Harold C. Urey, Scientist, Atheist, and Defender of Religion a Dissertatio

Total Page:16

File Type:pdf, Size:1020Kb

Harold C. Urey, Scientist, Atheist, and Defender of Religion a Dissertatio UNIVERSITY OF CALIFORNIA, SAN DIEGO The New Prophet: Harold C. Urey, Scientist, Atheist, and Defender of Religion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew Benjamin Shindell Committee in charge: Professor Naomi Oreskes, Chair Professor Robert Edelman Professor Martha Lampland Professor Charles Thorpe Professor Robert Westman 2011 Copyright Matthew Benjamin Shindell, 2011 All rights reserved. The Dissertation of Matthew Benjamin Shindell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page……………………………………………………………………...... iii Table of Contents……………………………………………………………………. iv Acknowledgements………………………………………………………………….. v Vita…………………………………………………………………………………... xi Abstract………………………………………………………………………………. xii Introduction………………………………………………………………………….. 1 Chapter 1, The Making and Remaking of an American Chemist: From a Country Boyhood to World War I………………………………… 25 Chapter 2, Farm Life and Scientific Stardom: From the Barrett Chemical Company to World War II……………………………………. 94 Chapter 3, Atomic Trauma and New Territory: The Rise of Nuclear Geochemistry in Chicago……………………………………… 162 Chapter 4, Calling for the New Prophet: A Skeptic Argues for the Importance of Religion………………………………………………. 213 Chapter 5, To Hell with the Moon: The Cosmochemist’s Failed Quest for a Rosetta Stone……………………………... 262 Conclusion…………………………………………………………………………… 312 Works Cited………………………………………………………………………….. 316 iv ACKNOWLEDGEMENTS Although I am the sole author of this dissertation, it could never have been written without the help of many individuals. First and foremost, I must thank the chair of my committee and my adviser for the last seven years, Naomi Oreskes. Although I first appeared in Professor Oreskes’s office declaring that my intention was to write a dissertation on the history of planetary geology, she has supported every turn that my research has taken and has provided invaluable support and feedback. My understanding of Cold War science and my emphasis of Cold War causality are both due to Professor Oreskes’s guidance and encouragement. I might never have imagined writing a dissertation related to the problem of science and religion during the Cold War if not for another member of my committee, Robert Westman. It was in Professor Westman’s science and religion research seminar that I first approached the Urey papers. Chapter 4 of this dissertation is a revised version of my initial entry into this question in this seminar. As an instructor, Professor Westman also introduced me to the history of the field of science studies and encouraged me to believe that history might have a unique role to play in this field in the years to come. Two other members of my committee – both members of the Science Studies Program – have helped to form my understanding of the social, cultural, and political nature of science: Martha Lampland and Charles Thorpe. I was fortunate enough to enjoy Professor Lampland as an instructor in multiple science studies courses. She is probably the most reflexive and honest social scientist I have ever met, and I have always appreciated her advice on methods and argumentation. Professor Thorpe, although he joined the faculty after I had already finished my coursework, provided in his social v biography of J. Robert Oppenheimer a wonderful model for my analysis of Urey as a Cold War figure. In revisiting my training in science studies, I must also mention two faculty members who, although they have since left the Science Studies Program, advised me during my science studies minor field work: Andrew Lakoff and Steven Epstein. I have Professors Lakoff and Epstein to thank for my understanding of the intellectual foundations of the sociological and anthropological study of science. My final committee member, Robert Edelman, advised me in my study of Russian and Soviet history. It seemed unreasonable to study the Cold War from only the US perspective, and Professor Edelman allowed me to define a course of study that combined the social and cultural history of the Soviet Union with the history of Russian and Soviet science. This work was of course helpful in the ways that I had hoped, but it also gave me a much better grasp of the use of social and cultural methods in history than I would otherwise possess. I also have our discussions to thank for my understanding of the construction and evolution of the American intellectual critique of totalitarianism, an early prewar version of which appears in this dissertation. I would like to thank the UCSD Science Studies Program for providing an incredible intellectual atmosphere within which to train, and also for providing financial support at various times throughout my time at UCSD. Some of this money was provided to the Science Studies Program and came originally from a private endowment from the estate of Rik and Flo Henrikson. I am grateful for the Henrikson’s original decision to support research at UCSD, and also to the current trustee of the estate, Tony Dimitroff, for taking an interest in the Science Studies Program. I would also like to thank the UC Humanities Network for having me as one of its predoctoral Humanities Research vi Fellows. UCSD’s Kenneth and Dorothy Hill Fellowship funded the final year of my research in the Urey papers. Thanks to the support of a National Science Foundation Dissertation Improvement Grant, I was able to afford necessary research materials, travel, and spend time in several relevant archives. For one year during my research for this dissertation, I was a Haas Predoctoral Fellow at the Chemical Heritage Foundation in Philadelphia, Pennsylvania. Thanks also go to the History of Science Society and the Society for the Social Studies of Science for providing travel funding that made it possible for me to present my research at conferences during my graduate training. Finally, thanks to the UCSD Friends of the International Center and the UCSD Department of History for helping to fund a research trip to Russia. Outside of my professors, there are also many librarians and archivists to thank. My primary archive for this research project has been the Mandeville Special Collections Library (MSCL) here at UCSD, where the papers of Urey and his La Jolla colleagues are deposited. Lynda Claassen, the department head of MSCL, has been an invaluable resource in navigating the Urey papers, as has her incomparable staff. I have probably gotten to know them better than most researchers over the past several years, and have even supported myself during some summers by assisting them. This has only made me appreciate what they do and how essential they are all the more. Urey’s career was spent at multiple institutions on the East and West Coasts. In New York I visited Columbia University where I had the assistance of Gerald Cloud in the Rare Book and Manuscript Library and Courtney Smith in the Oral History Research Office. Thank you to Harriet Zuckerman for granting me permission to use the oral history interview that she conducted with Urey. While in New York I also visited the vii Jewish Theological Seminary of America, where Sarah Diamant assisted me with the papers of the Conference on Science, Philosophy, and Religion. At the University of Chicago’s Special Collections Research Center, directed by Alice Schreyer, I was happy to have the knowledgeable guidance of Julia Gardner. Also in Chicago, discussions with two of Urey’s younger colleagues at the Institute for Nuclear Studies (now known as the Enrico Fermi Institute), Roger Hildebrand and Robert N. Clayton, helped me to understand the structure and atmosphere of the Institute during its early years. It was Clayton who first emphasized to me the importance of mass spectrometer development in the immediate postwar years, and encouraged me to take a closer look at Samuel Epstein’s papers at Caltech. At the Caltech Archives, headed by Shelley Erwin, I was assisted primarily by Loma Karklins. In Washington DC, I spent time at NASA’s History Division with its then Director Steven J. Dick and his knowledgeable staff of historians and archivists. In the Ava Helen and Linus Pauling Papers, held at Oregon State University, I enjoyed the assistance of the Head of Special Collections, Cliff Mead, and Faculty Research Assistant Chris Petersen. The American Institute of Physics Center for the History of Physics has been very helpful in providing Urey’s oral history interview, conducted by John Heilbron, as well as transcripts of Ian I. Mitroff’s interviews with Urey during NASA’s Apollo program. At the AIP I wish to thank Scott Prouty and Mark Matienzo. During my year in Philadelphia at the Chemical Heritage Foundation, I benefited from the CHF’s very knowledgeable staff, and was able to make use of the CHF’s Othmer Library, Oral History Program, and Archives. I wish to thank the entire CHF staff, especially Ronald Brashear, Anke Timmerman, James Voelkel, David Caruso, viii Hilary Domush, Sarah Hunter, Andrew Mangravite, Elsa Atson, Ashley Augustyniak, Hyungsub
Recommended publications
  • Download Issue
    Cell Circuitry || Science Teaches English || The Chicken Genome Is Hot || Magnets in Medicine SEPTEMBER 2002 www.hhmi.org/bulletin Leading Doublea Life It’s a stretch, but doctors who work bench to bedside say they wouldn’t do it any other way. FEATURES 14 On Human Terms 24 The Evolutionary War A small—some say too small—group of Efforts to undermine evolution education have physician-scientists believes the best science evolved into a 21st-century marketing cam- requires patient contact. paign that relies on legal acumen, manipulation By Marlene Cimons of scientific literature and grassroots tactics. 20 Engineering the Cell By Trisha Gura Adam Arkin sees the cell as a mechanical system. He hopes to transform molecular 28 Call of the Wild biology into a kind of cellular engineering Could quirky, new animal models help scien- and in the process, learn how to move cells tists learn how to regenerate human limbs or from sickness to health. avert the debilitating effects of a stroke? By M. Mitchell Waldrop By Kathryn Brown 24 In front of a crowd of 1,500, Ohio’s Board of Education heard testimony on whether students should learn about intelligent design in science class. DEPARTMENTS 2 NOTA BENE 33 PERSPECTIVE ulletin Intelligent Design Is a Cop-Out 4 LETTERS September 2002 || Volume 15 Number 3 NEWS AND NOTES HHMI TRUSTEES PRESIDENT’S LETTER 5 JAMES A. BAKER, III, ESQ. 34 Senior Partner, Baker & Botts A Creative Influence In from the Fields ALEXANDER G. BEARN, M.D. Executive Officer, American Philosophical Society 35 Lost on the Tip of the Tongue Adjunct Professor, The Rockefeller University UP FRONT Professor Emeritus of Medicine, Cornell University Medical College 36 Biology by Numbers FRANK WILLIAM GAY 6 Follow the Songbird Former President and Chief Executive Officer, SUMMA Corporation JAMES H.
    [Show full text]
  • Marie Curie and Her Time
    Marie Curie and Her Time by Hélène Langevin-Joliot to pass our lives near each other hypnotized by our dreams, your patriotic dream, our humanitarian dream, arie Curie (1867–1934) belongs to that exclu- and our scientific dream.” sive group of women whose worldwide rec- Frederick Soddy wrote about Marie that she was Mognition and fame have endured for a century “the most beautiful discovery of Pierre Curie.” Of or more. She was indeed one of the major agents of course, it might also be said that Pierre Curie was the scientific revolution which allowed experimen- “the most beautiful discovery of Marie Skłodowska.” tal investigation to extend beyond the macroscopic It is difficult to imagine more contrasting personali- world. Her work placed the first stone in the founda- ties than those of Pierre and of Marie. In spite of that, tion of a new discipline: radiochemistry. And Curie’s or because of that, they complemented each other achievements are even more remarkable since they astonishingly well. Pierre was as dreamy as Marie was occurred in the field of science, an intellectual activ- organized. At the same time, they shared similar ideas ity traditionally forbidden to women. However, these about family and society. accomplishments alone don’t seem to fully explain the near mythic status of Marie Curie today. One hundred years ago, she was often considered to be just an assistant to her husband. Perhaps the reason her name still resonates is because of the compelling story of her life and her intriguing personality. The Most Beautiful Discovery of Pierre Curie The story of the young Maria Skłodowska leaving In this iconic photograph of participants at the Fifth her native Poland to pursue upper-level studies in Solvay Conference in 1927, Marie Curie is third from Paris sounds like something out of a novel.
    [Show full text]
  • New 78 Covers
    NATIONAL ACADEMY OF SCIENCES ROBERT SANDERSON MULLIKEN 1896–1986 A Biographical Memoir by R. STEPHEN BERRY Biographical Memoirs, VOLUME 78 PUBLISHED 2000 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Photo credit: Photo by Harris & Ewing, Washington, D.C. ROBERT SANDERSON MULLIKEN June 7, 1896-October 31, 1986 BY R. STEPHEN BERRY OBERT S. MULLIKEN WAS a quiet, soft-spoken man, yet so R single-minded and determined in his devotion to under- standing molecules that he came to be called “Mr. Molecule.” If any single person’s ideas and teachings dominated the development of our understanding of molecular structure and spectra, it surely was Robert Mulliken. From the begin- ning of his career as an independent scientist in the mid- 1920s until he published his last scientific papers in the early 1980s, he guided an entire field through his penetrat- ing solutions of outstanding puzzles, his identification (or discovery) and analysis of the new major problems ripe for study, and his creation of a school—the Laboratory of Molecular Structure and Spectroscopy or LMSS at the University of Chicago, during its existence the most impor- tant center in the world for the study of molecules. Robert’s background led him naturally into academic sci- ence. He was born in Newburyport, Massachusetts, in a house built by his great-grandfather in about 1798. His father, Samuel Parsons Mulliken, was a professor of chemistry at MIT, which made him a daily commuter between Newburyport and Boston. Samuel Mulliken and his child- hood friend and later MIT colleague Arthur A. Noyes were 3 4 BIOGRAPHICAL MEMOIRS strong influences stirring Robert’s interests in science.
    [Show full text]
  • HEAVY WATER and NONPROLIFERATION Topical Report
    HEAVY WATER AND NONPROLIFERATION Topical Report by MARVIN M. MILLER MIT Energy Laboratory Report No. MIT-EL 80-009 May 1980 COO-4571-6 MIT-EL 80-009 HEAVY WATER AND NONPROLIFERATION Topical Report Marvin M. Miller Energy Laboratory and Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 May 1980 Prepared For THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO. EN-77-S-02-4571.A000 NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful- ness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights. A B S T R A C T The following report is a study of various aspects of the relationship between heavy water and the development of the civilian and military uses of atomic energy. It begins with a historical sketch which traces the heavy water storyfrom its discovery by Harold Urey in 1932 through its coming of age from scientific curiosity to strategic nuclear material at the eve of World War II and finally into the post-war period, where the military and civilian strands have some- times seemed inextricably entangled. The report next assesses the nonproliferation implications of the use of heavy water- moderated power reactors; several different reactor types are discussed, but the focus in on the natural uranium, on- power fueled, pressure tube reactor developed in Canada, the CANDU.
    [Show full text]
  • Curriculum Vitae Daniel M
    CURRICULUM VITAE DANIEL M. NEUMARK Personal: Born March 27, 1955; Chicago, Illinois Degrees: Ph.D., Physical Chemistry, University of California, Berkeley 1984 Thesis Advisor: Professor Yuan T. Lee Thesis Title: High Resolution Reactive Scattering M.A., Chemistry, Harvard University, 1977 B.A., Chemistry and Physics, Harvard University, 1977 (with highest honors) Honors and Awards: Peter Debye Award in Physical Chemistry, American Chemical Society, 2019 Bourke Award, Royal Society of Chemistry, 2018 Member, National Academy of Sciences, 2015 Fellow, Royal Society of Chemistry, 2013 Chemical Dynamics Award, Royal Society of Chemistry, 2013 Herbert P. Broida Prize, American Physical Society, 2013 Fellow, American Chemical Society, 2010 Dudley R. Herschbach Medal, 2009 Irving Langmuir Award in Chemical Physics, American Chemical Society, 2008 William F. Meggers Award, Optical Society of America, 2005 Visiting Röentgen Professor, University of Würzburg, 2002 Bomem-Michelson Award, 2002 ACS Nobel Laureate Signature Award, 2001 (with Martin Zanni) Fellow of American Academy of Arts and Sciences, 2000 Miller Research Professorship, UC Berkeley, 1999 - 2000 Alexander von Humboldt Senior Scientist, 1997 Fellow, American Association for the Advancement of Science, 1994 Invited Professor, University of Paris-Sud, Orsay, France, 1993 Fellow, American Physical Society, 1993 Camille and Henry Dreyfus Teacher-Scholar Award, 1991 Alfred P. Sloan Fellowship, 1989 National Science Foundation Presidential Young Investigator Award, 1988 Office of Naval Research
    [Show full text]
  • The Development of Military Nuclear Strategy And
    The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew.
    [Show full text]
  • Annual Report 2013.Pdf
    ATOMIC HERITAGE FOUNDATION Preserving & Interpreting Manhattan Project History & Legacy preserving history ANNUAL REPORT 2013 WHY WE SHOULD PRESERVE THE MANHATTAN PROJECT “The factories and bombs that Manhattan Project scientists, engineers, and workers built were physical objects that depended for their operation on physics, chemistry, metallurgy, and other nat- ural sciences, but their social reality - their meaning, if you will - was human, social, political....We preserve what we value of the physical past because it specifically embodies our social past....When we lose parts of our physical past, we lose parts of our common social past as well.” “The new knowledge of nuclear energy has undoubtedly limited national sovereignty and scaled down the destructiveness of war. If that’s not a good enough reason to work for and contribute to the Manhattan Project’s historic preservation, what would be? It’s certainly good enough for me.” ~Richard Rhodes, “Why We Should Preserve the Manhattan Project,” Bulletin of the Atomic Scientists, May/June 2006 Photographs clockwise from top: J. Robert Oppenheimer, General Leslie R. Groves pinning an award on Enrico Fermi, Leona Woods Marshall, the Alpha Racetrack at the Y-12 Plant, and the Bethe House on Bathtub Row. Front cover: A Bruggeman Ranch property. Back cover: Bronze statues by Susanne Vertel of J. Robert Oppenheimer and General Leslie Groves at Los Alamos. Table of Contents BOARD MEMBERS & ADVISORY COMMITTEE........3 Cindy Kelly, Dorothy and Clay Per- Letter from the President..........................................4
    [Show full text]
  • The Royalston Community Newsletter
    THE ROYALSTON COMMUNITY NEWSLETTER December 2020 Volume XXII IssueX January 2021 A Publication of the Friends of the Phinehas S. Newton Library, Royalston, Massachusetts Calendar of Events December 1 Monday December 18 Friday National Ugly Sweater Day NORAD follows Santa’s travels this month, and can be seen on-line at http://www.noradsanta.org. This December 21 Monday special mission of the North American Aerospace Defense Predawn Ursid Meteor Shower continues from about a Command at Peterson Air Force Base in Colorado goes live week ago, peaking this morning through tomorrow, and depart- December 1, providing information and games to help every- ing shortly after Christmas. The remains of the Tuttle Comet will one gear up for the big night. produce a “shooting star” every six to ten minutes, but there have been bursts of up to 25 in a single hour. December 4 Friday 6 pm South Village Tree Lighting and Gazebo Dedi- 5:02 a.m. Winter Solstice – First Day of Winter (Day- cation sponsored by The Royalston South Village Revital- light hours begin to increase!) ization group. All are welcome. Hot chocolate and cookies. Music provided by Larry Trask and Rene Lake. Memorial December 25 Friday Christmas Day ornaments from the Ladies’ Benevolent Society will be hung on the tree. To get yours, call Laurie Deveneau at 978-249- December 26 Saturday First Day of Kwanzaa 5807. The 120 Drawing will be held and a special guest in a red suit will visit. In case of inclement weather, the event will December 29 Tuesday be held on the following Friday, December 11.
    [Show full text]
  • WM2015 Conference, March 15 – 19, 2015, Phoenix, Arizona, USA
    WM2015 Conference, March 15 – 19, 2015, Phoenix, Arizona, USA Management of Technetium Contaminated Demolition Debris from the Gaseous Diffusion Plants at the East Tennessee Technology Park – 15422 Scott Anderson *, J Lane Butler *, Michael Ferrari *, Annette Primrose *, John Wrapp * *URS|CH2M Oak Ridge LLC ABSTRACT The demolition of the final section of the gaseous diffusion plant (GDP) facility formerly known as K-25 at the East Tennessee Technology Park was completed in December of 2013, with the final shipment of waste completed only six months later in June 2014. While most of the radioactive waste shipments would be considered "routine" by today's standards (lower activity waste was disposed onsite at the Environmental Management Waste Management Facility [EMWMF] and at some offsite commercial disposal facilities with higher activity waste making its way across country to the Nevada National Security Site [NNSS] disposal facility) the final section of K-25, consisting of six cascade "units", presented some unique technical and stakeholder challenges. Portions of this final section of K-25 were presumed to be heavily contaminated with Technetium-99 (Tc-99) based on sampling and analysis activities conducted during facility deactivation. Tc-99 is known to be highly mobile under a variety of environmental conditions, and is suspected to be potentially mobile in unmitigated landfill conditions, resulting in the need to implement additional engineered controls during facility demolition as well as throughout the management of the resultant waste. A variety of controls were implemented to ensure Tc- 99 mobility was controlled and possible consequences mitigated, including isolation and offsite shipment of highest Tc-99 concentration components, as well as construction of a "cell within a cell" at the EMWMF.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Stanley Keith Runcorn FRS (1922-1995)
    Catalogue of the papers and correspondence of Stanley Keith Runcorn FRS (1922-1995) VOLUME 11 Section G: Societies and organisations by Timothy E. Powell and Caroline Thibeaud NCUACS catalogue no. 104/3/02 S.K. Runcorn 124 NCUACS 104/3/02 SECTION G SOCIETIES AND ORGANISATIONS G.1-G.732 G.1 ACADEMIA EUROPAEA G.2-G.6 AMERICAN GEOPHYSICAL UNION G.7-G.11 BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE G.12-G.63 COSPAR (COMMITTEE ON SPACE RESEARCH) G.64-G.67 DEPARTMENT OF ENERGY: ENERGY TECHNOLOGY SUPPORT UNIT G.68-G.76 EUROPEAN GEOPHYSICAL SOCIETY G.77 EUROPEAN PLANETARY GEOLOGY CONSORTIUM G.78-G.111 EUROPEAN SCIENCE FOUNDATION G.112-G.1S3 EUROPEAN SPACE AGENCY G.1S4-G.230 INTERNATIONAL ASTRONOMICAL UNION G.231-G.277 INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS G.278 INTERNATIONAL UNION OF GEOLOGICAL SCIENCES G.279-G.294 INTER-UNION COMMISSION FOR STUDIES OF THE MOON G .29S-G .300 JOINT SERVICES WEST-EAST SAHARA EXPEDITION G.301, G.302 LIBERAL PARTY G.303-G.311 LUNAR SCIENCE INSTITUTE S.K. Runcorn 125 NCUACS 104/3/02 Societies and organisations G.312 METEORITICAL SOCIETY G.313 MINERALOLOGICAL SOCIETY G.314-G.319 MINISTRY OF SUPPLY G.320 MUSEUM OF NORTHERN ARIZONA G.321-G.333 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) G.334-G.338 NATIONAL SCIENCE FOUNDATION G.339-G.342 NORTH ATLANTIC TREATY ORGANISATION (NATO) G.343 NUFFIELD FOUNDATION G.344-G.365 POI\ITIFICAL ACADEMY OF SCIENCES G.366 PROVINCIAAL UTRECHTS GENOOTSCHAP VAN KUISTEN EN WETENSCHAPPEN G.367-G.386 ROYAL ASTRONOMICAL SOCIETY G.387-G.731 ROYAL SOCIETY G.732 STANDING CONFERENCE OF PROFESSORS OF PHYSICS S.K.
    [Show full text]
  • Chemical Heritage Foundation William S. Knowles
    CHEMICAL HERITAGE FOUNDATION WILLIAM S. KNOWLES Transcript of an Interview Conducted by Michael A. Grayson at St. Louis, Missouri on 30 January 2008 (With Subsequent Corrections and Additions) This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: William S. Knowles, interview by Michael A. Grayson at St. Louis, Missouri, 30 January 2008 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0406). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. WILLIAM S. KNOWLES 1917 Born in Taunton, Massachusetts on 1 June Education 1939 A.B., Harvard University, Chemistry 1942 Ph.D., Columbia University, Steroids Professional Experience Monsanto, Dayton 1942-1944 Chemical Research and Development Monsanto, St. Louis 1944-1951 Organic Division Harvard University 1951-1952 Academic Leave, Total Synthesis of Steroids, R.B. Woodward Monsanto, St.
    [Show full text]