIGURE 1). Some plants are homosporous, in that they produce only one type of spore, which gives rise to a bisexual gametophyte upon germination. Most plants, however, produce two morphologically different types of spores and are thus heterosporous. The larger of these spores is termed the megaspore and the smaller one the microspore. Upon germination megaspores will give rise to female gametophytes (megagametophytes) and microspores will germinate to form male gametophytes (microgametophytes). One important consequence of heterospory is that gametophytes are now rendered unisexual. Heterospory has evolved at least four times in the history of plants, yet, although it is regarded as a key evolutionary step, the advantages (if any) of heterospory have proven difficult to assess. Sporophyte DIPLOID (2N) Fertilization Meiosis HAPLOID (1N) gametes spores Gametophyte FIGURE 1: Generalized plant life cycle. Note that the spores are haploid because they are the products of meiosis. These spores germinate to form a haploid gametophyte. The gametophyte then produces gametes (eggs or sperm) by mitosis.
    [Show full text]