<<

selkä 7,5 mm

Geological Survey of Finland, Special Paper 38 Geolo gical Sur ve y of Finland, Geological Survey of Finland Current Research 2003-2004 Curr Edited by Sini Autio ent Resear ch 2003 – 2004

Tätä julkaisua myy Denna publikation säljes av This publication can be obtained from

GEOLOGIAN GEOLOGISKA GEOLOGICAL SURVEY TUTKIMUSKESKUS (GTK) FORSKNINGSCENTRALEN (GTK) OF FINLAND (GTK) Julkaisumyynti Publikationsförsäljning Publication sales PL 96 PB 96 P. O. Box 96 02151 Espoo 02151 Esbo FI-02151 Espoo, Finland ( 020 550 11 ( 020 550 11 ( +358 20 550 11 Telekopio: 020 550 12 Telefax: 020 550 12 Telefax: +358 20 550 12

GTK, Kuopion yksikkö GTK, Kuopio enhet GTK, Kuopio Unit Kirjasto Biblioteket Library PL 1237 PB 1237 P. O. Box 1237 70211 Kuopio 70211 Kuopio FI-70211 Kuopio, Finland ( 020 550 11 ( 020 550 11 ( +358 20 550 11 Telekopio: 020 550 13 Telefax: 020 550 13 Telefax: +358 20 550 13

GTK, Rovaniemen yksikkö GTK, Rovaniemi enhet GTK, Rovaniemi Unit Sini Kirjasto Biblioteket Library

PL 77 PB 77 P. O. Box 77 Au 96101 Rovaniemi 96101 Rovaniemi FI-96101 Rovaniemi, Finland tio (ed.) ( 020 550 11 ( 0 20 550 11 ( +358 20 550 11 Telekopio: 020 550 14 Telefax: 020 550 14 Telefax: +358 20 550 14

E-mail: info@gtk.fi ISBN 951-690-916-7 WWW-address: www.gtk.fi ISSN 0782-8535 Geological Survey of Finland 9789516 909168 Espoo 2005 Geological Survey of Finland, Special Paper 38

Geological Survey of Finland Current Research 2003-2004

edited by Sini Autio

Geological Survey of Finland Espoo 2005 Autio, Sini 2005. Geological Survey of Finland, Current Research 2003–2004. Geological Survey of Finland, Special Paper 38, 100 pages, 72 figures and 6 tables. The publication contains 9 articles outlining the current research at the Geo- logical Survey of Finland (GTK). The articles are divided into four categories. Petrological investigations, economicgeology and mineral exploration,Envi- ronmental studies, Geophysical applications andAnalytical methods. At the end of the publication there is a list of publications by GTK staff in 2003 and 2004. From now on the current research of the GTK will be published in electronic form at the GTK’s internet pages, so this issue will be the last printed version on this subject so far. An article in alvikite vein-dykes presents a new in southwestern Finland. The vein-dykes intrude Palaeoproterozoic (1.88. Ga))p pyroxene tona- lite. The Svecofennianon orogenyinFinland prproduced a series of1.9Ganickel bearing mafic and ultramafic intrusions mainly found within migmatitic mica gneisses.Anintrusionmodelispresentedfortheseindifferenttectonicconditions produced intrusions with pronounced variation in size, shape and lithology. An article on gold prospectivity of highly metamorphosed gneisses and migmatites in southwestern Finland is presented. The mineralization is characterized by rusty, strongly foliated sillimanite-cordierite gneisses and mica schists. Ore prospecting in the ribbed moraine area of Misi, northern Finland has carried out as a part of the detailed investigation of the iron oxide-copper-gold deposits. Observations made have shown the area to be potential for ore prospecting. In the search for abundant and high quality kaolin resources more than 20 kaolin deposits has been investigated in northern Finland. This research has focussed on Palaeoproterozoic metasedimentary rocks using a variety of airborne and ground geophysical techniques supplemented by drilling. In the Ostrobothnian region of western Finland extensive parts are covered by sulphide rich clay and silt sediments which alter to harmful sulphate soils when exposed to the air. Ageophysical characterizing of the fine-grained sediments has been made and the results gathered are not directly applicable to another area without new referencedrilling, samplingandchemicalanalysis. The preliminary results of a project to test and develop geophysical techniques for mapping sulphide tailings impundments. The study site Hammaslahti Cu-Zn mine has a tailings area of 30 hectares with average height of 9 metres. Four different field-based portable fluorescence (OXRF) instruments for the determination of heavy-metal contents in contaminated soils were evaluated. The results were compared with results obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and X-ray fluorescence spectrometry (XRF).

Key words (GeoRef Thesaurus, AGI): Geological Survey of Finland, current research, programs, bibliography, Finland

Sini Autio Geological Survey of Finland P.O. Box 96 FI-02151 ESPOO, FINLAND

ISBN 951-690-916-7 ISSN 0782-8535

Vammalan Kirjapaino Oy 2005 Geological Survey of Finland, Current Research 2003–2004 Edited by Sini Autio Geological Survey of Finland, Special Paper 38, 3, 2005

CONTENTS

Petrological investigations, economic geology and mineral exploration The Naantali alvikite vein-dykes: a new carbonatite in southwestern Finland, Jeremy Woodard and Pentti Hölttä...... 5

Intrusion model for Svecofennian (1.9 Ga) mafic-ultramafic intrusions in Finland, Hannu V. Makkonen...... 11

The Halikko Kultanummi prospect - a new type of gold mineralization in the high-grade gneiss terrainofsouthwesternFinland, SariGrönholm,NiiloKärkkäinen and Jonas Wiik ...... 15

Ore prospecting in the ribbed moraine area of Misi, northern Finland, Pertti Sarala and Jari Nenonen...... 25

Exploration results and mineralogical studies on the Lumikangas apatite-ilmenite gabbro,Kauhajoki,westernFinland, Olli Sarapää,NiiloKärkkäinen,Tegist Chernet, Jaana Lohva and Timo Ahtola...... 31

Vittajänkä kaolin deposit, Salla, Finnish Lapland, Panu Lintinen and Thair Al-Ani40

Environmental studies Geophysical characterizing of tailings impoundment – a case from the closed Hammaslahti Cu-Zn mine, eastern Finland, Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala, Tarja Huotari, Tuire Valjus and Jukka Lehtimäki ...... 49

Geophysical applications Geophysicalcharacterising of sulphide rich fine-grained sedimentsinSeinäjoki area, western Finland, Ilkka Suppala, Petri Lintinen and Heikki Vanhala...... 61

Analytical methods Evaluation of portable X-ray fluorescence (PXRF) sample preparation methods, Jussi V-P. LaihoandPaavoPerämäki ...... 73

Publications Papers published by Geological Survey staff in 2003–2004...... 83

Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 5– 10 , 2005.

ThE NAANTAli AlvikiTEvEiN-dykES: ANEwCARbONATiTE iNSOuThw ESTERN FiNlANd

by Jeremy Woodard 1) and Pentti Hölttä 2)

1) Department of Geology, University of Turku, FI-20014 Turku, Finland 2) Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland [email protected], [email protected]

Key words (GeoRef Thesaurus, AGI): , alvikite, dikes, geochemistry, host rocks, alteration, fenite, Naantali, Finland introduction outcrops are limited to occasional roadcuts. Extreme sensitivity to weathering, soil or water cover, and the Asmall swarm of carbonate vein-dykes has been presence of man-made structures inhibits the search identified in the townofNaantali in southwest for additional vein-dykes. Finland. The vein-dykes range in width from 1-60 Carbonate rocks are light grey to pink in colour, centimetres, with the majority between 3-20 cm. The and often show a banded or layered texture. The vein- vein-dykes intrude Svecofennian pyroxene tonalite. dykesarecomposedofmediumtofinegrainedcalcite, The vein-dykes are surrounded by a narrow band of with repetitions of grain size variation parallel to the feniticalterationcharacterisedchemicallyby removal margins. Accordingly, the rock type could be called of silicon and addition of potassium. In a wide area alvikite. Iron oxides are common as an interstitial around the vein-dykes, the host rocks show signs of dusting in streaks also parallel to the strike. Similar hydrothermal alteration, including widespread ran- texture from the Wasaki complex of Kenya is taken domly oriented calcite + epidote + prehnite veinlets as as evidence by Le Bas (1977) of flow parallel to the well as pervasive staining from iron oxides. Chemical marginsandcrystallisation from moltenmagma. and textural evidence suggest that the carbonate vein- Figure 2 shows the appearance of the vein-dykes in dykes are of magmatic origin. outcrop.Inadditiontotheironoxides,darkred-brown apatite is also easily visible in hand specimen. Other Geological setting accessorymineralsoccasionallyvisibleincludequartz, allanite, and chlorite. Andersen (1984) describes a The study area is extending for approximately two similar paragenesis from the Rødberg portion of the kilometres in length and one kilometre in width in Fen complex. In one outcrop, fragments of the wall the town centre area of Naantali. The majority of the rock appear within the vein-dyke and appear to have vein-dykes follow the same general NW-SE trend been plucked from the sides. Given the low viscosity and dip to the northeast at an average angle of 45º. ofcarbonatemelts(e.g.Dobsonetal.1996),thiswould The vein-dykes cut the existing schistosity of the require a forceful intrusion and rapid cooling. surrounding rocks, the difference in strike being 60- The vein-dykes intrude dark grey Palaeoprotero- 90º and in dip 45–50º. Figure 1 is a map of the study zoic (1.88 Ga, Väisänen et al. 2002) Svecofennian area, showing the zones of alteration. Good quality pyroxene tonalite. Apetrography of these rocks is outcrops are found along the steep western slopes of given by Helenius (2003). Alteration surrounding the Kuparivuori hill and along shorelines. Elsewhere, the vein-dykes can be divided into three zones. Zone

5 Geological Survey of Finland, Special Paper 38 Jeremy Woodard and Pentti Hölttä

Fig. 1. Map of the study area showing zones of alteration.

I is in immediate contact with the vein-dykes and rarely exceeds 30 cm in width. It is a potassic contact fenite, dark red in colour, with a normative syenite composition. Zones IIandIIIareaureolefenites showingagrada- tioninalterationintensity.Ran domlyorientedcalcite+ epidote+prehniteveinletsareabundantinbothzones. Zone II is approximately 200–300 metres in width, pink to red in colour, and has a normative granodiorite composition. Zone III extends an additional 200–300 metres from the vein-dykes, and is a pyroxene bearing grey granodiorite, with narrow bands (≤1cm) of Zone II type alterations around the veinlets. The border between Zones II and III is arbitrarily placed at the limit of grey rocks. The original foliation of the rocks is preserved in Zone III, but is no longer evident in Zone II. Grain size is noticeably increased to 3–5 mm in the Zone I contact fenites, compared to 0.5–1.5 mm in the aureole fenites, Zones II and III.

Petrography

Thin section study reveals that the texture of the carbonate rock (alvikite) is hypidiomorphic. Calcite is subhedral and comprises approximately 90% of the rock.Quartzoccursasfine-grainedaggregatesandap-

Fig. 2. Field photograph of a vein-dyke and contact fenite. Diameter of pears limited to areas near the contact. Fine grains of coin 2,5 cm. apatite, allanite, chlorite, fluorite, and titanite occur as

6 Geological Survey of Finland, Special Paper 38 The Naantali alvikite vein-dykes: a new carbonatite in southwestern Finland accessory minerals. In some samples calcite has been continental alvikite values are from Le Bas (1999). altered to prehnite at the contact. Opaque minerals Pyroxene tonalite analyses represent unaltered host occur generally in bands, and some mineral grains, rocks and are taken from Helenius (2003). particularly apatite, are stained with iron oxides. SEM Samples from Naantali plot on the CaO-MgO-FeO examination has revealed monazite and members of diagram of Le Maitre et al. (1989) in the calciocar- the bastnäsite series as inclusions in apatite. bonatite field (Fig. 3). Both sövite and alvikite are Allanite is non-metamict, strongly pleochroic, and calciocarbonatites, sövite being coarse grained and commonly forms haloes around aggregates of apatite alvikite medium to fine grained. The Naantali car- and quartz. Woolley et al.(. (1991) describe thists texture bonatites fall into the latter category. Le Bas (1999) from extrusive carbonatites in the Uyaynah area of proposed a chemical distinction between sövite and the United Arab Emirates. Allanite is not a common alvikitebasedontraceelementchemistry.Onaverage, mineral in carbonatites, but it has been reported from alvikites are less enriched in Sr and more enriched in variouslocationsincludingBayanObo,China(Yang& REE than sövites. The Naantali alvikite is enriched LeBas2004),MountainPass,CaliforniaandUyaynah, in Sr, REE and Y. Trace element concentrations from UAE (Woolley et al. 1991). Naantali are very close to the average for alvikite. ZoneIaltered rocksoneIcontainK-feldspar, Thecarbonatitemagmawas enrichedinK,Sr,Ba,P, plagioclase, chlorite, and actinolite. Some samples REE, and to some extent Na and Y. Rollinson (1993) have a thin (>5mm) band of actinolite + diopside at describes elements including K, Sr, Rb, and Ba as the contact. Silica in the form of free quartz has been mobile, while P, REE, V, Y, Ti and Zr are immobile almost completely removed from the rock. Feldspars during hydrothermal alteration. Mobile element en- are heavily altered and pervasively stained with iron richment, particularly Sr, is disseminated throughout oxides.Chessboardalbite,asdescribedbyKrestenand all the alteration zones. Immobile elements from the Morogan (1986) from the Fen complex also occurs. carbonatite magma, such as Yand REE, were only Calcite, apatite, clinopyroxene, epidote and opaque able to enter the Zone I fenites. Immobile elements not minerals occur as accessory phases. present in the magma, but present in the host rocks, Zone II rocks are similar, however, plagioclase is including V, Ti, and Zr, remain at constant levels in all more abundant than K-feldspar. Zone II rocks also the alteration zones. This shows that Zone I fenites are contain more quartz and less actinolite than Zone I. the product of contact metasomatism while the Zone Alteration is less pronounced in feldspars, but iron II and III aureole fenitization was caused by a hydrous oxide staining is still present throughout. Epidote, fluid. Whether the fluid source was degassing of the clinopyroxene and opaque minerals also occur as carbonatite or a later event is not known. accessories. Apatite is no longer an important phase, Figure 4 shows chondrite normalized REE abun- and calcite only occurs in the calcite + epidote + dances for the Naantali rocks. LREE is heavily en- prehnite veinlets. riched relative to HREE, a pattern common to partial In Zone III, alteration of the same type as in Zone II occurs only in bands (≤1cm) around veinlets. Biotite can be seen reacting to chlorite in the outer areas of these bands. Outside of these bands, the rock contains plagioclase, quartz, K-feldspar, biotite, and orthopy- roxene. It should be noted that although the grey rocks of this zone appear unaltered, K-feldspar is present, while it is not present in the unaltered rocks examined byHelenius(2003).Microscopic-scalequartzveinlets also occur in this zone.

Geochemistry

Whole-rockgeochemicalanalysiswasconductedat the Geological Survey of Finland (GTK). Major and trace elements were determined using X-ray Fluores- cence (XRF) and rare earth elements were determined using ICP-MS. Table 1 shows the analytical results as average concentrations of selected elements for the Fig. 3. Naantali alvikites plotted on the CaO-MgO-FeO diagram of Le vein-dykes and each of the alteration zones. Average Maitre et al. (1989).

7 Geological Survey of Finland, Special Paper 38 Jeremy Woodard and Pentti Hölttä

Table 1. Whole rock chemical analyses of selected samples in the study area. XRF detection limits (ppm) for trace elements: S and Cl = 60; V, Cr, and Pb = 30; Ni, Cu, Zn, Ga, and Ba = 20; Rb, Sr, Zr and Nb = 10. ICP-MS detection limits (ppm): Sc and Th = 0.5; Sm, Nd and U = 0.2; Gd and Er = 0.15; Ce, Eu, La, Lu, Pr, Tb, Dy, Ho, Tm and Y=0.1. x = below detection; - = no data. Average continental alvikite from Le Bas (1999). Pyroxene tonalite is from Helenius (2003).

Average JW0407 JW0427 JW0432 JW0406 JW0436 JW0401 JW0422 JW0402 Naantali continental alvikite alvikite alvikite ZoneI ZoneI ZoneII ZoneII ZoneIII pyroxene alvikite tonalite

SiO 2 1.54.35 7.06 15.1 56.8 60.5 67.767.4 66.263.36

TiO 2 0.07<0.0050.028<0.0050.4520.5970.5050.48 0.502 0.62

Al 2 O 3 0.180.381.313.8314.21515.115.7 15.7 15.8

Fe 2 O 3 2.7 0.58 0.6 1.213.313.99 3.984.05 3.76 6.3 MnO 0.570.1020.050.0510.1010.071 0.064 0.051 0.056 0.09 MgO 0.58 0.270.522.043.47 4.06 2.34 2.66 2.46 3.15 CaO 49.453.951.541.9 7.68 4.721.77 1.42 3.6 4.58

Na 2 O 0.13 <0.067 0.12 <0.067 1.54 2.255.42 6.05 4.88 3.94 K2O 0.080.007 0.046 0.501 6.84 7.292.55 1.572.311.58

P 2 O 5 0.66 1.03 0.362 2.7 0.3920.290.208 0.206 0.1980.22

CO 2 39.85 39.9438.4729.13------Total95.72 100.56 100.07 96.46 94.7998.77 99.64 99.59 99.67 99.64

S 6509 80x250xxxxx- Cl-160 70400 100 1309013080- Sc3xxx7.297.5 6.55 5.92 6.84 13 V 56 xxx909382 69 7172 Cr2xxx65 77 80 76 7381 Ni8xxx51354359 46 50 Cu15xxxx19730xx35 Zn112xx21 866167 79 60 94.5 Ga2xxx2921x272722 Rb5xx1524317391 80 60 74 Sr 2642 2422 2111 1653 3535 916746 955 990587 Y108 60.7 35.174.522.512.99.43 6.939.56 8.9 Zr3xxx80 160 142129133 138 Nb 86 xxx11 xxxx7.65 Ba 5366 x201314940 896 411 270458 292 Pb11 xx3032 xxxx8 La7737724981180203 68.4 18.9 12.6 23.2 30.6 Ce157818101120255052115943.1 26.7 49.9 60.6 Pr-229135310 65.1 19 5.373.44 5.78 6.52 Nd550929544 1250 265 80.123.213.525.223.9 Sm-100 53.812930.310.53.872.384.394.03 Eu-23.515.332.37.173.511.150.871.24 1.65 Gd- 62.1 34.6 80.319.27.89 3.61 2.32 3.64 3.11 Tb-5.7 3.33 7.48 1.90.80.40.310.45 0.37 Dy-13.87.8318.9 5.26 2.981.891.421.88 1.89 Ho-1.99 1.16 2.510.790.430.350.250.30.35 Er-4.242.395.32 1.76 1.020.85 0.54 0.96 0.91 Tm-0.44 0.26 0.570.22 0.130.11 x0.11 0.12 Lu-0.370.240.44 0.170.11 0.1x0.11 0.11 Th 66 15.7 4.5231.44.792.12.522.2431.7 U201.18 0.69 5.32 11.21 0.76 1.29 0.46 0.45

8 Geological Survey of Finland, Special Paper 38 The Naantali alvikite vein-dykes: a new carbonatite in southwestern Finland

Table2.Carbon andOxygenisotoperatios. Samplesare described intext.

JW0404PSH-04-01.1 PSH-04-01.2 δ 13 CPDB -11,48 -11,29-5,99 δ 18 OSMOW 9,9611,76 17,11

Fig. 4. Chondrite normalized REE abundances for the Naantali rocks. Symbols are as follows: filled squares = Alvikite vein-dykes; filled cir- particularly in Zone I. Although carbonatite melts are cles = Zone I; open circles = Zone II; open squares = Zone III; crosses = Pyroxene tonalite. typically high in K and Na, this is not universally true. For example, Barker and Nixon (1989) report K- and Na-poor carbonatite magma at Fort Portal, Uganda. The Naantali vein-dykes lack alkalis, but the enrich- ment patternin thefenites suggests that thecarbonatite melting in mantle sources (e.g. Rollinson 1993). A magma was rich in K but relatively poor in Na. high LREE/HREE ratio is typical to carbonatites (e.g. Fenitization is a metasomatic process occurring Woolley et al. 1991), while Ekambaram et al. (1986) aroundcarbonatiteandalkalineigneousintrusionstypi- have shown that hydrothermal carbonates will have cally involving the removal of silica and the addition low LREE concentrations and relative enrichment in of alkali elements (e.g. Le Bas 1977). Fenites show a MREE and HREE. great deal of variation in chemical composition, based Three samples were analysed for stable carbon and on variations in the compositions of the fenitizing oxygen isotopes. Sample JW0404 is alvikite and was fluid, degree of fenitization, and original composition analysed at the University of Helsinki; samples PSH- of the rock.Vartiainen andWoolley (1976) distinguish 04–01.1 (alvikite) and PSH-04–01.2 (Zone II calcite between sodicand potassicfenitization,whileKresten + epidote + prehnite veinlet) were analysed at the (1988) makes divisions of contact, aureole, and vein- Geological Survey of Finland. Results are given in type fenites. In Naantali, addition of K and removal of Table 2. δ 18 O values from alvikite samples fall within Sicorrespondstopotassicfenitization.ZoneIalteration thenormalrangeforcarbonatites,whilethevaluefrom in Naantali represents contact fenitization; Zones II the veinlet is only slightly heavier. Combined with and III are aureole fenites of decreasing intensity. the δ 13 C values, the alvikite samples fall just below Aδ 13 C–δ18 O isotope comparison is often used to (lighter C) the field for carbonatites given by Deines trace the origins of limestones. Isotope values are and Gold (1973) whereas values from the veinlets fall within the range of -2 to –12 δ 13 C PDB and +10 to +26 to the right (heavier O). δ 18 O SMOWgiven by Barker and Nixon (1989) for the Fort Portal carbonatite in Uganda. Values are also discussion close to those given by Puustinen and Karhu (1999) for the Halpanen carbonatite in southeastern Finland. Carbonatitesareigneousrockscomprisedofgreater The δ 13 C values also differ markedly from the range than 50% carbonate minerals (e.g. Le Bas 1977). of -3 to 3 δ 13 C given by Karhu (1993) for sedimentary Many different criteria have been proposed for the carbonates in the Svecofennian domain. identification of carbonatites, unfortunately no single Carbonate vein-dykes in Naantali show magmatic piece of evidence is truly diagnostic. Evidence from textures including flow banding and incorporation of multiple sources including textures, mineral assem- wall-rock fragments on an outcrop scale. Chemical blages, geochemistry, alteration, and stable isotopes evidence is consistent with established normal values must be considered. for carbonatite. Isotopic evidence is also consistent Carbonatites are characterised by high levels of with other carbonatites. Chemical and isotopic data Sr, Ba, REE and Y(e.g. Puustinen & Karhu 1999). alsodifferfromnormalsedimentaryandhydrothermal The vein-dykes in Naantali are enriched in Sr, Y, and carbonates. The combined body of evidence shows REE, particularly LREE. Ba, though virtually absent that the carbonate vein-dykes in Naantali formed by in the vein-dykes, is highly enriched in altered rocks, the intrusion of carbonatite magma.

9 Geological Survey of Finland, Special Paper 38 Jeremy Woodard and Pentti Hölttä

REFERENCES le bas, M.J. 1977. Carbonatite-Nephelinite Volcanism . Bristol: John Wiley & Sons, Ltd. 347 p. Andersen, T. 1984. Secondary processes in carbonatites: petrol- le bas, M.J. 1999. Sövite and alvikite: two chemically distinct ogy of “rødberg” (hematite-calcite-dolomite carbonatite) in calciocarbonatites C1 and C2. South African Journal of Geol- the Fen central complex, (South ). Lithos ogy 102, 109–121. 17, 227–245. le Maitre, R.w., bateman, P., dudek, A., keller, J., lam- barker,d.S.&Nixon,P.h.1989. High-Ca,lowalka licarbonatite eyre, J., le bas, M.J., Sabine, P.A., Schmid, R., Sorensen, volcanism at Fort Portal, Uganda. Contributions to Mineralogy h., Streckeisen, A., woolley, A.R. & Zanettin, b. 1989. AClassification of the Igneous Rocks and Glossary of Terms: and Petrology 103, 166–177. Recommendations of the International Union of Geological deines, P. & Gold, d.P. 1973. The isotopic composition of Sciences Subcomission on the Systematics of Igneous Rocks. carbonatite and kimberlite carbonates and their bearing on the Oxford: Blackwell Scientific Publications. 193 p. isotopic composition of deep-seated carbon. Geochimica et Puustinen, k. & karhu, J. 1999. Halpanen calcite carbonatite Cosmochemica Acta 37, 1709–1733. dike, Southeastern Finland. Geological Survey of Finland, dobson, d.P., Jones, A.P., Rabe, R., Sekine, T., kurita, k., Special Paper 27, 39-41. Taniguchi, T., kondo, T., kato, T., Shimomura, O. & Sa- Rollinson, h. 1993. Using Geochemical Data: evaluation, pres- toru urakawa, S. 1996. In-situmeasurement of viscosity and entation, interpretation. Harlow: Pearson Education Limited. density of carbonate melts at high pressure. Earth and Planetary 352 p. Science Letters 143, 207–215. väisänen, M., Mänttäri, i. & hölttä, P. 2002. Svecofennian Ekambaram,v.,brookins,d.G.,Rosenberg,P.E.,&Emanuel, magmatic and metamorphic evolution in southwestern Finland k.M. 1986. Rare-earth element geochemistry of fluorite-car- as revealed by U-Pb zircon SIMS geochronology. Precambrian bonatedepositsinwesternMontana,U.S.A.ChemicalGeology Research 116, 111–127. 54, 319–331. vartiainen, h. &woolley,A.R. 1976. The petrography, mineral- helenius, E.M. 2003. Turun alueen charnockiittien petrogen- ogyandchemistryofthefenitesoftheSoklicarbonatiteintrusion, esis. Unpublished master’s thesis, University of Turku. (In Finland. Geological Survey of Finland, Bulletin 280. 87 p. Finnish) 72 p. woolley, A.R., barr, M.w.C., din, v.k., Jones, G.C., wall, karhu, J.A. 1993. Paleoproterozoic evolution of the carbon F., & williams, C.T. 1991. Extrusive Carbonatites from the isotope ratios of sedimentary carbonates in the Fennoscandian Uyaynah Area, United Arab Emirates. Journal of Petrology Shield. Geological Survey of Finland, Bulletin 371. 877p p.. 32, 1143–1167. kresten, P. 1988. The chemistry of fenitization: Examples from yang, X.M. & le bas, M.J. 2004. Chemical compositions of Fen, Norway. Chemical Geology 68, 329–349. carbonate minerals from Bayan Obo, Inner Mongolia, China: kresten,P.&Morogan,v.1986.FenitizationattheFencomplex, implications for petrogenesis. Lithos 72 , 97–116. southern Norway. Lithos 19, 27–42.

10 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 11– 14 , 2005.

iNTRuSiON MOdEl FOR SvECOFENNiAN (1.9 GA) MAFiC-ulTRAMAFiC iNTRuSiONS iN FiNlANd

by Hannu V. Makkonen

Geological Survey of Finland, P.O. Box 1237, FI-70211 Kuopio, Finland E-mail: [email protected]

Key words (GeoRef Thesaurus, AGI): intrusions, models, magmatism, shear zones, Paleoproterozoic, Svecofennian, Finland

introduction

The in Finland produced a series of 1.9 Ga mafic-ultramafic intrusions in which, according to Nironen (1997) and Peltonen (2005), the mafic magma intruded in tensional structures above the subduction zone. Most of the nickel bearing intrusions occur within the Kotalahti and Vammala Nickel Belts around the Central Finland Granitoid Complex (Fig. 1). The country rocks surrounding the intrusions were in most cases extensively meta- morphosed and deformed during the early stage of the Svecofennian orogeny (Gaál 1980, Kilpeläinen 1998, Koistinen 1981, Mäkinen & Makkonen 2004). Metamorphic conditions reached upper amphibolite facies, and overthrusting and faulting resulted in fragmentation of both the intrusions and the country rocks. Different tectonic conditions produced intru- sions with pronounced variations in size, shape and lithology (cf. Papunen & Gorbunov 1985). Owing to the synorogenic timing of the magmatism the related intrusions have very complicated tectonomagmatic history. This makes the Svecofennian intrusions quite differentwhencomparedtoanorogenicnickelsulphide bearing intrusions like Sudbury, Voisey’s Bay and Norilsk (Mäkinen & Makkonen 2004). The Svecofennian nickel bearing mafic and ultra- Fig. 1. Location of the Kotalahti and Vammala Nickel Belts (modified mafic intrusions are mainly found within migmatitic after Mäkinen and Makkonen 2004). Bedrock geology simplified after mica gneisses, although in the Kotalahti Nickel Belt Korsman et al. (1997).

11 Geological Survey of Finland, Special Paper 38 Hannu V. Makkonen some occur within or at the contact of the Archaean including stromatic, schollen, schlieren and nebulitic gneisses. In the surface section they often form oval structures. The neosome composition is tonalitic and a shaped bodies of varying dimensions, the largest ones widerangeofmafic-ultramaficrockfragmentsisfound upto10km.Theintrusionbodiesincludegabbro-only, within migmatites (Mäkinen & Makkonen 2004). The peridotite-only and gabbro-peridotite types. Accord- occurrence of these migmatite zones together with the ing to Mäkinen (1987), two types can be separated intrusion bodies and fragments has been described mineralogically: 1)Vammalatypew ithabundant by many researchers (e.g. Gaál & Rauhamäki 1971, clinopyroxene and 2) Kotalahti type with abundant Gaál 1972, Gaál 1985, Grundström 1980, Häkli et al. orthopyroxene, the former occurring mainly in the 1979, Mäkinen 1987, Papunen 1980), but the genetic Vammala Nickel Belt and the latter in the Kotalahti link between the migmatite zones and the intrusions Nickel Belt. The mineralogical differences are largely has remained in many cases indistinct. Korsman et al. due to differences in country rock contamination (1999),however, proposedthatthe low-P/high-Tmeta - (Makkonen 1996). morphism and the generation of tonalite-trondhjemite In Finnish nickel mining history the Svecofennian migmatites in the Svecofennian crust were caused by deposits have played a major role. Altogether nine extensive magma under/intraplating during and soon depositshavebeenminedbeginningin1941atMakola after subduction and crustal thickening (1885 Ma). (Puustinenetal. 1995)andmining stillatHitura, which Mafic magmatic underplating after tectonic thicken- has become the largest nickel mine in Finland (12.4 ing of the Svecofennian crust has also been proposed Mt at 0.60 % Ni and 0.22 % Cu, Isomäki 2004). The by Korja et al. (1993), Lahtinen (1994) and Lahtinen total production of the Svecofennian nickel mines is and Huhma (1997). at present about 41 Mt at 0.6 % Ni. Figure 2 shows a model, in which magma is intrud-

ing during D 2 within the Svecofennian collisionzone. intrusion Model The basic idea in the model is the generation of a high temperature shear zone (HTSZ) between a large The 1.9 Ga tholeiitic magma has been described midcrustalmantlemagmareservoirandanimbrication forming both extrusions and intrusions in Finland. zone of thrust folds, probably above the subduction In the Juva area extrusions are represented by the (after rifting in a collision zone). The shear zone de- mafic and ultramafic volcanics (Makkonen 1996) and veloped at the level of 15 – 20 km as indicated by the in the Tampere-Vammala area by the Takamaa-type PT–calculationsfromspinel-bear ingsymplectitesand mafic volcanics (Kilpeläinen 1998). In both areas it reaction rims formed between cumulus olivine and is proposed that intrusion bodies were formed at dif- intercumulus plagioclase during cooling of the intru- ferent levels during magma ascent, as also suggested sion (Tuisku & Makkonen 1999). Similar shear zones by Peltonen (1995) in the Vammala area. have been described, e.g., in the southernAlps (Ivrea- Some important facts for an intrusion model are Verbano zone, Snoke et al. 1999). HTSZ corresponds available: 1) intrusion took place near the maximum to the Svecofennian nickel belt migmatites described intensity of D 2 and peak of the metamorphism (Kil- earlier (especially to the schollen migmatites). When peläinen 1998, Koistinen et al. 1996, Mäkinen & the mafic magma intruded the mobile shear zone, it Makkonen 2004, Marshall et al. 1995, Peltonen 1995, formed bodies of various shape and size. The bodies

2005), 2) most of the intrusions occur within a highly were not deformed strongly and only in rare cases S 2 deformed/high metamorphic zone but there are intru- schistosity was formed within. Because many intru- sions also at higher levels within lower metamorphic sion bodies are found in F 2 folds, magma possibly grade rocks, and 3) comagmatic volcanics usually favoured such an extensional place in the shorter limb occur within lower metamorphic grade areas relative of a sheared F 2 fold (Mäkinen & Makkonen 2004). to the intrusions, but in some places they are in contact After crystallisation, the competent intrusion bodies with an intrusion. also controlled fold formation (1 in Fig. 2a). Some of

D 2 deformationphaseischaracterisedbyrecumbent the bodies were overturned after crystallisation due to foldsandoverthrustingduetocompressionfromsouth continuous thrusting and many of them fragmented. to north (Koistinen 1981, Koistinen et al. 1996). This In larger intrusion bodies thrusting is represented by isindicatedbytheProterozoicsequencesoverthrusted faults separating the intrusion body into blocks (3 in onto the Archaean craton. Overthrusting also caused Fig. 2a). More sill-like bodies were folded. fragmentation of the Archaean/Proterozoic boundary Most of the magma intruded into the HTSZ, but andthusblocksofArchaeangneissareenclosedwithin because of local extension caused by the uplift of

Proterozoic supracrustals. D 2 tectonic activity gener- imbrication blocks, as described similarly e.g. in the ated variable migmatite structures in supracrustals eastern Alps by Ratschbacher (1989), some intrusion

12 Geological Survey of Finland, Special Paper 38 Intrusion model for svecofennian (1.9 ga) mafic-ultramafic intrusions in Finland

Fig. 2. Intrusion of Svecofennian 1.9 Ga mafic magma and related structural history. A) Intrusion took placeduring themaximum

intensity of D 2 when the high temperature shear zone (HTSZ, marked by broken line) was active. Above the HTSZ continuous thrustingformed animbrication zonein whichtheprimarystratigraphywasobscured.

B) During D 3 sub horizontal rock units were folded vertical to sub-vertical. For more explanation see text. bodies (2 in Fig. 2a) were formed above the HTSZ within the Finnish Svecofennian by the 1.9 Ga am- withinthelowermetamorphicgraderocks(e.g.metat- phibolites and picrites (cf. Gaál & Rauhamäki 1971, urbidites showing primary structures). Häkli et al. 1979, Kousa 1985, Lahtinen 1996 and The heat of the mafic magma, together with the references therein, Makkonen 1996, Peltonen 1990, latent heat produced by the crystallisation of the Schreursetal.1986).Becauseofthesubsequentthrust magma, enabled migmatite neosome formation. In folding the volcanic rocks were buried down to the extensional places neosome formation was promoted same levels where comagmatic intrusion took place. by pressure release and the melt concentrated as to- This, together with the possibility that the intrusion nalitic bodies. bodies are lifted up during thrusting (3 in Fig. 2a), may The true thickness of the HTSZ is difficult to esti - explain the close spatial association of the volcanic mate. Probably it varied along the zone being largest and comagmatic intrusive rocks seen in places within in places where magmatic activity was strong. In the the Svecofennian. In addition, later, during the D 3 Kotalahti Nickel Belt schollen migmatite zones are up phase (Fig. 2b) the earlier sub-horizontal rock units to 2 km wide (Gaál 1985), although the total width of were folded in many places sub-vertical to vertical, the migmatite zone is wider. The Ivrea-Verbano zone which brought rock units to the present erosion level with stromatic migmatites in the southern Alps is 1 from various levels (Gaál 1980, Koistinen et al. 1996, to 1.5 km thick (Snoke et al. 1999). From above, it Kilpeläinen 1998, Makkonen 2002, Mäkinen & Mak- can be assumed that the thickness of the HTSZ was konen 2004). It is important to note that, according less than 5 km. to the model the volcanics do not necessarily occur The mafic magma probably reached the surface just above their plutonic counterparts. Rather, it is slightly before the main intrusion event. This volcanic more probable that there is always a degree of lateral event thus took place during the rifting stage in the movement between them. This makes the correlation collisionzone.Thevolcanicrocksarenowrepresented difficult at a local scale.

13 Geological Survey of Finland, Special Paper 38 Hannu V. Makkonen

REFERENCES lahtinen,R.1996.GeochemistryofPalaeoproterozoicsupracrus- talandplutonicrocksintheTampere-Hämeenlinnaarea,southern Gaál,G.1972. TectoniccontrolofsomeNi-CudepositsinFinland. Finland. Geological Survey of Finland, Bulletin 389. 113 p. In: Gill, J. E. (ed.) International Geological Congress, 24th ses- lahtinen, R. & huhma, h. 1997. Isotopic and geochemical sion, Montreal 1972: Section 4, Mineral deposits, 215–224. constraints on the evolution of the 1.93–1.79 Ga Svecofen- Gaál, G. 1980. Geological setting and intrusion tectonics of nian crust and mantle in Finland. Precambrian Research 82 the Kotalahti nickel-copper deposit, Finland, Bulletin of the (1–2), 13–34. Geological Society of Finland 52 (1), 101–128. Mäkinen,J. 1987.Geochemicalcharacteristics ofSvecokarelidic Gaál, G. 1985. Nickel metallogeny related to tectonics. In: Pa- mafic-ultramaficintrusionsassociatedwithNi-Cuoccurrencesin punen, H. & Gorbunov, G. I. (eds.) Nickel-copper deposits of Finland. Geological Survey of Finland, Bulletin 342. 109 p. the and . Geological Mäkinen, J. & Makkonen, h. v. 2004. Petrology and sstrtructure Survey of Finland, Bulletin 333,143–155. ofthePalaeoproterozoic(1.9Ga)Rytkynickelsulphidedeposit, Gaál, G. & Rauhamäki, E. 1971. Petrological and structural CentralFinland:acomparisonwiththeKotalahtinickeldeposit. analysis of the Haukivesi area between Varkaus and Savon- Mineralium Deposita 39, 405–421. linna, Finland. Bulletin of the Geological Society of Finland Makkonen, h. v. 1996. 1.9Ga tholeiitic magmatism and related 43 (2), 265–337. Ni-CudepositionintheJuvaarea,SEFinland.GeologicalSurvey Grundström, l. 1980. The Laukunkangas nickel-copper oc- of Finland, Bulletin 386.1. 101p1 p..++ 3app., 1a1 app.pp. map. currence in southeastern Finland. Bulletin of the Geological Makkonen, h. v. 2002. Raahe-Laatokka –vyöhykkeen nikkeli- Society of Finland 52 (1), 23–53. malmien kehityksestä. In: Korsman, Kalevi & Lestinen, Pekka häkli, T. A., vormisto, k. & hänninen, E. 1979. Vammala, (eds.) Raahe-Laatokka – symposio. Kuopio 20.–21.3.2001. a nickel deposit in layered ultramafite, Southwest Finland. Laajat abstraktit. Geological Survey of Finland, unpublished Economic Geology 74 (5), 1166–1182. report K 21.42/2002/1. 121 p. isomäki, O.P. 2004. NivalanHiturannn nikkelikaivoksenmn malmin- Marshall, b., Smith, J. v. & Mancini, F. 1995. Emplacement and nosto ylitti 12 miljoonaa tonnia – esiintymän löytämisestä 40 implications of peridotite-hosted leucocratic dykes, Vammala vuotta.Summmmary:In40yearsafterthediscoveryover12million Mine, Finland. GFF 117 (4), 199–205. tons of nickel ore has been hoisted from Hitura mine, western Nironen, M. 1997. The Svecofennian Orogen: a tectonic model. Finland. Geologi 56(3), 76–79. Precambrian Research 86 (1–2), 21–44. kilpeläinen, T. 1998. Evolution and 3D modelling of sstrtructural Papunen, h. 1980. The Kylmäkoski nickel-copper deposit in and metamorphic patterns of the Palaeoproterozoic crust in the south-western Finland. Bulletin of the Geological Society of Tampere-Vammala area, southern Finland. Geological Survey Finland 52 (1), 129–145. of Finland, Bulletin 397. 124 p. + 2 app. Papunen, h. (ed.) &Gorbunonov, G. i.(. (ed.) 1985. Nickel-copper koistinen,T. J. 1981. Structural evolution of an early Proterozoic deposits of the Baltic Shield and Scandinavian Caledonides. stratabound Cu-Co-Zn deposit, Outokumpu, Finland. Transac- Geological Survey of Finland. Bulletin 333. 394 p. + 2 app. tions of the Royal Society of Edinburgh: earth sciences 72 (2), maps. 115–158. Peltonen, P. 1990. Metamorphic olivine in picritic metavolcanics koistinen,T.,klein,v.,koppelmaa,h.,korsman,k.,lahtinen, from southern Finland. Bulletin of the Geological Society of R., Nironen, M., Puura, v., Saltykova, T., Tikhomirov, S. & Finland 62 (2), 99–114. yanovskiy, A. 1996. PaleopprroterozoicSveeccofennianon orogenic Peltonen,P.1995. PetrogenesisofultramaficrocksintheVammala belt in the surroundings of the Gulf of Finland. In:Koistinen, Nickel Belt : implications for crustal evolution of the early Pro- T. J. (ed.) Explanation to the map of Precambrian basement of terozoic Svecofennian arc terrane. Lithos 34 (4),253–274. the Gulf of Finland and surrounding area 1 : 1 mill. Geological Peltonen,P.2005. Mafic-UltramramaficaficIntrusionsoftheSvecofecofeennianniann Survey of Finland, Special Paper 21, 21–57. Orogen. In:Lehtinen, M., Nurmi,P.A. &Rämö,O.T..( (eds.). korja,A., korja, T., luosto, u. & heikkinen, P. 1993. Seismic Precambrian of Finland – a Key to the Evolution of the Fenno- and geoelectric evidence for collisional and extensional events scandian Shield . Amsterdam: Elsevier, 413 – 447. (in press) in the Fennoscandian Shield – implications for Precambrian Puustinen, k., Saltikoff, b. & Tontti, M. 1995. Distributionand crustal evolution. Tectonophysics 219 (1–3), 129–152. metallogenic types of nickel deposits in Finland. Geological korsman, k. (ed.), koiststinen, T..( (ed.), kohoonnen,J.(. (ed.),,, Survey of Finland, Report of Investigation 132. 38 p. wennerström, M. (ed.), Ekdahl, E. (ed.), honkamo, M. Ratschbacher, l., Frisch, w., Neubauer, F., Schmid, S.M. & (ed.), idman, h..( (ed.) &Pekkala,y.(. (ed.) 1997. Suomenkal- Neugebauer, J. 1989. Extension in compressiononal orogenic lioperäkartta=BerggrundskartaöverFinland=Bedrockmapof belts: The eastern Alps. Geology 17, 404–407. Finland 1:1 000 000. Espspoo: Geologian tutkimuskeskus. Schreurs, J., kooperen, P. van & westra, l. 1986. Ultramafic korsman,k.,korja,T.,Pajunen,M.&virransalo,P.1999. The metavolcanic rocks of early Proterozoic age in West-Uusimaa, GGT/SVEKAtransect:structureandevolutionofthecontinental SWFinland. Neues Jahrbuchfh f�r Mineralogie. Abhandlungen crust in the Paleoproterozoic Svecofennian orogen in Finland. 155 (2), 185–201. International Geology Review 41 (4), 287–333. Snoke, A. w., kalakay, T. J. & Quick, J. E. & Sinigoi, S. kousa,J.1985. Rantasalmentholeiittisistajakomatiittisistavulka- 1999. Development of a deep-crustal shear zone in response niiteista.Summary:Thetholeiiticandkomatiiticmetavolcanics to syntectonic intrusion of mafic magma into the lower crust, in Rantasalmi, Southeastern Finland. Geologi 37(7 (2), 17–22. Ivrea–Verbano zone, Italy. Earth and Planetary Science Letters lahtinen, R. 1994. Crustal evolution of the Svecofennnnian and 166, 31–45. Karelian domains during 2.1 – 1.79 Ga, with special emphasis Tuisku, P. & Makkonen, h. v. 1999. Spinel-bearing symplec- on the geochemistry and origin of 1.93 – 1.91 Ga gneissic tites in Palaeoproterozoic ultramafic rocks from two different tonalites and associated supracrustal rocks in the Rautalampi geological settings in Finland: thermobarometric and tectonic area, central Finland. Geological Survey of Finland. Bulletin implications. GFF 121 (4), 293–300. 378. 128 p.

14 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 15–23 , 2005.

ThE hAlikkO kulTANuMMi PROSPECT – ANEwTyPEOFGOld MiNERAliZATiON iN ThE hiGh-GRAdEGNEiSS TERRAiNOFSOuThwESTERN FiNlANd

by Sari Grönholm 1) , Niilo Kärkkäinen 1) and Jonas Wiik2)

1) Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland 2) Boliden Mineral AB, S-93681 Boliden, Sverige E-mail: [email protected]

Key words (GeoRef Thesaurus, AGI): mineral exploration, gold ores, gneisses, sulfides, hydrothermal alteration, Proterozoic, Kulta - nummi, Halikko, Finland

introduction finally drilled; the results of these investigations are reported below. In this article we consider the gold prospectivity of the highly metamorphosed gneisses and migmatites Geological setting of southwestern Finland, using the Kultanummi oc- currence at Halikko as a potentially representative ThebedrockatKultanummiconsistsofupperamphi- example of the type of mineralization to expect in this bolitefaciesmicagneissesandm etavolcanics,intruded terrain. In recent years a number of gold occurrences by granitic veins. The Korveanala-Kaleva prospect, have been found in the region between Paimio and which was studied earlier by GTK, is situated some Halikko in southwestern Finland, largely due to the 10 km west of Kultanummi (Fig. 1). Interpretations efforts of amateur prospectors, who have submitted based on both bedrock maps and airborne magnetic both outcrop samples and mineralized glacial boul- data indicate that both prospects lie within a discrete ders to the Geological Survey of Finland (GTK) for structural domain bounded by shear zones and grani- further evaluation. The first discovery was the Kor- toids (Fig. 3). Regional structural trends tend to be venala-Kaleva occurrence near Paimio but further nearly E-W, with tight folding. Kultanummi is located incentive was given in 2001 when Veli-Matti Koi- within a magnetic anomaly zone that is stronger in vula recovered gold while panning oxidized regolith the southern part. The area immediately to the north material at Kultanummi, near Halikko. Three short of Kultanummi is reminiscent of the structural block holes were drilled at this site, with the best intercept defined at Paimio. The Korvenala-Kaleva prospect at yielding gold grades of 0.5–6 ppm over intervals of Paimio was located by heavy mineral studies follow- 1–6 m. Follow-up exploration during the next field ing discovery of a mineralized boulder, and it is also season delineated a gold-critical sulfide-bearing zone well expressed in till geochemistry and has a distinct over a distance of 600 m, and with a maximum width IPresponse (Rosenberg 2000). Drill cores analyzed of 150 m, to the south of Isorahkaneva mineralized from the from Korvenala-Kaleva show anomalous zone (Figs. 1 and 2). The anomalous area was then gold values over a relatively wide area, with a mean sampled for heavy mineral fractions, and systemati- of 310 ppb for 252 samples. However, in the most cally covered by ground magnetic and IPsurveys, and anomalous intervals, grades are usually 0.1–1 ppm,

15 Geological Survey of Finland, Special Paper 38 Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

Fig. 1. Locations of the Korvenala-Kaleva and Kultanummi gold occurrences on the bedrock geological map sheets 2021 (Lehijärvi, 1955) and 2022 (Huhma, 1957).

with only a few exceptional intersections of 5.4 ppm quartzo-feldspathic intercalations also occur, with over 1 meter and 1 ppm over 5.45 m (Rosenberg distinctly less biotite, forming discrete aggregates, 2000). Arsenopyrite is also present, but there is the and correspondingly more potassium feldspar than degree of correlation between Au and As is not high in the mica schists. (Rosenberg 2000). Quartz-rich sillimanite gneisses and sillimanite- cordieritegneisses tendtopalegreenishgrayonweath- Geological setting at kultanummi ered surfaces and are somewhat rusty, with complex, tightly folded quartz veins (Fig. 6). These rocks are Mica schists and gneisses intruded by granitic and also readily distinguishable in drill core because of pegmatitic veins predominate at Kultanummi, with theirpalecolourandtexturalheterogeneity.Sillimanite minor intercalations of amphibolites and plagioclase is fibrous, indeed fibrolitic (Fig. 7), while cordierite porphyry. However, the most prospective lithology occurs as pale blebs 1–5 mm in size; microscopic appears to be a relatively quartz-rich gneiss, occur- inspection shows that they are extensively pinitized. ring as discrete units 10–30 m thick within the more In addition to sillimanite and cordierite, the gneisses typical mica gneisses. They typically contain dissemi- consist principally of quartz, plagioclase, potassium nated sulfides and are characterized by aggregates of feldspar andbiotite. Compositionalvariationbetween sillimanite and sporadic cordierite, alternating with layers is defined by variations in the proportions of bands of calc-silicate rock. sillimaniteandcordierite. Accessoryminerals include Mica schists locally display distinct banding, as a muscovite, garnet, tourmaline and a range of sulfides, result of systematic variations in mica abundance as notably chalcopyrite, pyrite, pyrrhotite; arsenopyrite well as concentrations of presumably metamorphic, is also present, and galena has been found in fracture idioblastic magnetite grains (Figs. 4 and 5). Principal fillings. minerals are quartz, plagioclase, potassium feldspar During drilling, a dark green plagioclase porphyry and biotite, with smaller amounts of red garnet, apa- unit about 10 m thick was intersected. The rock is tite, zircon, carbonate and tourmaline. Mica schists foliated, with some silicification and alteration of occasionallygrade intocoarser-grained gneisses hornblende to biotite and also contains angular frag- and may even display a more granitic appearance ments of mafic composition several cm in diameter. orshowextensiveepidotealteration.Occasional Reddishor grey pegmatite dykes, usually less than 5 m

16 Geological Survey of Finland, Special Paper 38 The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

Fig. 2. Detailed map of the Kultanummi prospect (Wiik, 2004), showing drill hole locations. Area of map is approximately 8 km 2 . Gold-critical rusty outcrops are indicated with pale brown colour.

Fig. 3. Korvenala-Kaleva (Paimio) and Kultanummi (Halikko) occurrences shown on airborne magnetic image. Tapio Ruotoistenmäki (2004) has indicated inferred tight fold hinges with E-Wtrending axial surfaces by yellow crosses. Yellow lines indicate trends of proposed Au-critical zones, subparallel to fold limbs.

17 Geological Survey of Finland, Special Paper 38 Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

Fig. 4. Banding in mica schists defined by magnetite. Photo: Sari Grönholm

Fig. 5. Photomicrograph of magnetite-bearing mica schist. Mgt = magnetite, Bt = biotite, Qz = quartz, Pl = plagi- oclase. Photo: JariVäääätäinen

thick, are common and contain, in addition to quartz, Gold mineralization feldspar and mica, black tourmaline, magnetite and occasionallysillimanite.Medium-grained reddish PyriteisthemosttypicalsulfidephaseatKultanum - granitic dykes are also present, sometimes containing mi,impartinga rustyaspect tooutcrops,andoccurring garnet and magnetite. as disseminations, as solitary grains and aggregates

18 Geological Survey of Finland, Special Paper 38 The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

Fig. 6. Rusty sillimanitee-c-cordierordiertie gneiss; light-coloured,red,eelongalongateekknobblnobbly aggregates of bothhssillimaniillimaniteeaandnd cordierite stand out in relief on weathered surfaces. Note also intense folding of reddish feldspathic quartz vein. Photo: Sari Grönholm

Fig. 7. Photomicrograph of sillimanite gneiss. Si =s= sillimaniillimanitee,, Qz=q= quartz.P. Phohoto: Jari Väätäinen

and along joint planes. Disseminated chalcopyrite phase in mineralized rock. Chemical data reveal a and pyrrhotite also occur, and isolated arsenopyrite reasonable correlation between Au and S, but only a grainsorgrainaggregatesarepresent,particularlynear weak relation between Au and As (Fig. 8). quartz vein margins. Galena has also been found in a Gold at Kultanummi appears to be closely associ- few narrow veins. Tourmaline is also a characteristic ated with the relatively silicic, or silicified sillimanite

19 Geological Survey of Finland, Special Paper 38 Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

Fig. 8. Correlation diagrams for Au and S and Au and As; data from the first three holes drilled at Kultanummi (R379-R381) are not included.

Fig. 9. Variation in Au (left) and S (right) for different rock types at Kultanummi: 1 = mica schist and gneiss, 2 = sillimanite- quartz rock, 3 = sillimanite-cordierite gneiss, 4 = pegmatite, 5 = plagioclase porphyry, 6 = amphibolite, 7 = quartzofeldspathic schist. Lithologies determined from drill core logging.

gneisses, the highest abundances of 6490 ppb and Alteration 2100 ppb having been recorded from sillimanite mica gneiss and sillimanite-cordierite gneiss respectively. Hydrothermalalterationinthegold-anomalouszone However, this correlation is not so obvious from the at Kultanummi is typically evident from increased geochemical data, in that results appear to indicate sulfide abundances (pyrite, pyrrhotite, chalcopyrite that other lithologies can be anomalous with respect and more rarely arsenopyrite), presence of silliman- to Au. It is likely however, that the gold in the more ite-cordierite rocks, silicification and locally from typical mica gneisses is associated principally with abundantmagnetiteinadjacentmicaschists.Silicified quartzofeldspathic veins. Altered lithologies (Groups rock almost invariably contains black, fine-grained 2 and 3 in Fig. 9) also contain relatively high S, com- tourmaline, accompanied by sillimanite, cordierite, pared of the generally low background values in other sulfidesandgold.Carbonatemineralsareoccasionally rock types at Kultanummi. present in Au-enriched rocks. Intensely foliated lay-

20 Geological Survey of Finland, Special Paper 38 The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

Fig. 10. Selected major element abundances for various rock types at Kultanummi: 1= mica schist and gneiss, 2= silliman- ite-quartz rock and sillimanite-cordierite gneiss, 3= plagioclase porphyry, 4= amphibolite 5= quartzofedspathic schist 6= pegmatite. Rock types defined from drill core logging.

ers also display late metamorphic retrograde mineral throughout the study area. Nevertheless, the Au-min- assemblages, notably biotite replacement of other eralized sillimanite-cordierite gneisses are generally minerals,inparticularhornblende,biotitereplacement only weakly magnetic. Susceptibilities are higher in bychloriteandsericitizationofplagioclase.Withinthe associated mica schist intercalations. Magnetite also zone of hydrothermal alteration, even the plagioclase occurs as large discrete crystals at the margins of the porphyry contains more elevated gold concentrations sillimanite-cordierite gneiss layers, and within cross- (106 ppb over 1 m) compared to values of below 5 ppb cutting granitic and pegmatitic dykes, particularly when it is associated with unaltered amphibolites. withinthehydrothermallyalteredzone.Magnetitecan Major element abundances in altered rocks broadly also be found in the mica schists as isolated idioblastic mirror those of mica schists and mica gneisses; mag- grains, or forming narrow bands. nesium, aluminium, potassium and iron contents in Susceptibilitymeasurementsindicatesomesystem- particular suggest that the sillimanite and cordierite aticrelationshipsbetweenmagnetite,sulfidesandgold, gneisses were originally typical pelitic gneisses in and these correlation may be related to mineralization composition (Fig. 10). process. For example, in drill core from R391 and Magnetiteisacharacteristicaccessorymineral R394, Au and S abundances correlate well (Fig. 11).

21 Geological Survey of Finland, Special Paper 38 Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

Fig. 11. Variations in gold concentration (red), susceptibility (black) ja sulfur (blue) for selected drill core intervals from Kultanummi. Note the strong positive correlation between Au and S and high susceptibility values, due to the presence of magnetite, at the margins of the mineralized zone.

22 Geological Survey of Finland, Special Paper 38 The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

Whilst in general Au and S abundances fall markedly plagioclase porphyry, which has somewhat higher as magnetite content – and hence susceptibility – in- As abundances than at Halikko. At both prospects crease, in some cases (R388), a positive association however, free gold must be present, as deduced from between S abundance and susceptibility is observed, goldgrains inheavymineral separates recoveredfrom related to the presence of pyrrhotite. till and weathered bedrock. Athird Au occurrence in relatively high grade terrain is at Stenmo, near Kemiö, discussion where gold is present in sillimanite gneisses within a metavolcanic sequence (Nordbäck 2003). GTK has been studying the Paimio Korvenala- Kaleva and Halikko Kultanummi gold occurrences Summary sporadically since 1995. The geological environment of these prospects differs from that of the Tampere Recent studies in the relatively high grade meta- and Häme schist belts, which are at lower metamor- morphic terrain of southwestern Finland have deline- phic grade and have been the main focus of GTK ated several gold occurrences, including the Halikko activity for many years (Kärkkäinen et al. 2003). The Kultanummi prospect. Mineralization at Halikko is Korvenala-Kaleva and Halikko prospects both occur associatedwiths ilicicalterationinsillimanite-co rdier - within similar rock types, within a distinct structural ite gneisses and a strong association between silicifi- zone bounded by shear zones and relatively late oro- cation, sulfidation and gold has been recognized. In genic granitoids. The mineralization at the Halikko addition,rockssurroundingthemineralizedzoneshow Kultanummi occurrence is characterized by rusty, a prominent enrichment in magnetite. The alteration strongly foliated sillimanite-cordierite gneisses and zone and associated quartz veins carrying anomalous mica schists. gold values (>10 ppb) are also strongly folded. The ThisAu-criticalassociation ofs illimanite-and distribution of gold is relatively well constrained by cordierite-bearing gneisses is considered to repre- drilling within the alteration zone and correlates well sent hydrothermal alteration accompanying the gold with sulfide abundance. mineralization, and the sillimanite and cordierite is Both the Halikko Kultanummi prospect and the attributed to a younger prograde metamorphic event Paimio Korvenala-Kaleva occurrence previously dis- superimposed on pre-existing sericitic and chlorite covered by GTK attest to the mineralization potential schists. On the basis of currently available data it is of this previously neglected metamorphic terrain in however, difficult to determine whether or not the southwestern Finland. sericitic/chloritic alteration would have been formed within a shear zone developed during early stages of the regional metamorphic event, rather than predating REFERENCES themetamorphism. Geochemicaldata suggest that the huhma, A. 1957. Marttila. Geological Map of Finland1: protoliths to the altered rocks were mica schists and 100 000, Pre-Quaternary Rocks, Sheet 2022. Geological Sur- the unaltered mica gneisses adjacent to the mineral- vey of Finland. ized zone also appear to represent the more strongly kärkkäinen, N. , lehto, T., Tiainen, M., Jokinen T., Nironen recrystallized derivatives of mica schists. M., Peltonen, P. & valli, T. 2003. Etelä- ja Länsi-Suomen kaarikompleksi,kullanjanikkelinetsintävuosina1998 The Kultanummi gold mineralization is character- – 2002. Geological Survey of Finland, unpublished report ized by strong geochemical correlation between gold M19/21,12/2003/1/10. 118 p. + 4 app. andsulfur,therelativelylowAsandaprominentenrich- lehijärvi, M. 1955. Salo. Geological Map ofFinland1:10000000000, ment of magnetite in wall rocks. Sulfidation reactions Pre-QuaternaryRocks,Sheet2021.GeologicalSurveyof Finland. are suggested as a mechanism for gold precipitation, Nordbäck, N. 2003. Malmgeologiska studier över en guldminer- because the highly sulfidized zone and elevated Au alisering i Stenmo, Kimito, SV-Finland. Unpublished master´s abundances occur withina restricted part of thehydro- thesis, Åbo Akademi. 62 p. thermalalterationzone,whilethecordierite-sillimanite Rosenberg, P. 2000. Paimion Korvenaenalanlan alueeellaella vuosina 1996 – 1998 suoritetut kultatutkimukset. Geological Survey of Fin- rocks in the western part of the Kultanummi zone are land, unpublished report M19/2021/2000/1/10. 9 p. + 18 app. less mineralized when compared to the main zone. Ruotoistenmäki, T. 2004. Kultanummi ja Korvenala-Kaleva- The altered rocks and accompanying quartz veins are alueen geofysiikan kartoista, rakennetulkintaa ja niiden asso- also tightly folded, indicated that gold mineralization sioitumisesta kultakriittisiin kohteisiin. Geological Survey of Finland, unpublished report. 4 p. predates at least some of the deformation. wiik, J. 2004. Beskrivning av en guldmineralisering i Kulta- AccordingtoRosenberg(2000),thepredomi- nummi,HalikkoSV-Finland.Unpublishedmaster´sthesis,Åbo nant rock type at the Korvenala-Kaleva prospect is Akademi. 50 p. + 21 app.

23 Geological Survey of Finland, Special Paper 38 Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

24 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 25– 29 , 2005.

OREPROSPECTiNG iNThE RibbEd MORAiNEAREAOF MiSi, NORThERN FiNlANd

by Pertti Sarala 1) and Jari Nenonen 2)

1) Geological Surveyof Finland, P.O. Box77,FI-96101Rovaniemi, Finland 2) GeologicalSurveyofFinland, P.O.Box1237,FI-70211 Kuopio,Finland E-mail:[email protected]

Key words (GeoRef Thesaurus, AGI): mineral exploration, moraines, ribbed moraines, till, boulders, glacial transport, Misi, Kemi- järvi, Finland

introduction carried out in 2004, the transport distances and the most potential source areas of the boulders have been Geological Survey of Finland (GTK) has carried estimated. The methods we have used have been field out intensive ore prospecting in the area of Misi since studies and tractor excavations together with interpre- the 1990s. The studies have been a part of the detailed tation of glacial morphology. Glacial flow directions, investigationoftheironoxide-copper-golddepositsin tillstructuresandstratigraphy,pebblelithology,heavy northern Finland. At the same time, bedrock mapping mineral composition and geochemical features have has been undertaken in the area and the map sheet been studied in the 23 test pits, of which the mean of Vikajärvi (map sheet 3614) at a scale 1:100 000 depth was about 3.5 m. Till samples have been left was published at the end of 2002 (Hanski 2002). The at the GTK’s laboratory in Rovaniemi for chemical area is known for its iron formations, of which the analysis (ICP-AES method). occurrences ofKärväsvaara,RaajärviandLeveäselkä were mined during 1959-1975. The total volume of Geological setting the quarried ore is over 8 million tons, of which 3.5 million tons is Fe concentrate. Observations made Bedrockofthestudyareaiscomposedoftherocksof by local people and geologists during mapping have the Peräpohja Schist Belt (2.0-2.3 Ga) and the Central shown the Misi area to be once again potential for Lapland Granites (1.8 Ga) (Fig. 2). The southern part ore prospecting. of the area consists of mica gneiss while the central The village of Misi is situated about 50 km NE of area consists of the large NW-SE-oriented zone of the city of Rovaniemi, in the direction of Kemijärvi arkosic gneiss. Anarrow zone of mafic tuffites and (Fig. 1). The area lies in the middle of the ribbed mica schists cuts the whole area in the same direction moraine area of Peräpohjola, northern Finland. Ore as the arkosic gneiss. By contrast, the assemblage boulder observations made of the different landform of mafic metalavas and basalt magmas (gabbros) is types have focused on the areas of Köyry, Tuorevaara dominant on the eastern side of the village of Misi. and Venejärvi (Fig. 2). The boulders are mainly com- The schist belt is bordered by granites in the north. posed of hydrothermally altered amphibolites with The massive Fe-ore occurrences are closely related to anomalous contents of Zn (ca. 5% in Köyry and ca. thedolomite-skarnrock-serpentiniteassemblageinthe 3% in other areas), Cu and Au. In the present study, east. The schists with hydrothermal alteration in the

25 Geological Survey of Finland, Special Paper 38 Pertti Sarala and Jari Nenonen

Fig. 1. Alocation of the study area in the village of Misi, NE of the city of Rovaniemi. The area is located in the middle of the ribbed moraine area in Peräpohjola, southern Lapland.

Fig. 2. Generalized bedrock map of the study area and the location of the most potential ore boulders in the case study areas.

26 Geological Survey of Finland, Special Paper 38 Ore prospecting in the ribbed moraine area of Misi, northern Finland volcanic environment seem to be the most critical for itsmatrix.Itfo rmedsubglacially duringtheadvanc ing a new type of ore occurrences in the central area. stageoftheglacierunderlodgementprocesses.Glacial Theproportionofbedrockoutcropsisestimatedtobe flow direction was from NW to SE. By contrast, the only 1 % of the land area. The outcrops occur mainly upper till unit consists partly of re-deposited material as groups near the high hill areas. The surface of the due to the quarrying activity during the formation bedrockismostly coveredbythegl aciogenicdeposit s, of the ridges and also melt-out till deposited at the which include different types of active-ice formations latest stage of deglaciation, while the edge of the and one esker-system (Fig. 3). In topographic expres- glacier melted away after the movement stopped. The sion and lowland areas, ribbed moraines are the most structures are sandy lenses and layers together with commonformationtype.Theribbedmoraineisagroup fine-grain laminae in the former case and homogene- of moraine formations that have the same kind of mor- ity and occasional flow or consolidation structures in phologyandsimilarsubglacialorigin(cf.Hätterstrand the latter case. The uppermost part of the ridges was 1997). They are formed of ridges perpendicular to the washed during the later stages of the Ancylus Lake, most recent glacial flow direction, which is, according after which the water level decreased due to isostatic to striae and fabric analyses from the direction about uplift of the ground. 270°-290° in the Misi area. The transition to the lon- The ribbed moraine ridges in the Misi area are char- gitudinal formations is seen as a streamline element acteristically strewn with boulders. The abundance of related to the unique ribbed moraine ridges and as a bouldersatthesurfaceismainlyduetothedepositional transitional series from ribbed moraines to drumlins processesoccurringduringtheformationofridges,but and flutings (cf. Aario 1990). For that reason, these partlyinconsequenceofthepost-glacialwashing.The moraine ridges can also be called Rogen moraines, rock types of the boulders correlate well with the rock according to Lundqvist (1969). types found in the underlying bedrock, and this is a The ridges are composed of two till units represent- typicalfeaturefor the ribbedmoraines inother parts of ing different glacial phases (Fig. 4). The lower unit is thePeräpohjolaarea,too(cf.Aa rio&Peuraniemi1992, compact and homogenous in its structure and sandy in Sarala & Rossi 1998, 2000). The transport distances

Fig. 3. A relief map based on the elevation model and glacial morphology of the study area.

27 Geological Survey of Finland, Special Paper 38 Pertti Sarala and Jari Nenonen

Fig. 4. Generalized stratigraphy of ribbed moraines and drumlins in the Misi area.

are estimated to be only from some tens of metres to kinds of conditions seem to have existed under the ice a few hundreds of metres for local rock material but sheetinthetransitionzonebetw eenfrozenandthawed several kilometres for granites. The same feature is beds during deglaciation (cf. Hättesstrand 1997). also reflected in the geochemistry of the upper till Ribbed moraines are ideal for prospecting work, (cf. Sarala & Rossi 1998). Field observations have because of the short transport distance of rock mate- proven this phenomenon is of use in prospecting. In rial in the uppermost till. Particularly, boulders within the case of drumlins and flutings, transport distances the till and at the surface reflect the variation of local are many times greater and the direct control between bedrockcomposition.Thisphenomenon iscom- till material or surficial boulders and bedrock is hard mon for all ribbed moraine types if the pre-existing to determine. sediments have been thin enough for the quarrying to have reached the bedrock surface. Due to forma- Conclusion tion processes, prospecting work differs quite a lot in the areas of ribbed moraines compared to areas of The ore potentiality of the Misi area, northern Fin- drumlins and flutings. For example, the boulders in land seems to be high, because of the great number of the uppermost parts of ridges must be taken account ore boulders found at the surface of different moraine when choosing the equipment for geochemical sam- formations in the area. The transitional series of ac- pling. The observations and the results presented here tive-ice moraine formations from transversal ribbed will be clarified in the near future when the chemical moraines to longitudinal drumlins and flutings have analyses of till samples and some planned deep drill- been observed. Ribbed moraine ridges are composed ings have been done. of Rogen moraine and hummocky ribbed moraine types in the area. Formation of the ridges seems to be Acknowledgements a result of a two-step process (Fig. 5), where frozen subglacial sediments were fragmented and moved We thank Jorma Isomaa for discussions and Antti under compressive glacial flow in the first stage. Pakonen and Jorma Valkama for assistance during the Secondly, the dominant freezing conditions caused field works. Dr Keijo Nenonen of GTK gave valuable the freeze-thaw process to prevail under the moving comments and Mr Christopher Cunliffe checked the ice leading to the quarrying activity that reached the English of the manuscript. bedrocksurfacebetweenthenewlybornridges.These

28 Geological Survey of Finland, Special Paper 38 Ore prospecting in the ribbed moraine area of Misi, northern Finland

Fig. 5. Difference between the transportation of till material and till geochemistry in ribbed moraine ridges and drumlins. Aformation of ribbed moraines is two-step process, where fragmented subglacial sediments are moved under compressive glacial flow in the first stage and the following freeze-thaw conditions lead up to the quarrying of bedrock surface between the ridges during the second stage.

REFERENCES lundqvist, J. 1969. Problems of the so-called Rogen moraine. Sverigesriges Geologiska Undersökning C648, 1-32. Aario, R. (ed.) 1990. Glacial heritage of northern Finland; an Sarala, P. & Rossi, S. 1998. Kupari- ja kultapitoisen hiertovyö- excursion guide. Nordia tiediedonanonantojaoja,, Sarja A:1: 1..996p. hykkeen paikantaminen moreenigeokemiallisin tutkimuksin Aario, R. & Peuraniemi, v. 1992. Glacial disperrssalof till con- PeräpohjanliuskealueeltaPohjois-Suomessa.Summary: stituents in morainic landforms of different types. In: Aario,R. Discovery of a copper- and gold-bearing shear zone as a result & Heikkinen, O. (eds.) Proceeceeddings of the thirdinternational of research into the geochemistry of Peräpohja Schist Belt, drumlin symposium. Geomorphology 6 (1), 9-25. northern Finland. Geological Survey of Finland, Report of hanski, E. 2002. Vikajärvi. Geological Map of Finland 1:100 Investigations 119. 44 p. 000, Pre-Quaternary Rocks, Sheet 3614. Geological Survey Sarala, P. & Rossi, S. 2000. The application of till geochemistry of Finland. inexplorationintheRogenmoraineareaatPetäjävaara,northern hättestrand, C. 1997 . Ribbed moraines in Sweden – distribution Finland. Journal of Geochemical Exploration 68, 87-104. pattern and paleoglaciological implications. In: Piotrowski, J. A. (ed.) Subglacial environments. Sedimentary geology 111, 41-56.

29 Geological Survey of Finland, Special Paper 36 Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki

30 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 31– 41 , 2005.

EXPlORATiON RESulTS ANd MiNERAlOGiCAlSTudiESON ThE luMikANGASAPA- TiTE-ilMENiTEGAbbRO, kAuhAJOki, wESTERN FiNlANd

by Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland E-mail:[email protected]

Key words (GeoRef Thesaurus, AGI): mineral exploration, titanium ores, ilmenite, magnetite, apatite, gabbros, geochemistry, Prot- erozoic, Lumikangas, Finland

introduction 15-20 wt% of magnetite, apatite and ilmenite in total. The Lumikangas gabbro was found to be a potential Geological Survey of Finland (GTK) has explored exploration target on the basis of chemical analyses the Lumikangas gabbro since 2002 as a potential and mineralogical studies. source for titanium and phosphorous. Lumikangas In the second stage, carried out in 2004, systematic is situated 15km south of the town of Kauhajoki in groundmagneticandgravitymeasu rementsweremade South Pohjanmaa (Fig. 1). The landscape is a flat di- for the area of 5 km 2 . After geophysical interpretation vide area, 170m above sea level, consisting of eskers five drill holes in two profiles were drilled, totalling bordered by marshes. According to previous seismic 1308 m (R396-401), and geophysically logged. Mate - measurements,theoverburdenis30-70mthick.Recent rial for this study includes 446 XRF-analyses, mass drillings intersected a 35-50 m soil cover composed susceptibility measurements (magnetite wt %) along of sand-silt-gravel layers with a till interbed. the drill core samples, microprobe analyses from The Lumikangas area was selected as a target for polished thin sections and ICP-MS analysis from exploration on the basis of an outstanding regional apatite concentrate. This paper presents the results of geophysical anomaly (Fig. 2). There are magnetic and preliminary exploration and mineralogical studies on gravity highs on the low-altitude aeromagnetic and on the Lumikangas apatite-ilmenite gabbro. the regionalgravitymaps, respectively. Theeconomic interest of Lumikangas is in titanium and phospho- Regional geology rous because this geophysical anomaly belongs to the Kauhajoki gabbro province, which is generally The Kauhajoki gabbro province is situated in the characterised by high content of ilmenite, magnetite western part of Central Finland Granitoid Complex and apatite (Kärkkäinen et al. 1997). (1870-1890 Ma), between the synorogenic granitoids The first exploration stage, carried out in 2002, was andthelateorogenicLauhanvuorigranite(Fig.1).The relatedtoGTK’s bedrockmappingandoreexploration mafic-ultramafic intrusions at Honkajoki (Pääkkönen at Pohjanmaa. The first drill hole (R396) was focused 1962,Pakarinen 1984,Rämö1986), Kauhajärvi on the magnetic and gravity maxima, where the over- (Kärkkäinen&Appelqvist1999),Hyyppä(Huuskonen burdenisthelowest,accordingtoseismicprofileacross & Kärkkäinen 1994) and Lumikangas are layered, the Lumikangas regional anomaly (Lehtimäki 1984). mainly gabbroic in composition, and are variably This drill hole penetrated a layered gabbro containing differentiated from peridotite to anorthosite. They all

31 Geological Survey of Finland, Special Paper 38 Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

Fig. 1. Location of Lumikangas at Kauhajoki on a road map and a generalised geological map.

Fig. 2. Aeromagnetic and residual gravity high (curves) indicating potential ilmenite targets.

32 Geological Survey of Finland, Special Paper 38 Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

Fig. 3. Ground magnetic map of the southern part of the Lumikangas intrusion. contain considerable amounts of ilmenite, apatite and profile, the overburden is 30-70m thick over the intru - magnetite, averaging 18–22 wt% together. sion. The magnetic anomaly, at its highest 4 000 nT, is caused by magnetite and remanent magnetism (Fig. Exploration geophysics 3). Magnetic and gravity interpretations indicate that the deposit extends to a depth of 300–500 m. All knownilmenitegabbrosoftheKauhajoki province are visible as magnetic and gravity highs lumikangas apatite-ilmenite gabbro on the predicted map compiled from aeromagnetic and residual gravity data (4-6 points /km2 , Fig. 2.) General description, stratigraphy and resources The Lumikangas gabbro is situated in an areal gravity gradient, where the regional level increases 3 mGal This study focuses on the southern part of the Lumi- over a distance of 1.5 km. The maximum gravity kangas positive magnetic anomaly, where, according anomaly caused by the Lumikangas intrusion is 3.5 to the ground geophysics, the gabbro body is 1.5 km mGal as measured from the estimated base level of long and a half kilometre wide, while the total length the regional gravity field. of the magnetic anomaly is five kilometres (Figs. 2 The area of 5 km 2 was studied by using magnetic, and 3). Drilling results show that the apatite-ilmenite gravity and horizontal loop EM measurements over gabbro dips to the east at an angle of 30 degrees (Fig. the Lumikangas gabbro. According to the seismic 4). Based on the drilling, the thickness of this oxide

33 Geological Survey of Finland, Special Paper 38 Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

Fig. 4. A drilling section of the Lumikangas gabbro.

gabbro, with a total amount of ilmenite and magnet- an average of 19 % ore minerals: 8.7 % (max. 21 %) ite over10 %, is at least 200 m and, according to the ilmenite, 4.8 % (max. 17 %) magnetite and 5.4 % geophysics, reaches 500 m. The gabbro is dissected (max. 17 %) apatite (Table 1). into two blocks by reverse faulting, so that the west- ern block (hanging wall) (R396 and R401) has been Petrography upliftedandtheeasternblock(f ootwall)(R400,R399) has descended (Fig. 4). As a result of this movement, The alternate layering of the various rock types the oxide content decreases downwards in the western in drill hole R400 is as follows: subhedral medium- block and increases in the eastern block. grained monzogabbro, olivine monzogabbro, gab- The structure of the intrusion is clearly layered and bronorite, hornblende gabbro, olivine gabbronorite the compositional variation ranges from Fe-Ti-rich and gabbro. The primary texture of the rock generally dark gabbros to apatite-rich leucogabbros. The intru- is subophitic, which is still preserved. The rock-form- sion can be divided into two main sections. The basal ing minerals are pyroxenes, uralite and hornblende, part is composed of dark medium-grained gabbro or cummingtonite, albite and K-feldspar, plagioclase, gabbronorite, hornblende gabbro and olivine gabbro, biotite, Fe-Ti oxides, apatite, olivine, chlorite, quartz and the upper part is medium to coarse-grained leu- and rarely sphene. Silicate minerals constitute 75–95 cogabbro or monzogabbro within a few metres thick vol% of the rock. layers of gabbro-pegmatoid and metadiabase dikes. Igneous clinopyroxene, orthopyroxene and olivine The inferred and possible resources based on geo- are partially metamorphosed and replaced mainly by physics and two drilling sections include 230 million uralites and biotite (Fig. 5a). Prismatic to granular tons of oxide gabbro, which are 1200 m long, 300 plagioclase and alkali feldspar are the major rock- m wide and 200 m thick. Almost the whole drilling forming minerals (Fig. 5b, 6f) up to 2 mm in length section is composed of oxide gabbro, which contains and commonly affected by sericitization. Plagioclase

34 Geological Survey of Finland, Special Paper 38 Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

Table1. Chemical compositions of Lumikangas gabbro ;1. Average oxide-gabbro (ilmenite+magnetite >10%),2.Oxide-monzogabbro(R400,50–120m),3.Oxide-gabbronorite(R400,132–178),4.Oxide-mon- zogabbro (R400,63.3-65.3), 5. Ilmenite-apatitegabbro (R400,138–140), 6.Ilmenite-magnetitegabbro (R400, 148–150),7. Gabbro(R400 190–192).

123456 7

SiO 2 40.3442.45 38.64 40.40 36.90 38.70 45.60

TiO 2 4.36 4.25 4.61 4.705.18 5.562.63

Al 2 O 3 12.3912.27 12.611.60 10.2011.40 16.20

Fe 2 O 3 21.96 19.77 22.92 21.46 21.75 26.73 15.16 MnO0.280.290.270.310.280.290.20 MgO5.40 4.60 5.824.85 6.37 5.084.29 CaO9.32 9.39 9.6 9.9411.757.4159.57

Na 2 O2.382.522.282.342.00 2.31 3.16

K 2 O 0.76 1.270.54 0.980.710.500.75

P 2 O 5 2.122.532.11 2.87 4.26 1.42 1.06 S0.232 0.219 0.290.233 0.423 0.277 0.229 V0.0410.0280.0520.0290.038 0.069 0.034 Cr0.0040.0030.0040.0030.0030.011 0.006 Ni0.0030.0020.0040.0020.0030.0020.003 Cu 0.006 0.006 0.009 0.0068 0.011 0.0070.008 magnetite% 4.863.36 5.353.833.39 8.65 1.59 Valid N3133423 1111

composition is mainly labradorite (Table 2) and oc- in sodium-rich (albite) matrix. Equal proportions of casionally ranges from oligoclase to labradorite. In albite and K-feldspar intergrowth (mesoperthite) and places, plagioclase is partially transformed into albite microcline feldspar with crossed hatched twinning (analysis no.7, Table 2). Alkali feldspar is represented structure are also observed. Biotite (both primary and bythetypicaltextureofmicrope rthiteexsolutioninter - secondary) is another common silicate mineral that growth of sodium-rich and potassium rich feldspar, together with uralite often rim ilmenite and magnetite andantiperthiteintergrowthofpotassium-richfeldspar (Fig. 5a).

Table 2.Selected electron microprobe (Cameca CamebaxSX100)analyses of ilmenite, magnetite, apatiteand some silicateminer- als (operating conditions: 15-20KeV,10-15nA,1-10μmbeam diameter;analysed byBoJohanson and Lassi Pakkanen)

123456 7891011 1213

SiO 2 0.010.020.170.090.140.14 67.6564.48 59.6462.67 54.9250.9253.43

TiO 2 50.0550.77 0.06 1.280.00 0.00 0.040.020.030.00 0.05 0.650.06

Al 2 O 3 0.00 0.00 0.470.590.010.0119.9318.4119.45 22.48 27.921.940.72

Cr 2 O 3 0.010.010.140.150.00 0.030.00 0.020.030.020.01

V 2 O 3 0.030.011.251.09 FeO47.10 46.64 90.9390.790.090.090.00 0.040.040.09 0.16 14.42 24.06 MnO1.02 1.06 0.020.040.050.050.010.00 0.00 0.030.040.340.89 MgO0.040.240.020.020.00 0.00 0.020.010.00 0.00 0.0111.77 17.38 CaO0.00 0.00 0.010.01 54.66 54.030.740.020.033.81 10.06 18.300.57

Na 2 O0.00 0.00 0.00 0.00 0.00 0.00 10.280.751.03 8.63 5.280.22 0.05

K 2 O0.010.010.00 0.010.010.00 0.2115.2412.77 0.120.080.01 0.06

P 2 O 5 40.46 41.88 BaO0.00 0.00 0.00 0.00 0.00 0.00 0.080.32 5.740.040.150.050.03 SrO 0.06 0.06 0.040.020.090.300.180.050.05 NiO0.010.010.010.020.020.040.030.020.010.020.02 ZnO0.030.030.030.03 F 3.60 2.61 0.020.00 0.00 0.00 0.00 0.00 0.00 Cl0.00 0.00 0.00 0.00 0.050.120.020.010.010.00 0.00 0.010.03

SO 2 0.010.01 Total98.3198.8093.11 94.1299.1499.00 99.06 99.3998.85 98.2198.8798.7197.37 Note: Ilmenite (1,2), magnetite (3,4), apatite (5,6), albite (7), k-feldspar (8), Ba-feldspar (9), plagioclase (10,11), augite (12), cummingtonite (13)

35 Geological Survey of Finland, Special Paper 38 Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

Fig 5a. Pyroxene, uralite and mica; Ilmenite rimmed by biotite and Fig 5b. Alkali-feldspar and plagioclase as major rock forming miner- uralite (R398/57,5m) als (R400/81m).

Fig 5 c. Free ilmenite grain; large pyrrhotite grain associated with Fig 5d. Ilmenite commonly occurs as a separate anhedral to subherdal ilmenite and magnetite (R400/149,2m). grains (R400/192m)

Fig 5e. Ilmenite lamellae in magnetite, up to 40microns thick and 300 Fig 5f. Magnified exsolved structure of fine ilmenite and spinel in microns long; note spinel granules along the border of the lamellae magnetite (R398/57,5m) (R400/149,2m)

Geochemistry variation in the Fe/Mg ratio as shown in the AFM diagram (Fig. 7), and the distribution falls within the The mafic rocks of the Lumikangas intrusion are tholeiticfield.BecauseofhighFe-Tioxideandapatite characterisedbyuniformlyhighP 2 O 5 andTiO 2 contents, contents the Lumikangas gabbroic rocks are not clas- rather high K 2 O, variable but usually high Fe 2 O 3 and sified in the subalkaline field. In fact, many samples rather low Cr content (Table 1). There is very small from Lumikangas show increased alumina saturation

36 Geological Survey of Finland, Special Paper 38 Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

Fig 6a. Myrmekitic intergrowth of ilmenite and magnetite with py - Fig 6b. Apatite inclusions in the ore minerals. roxene, uralite and biotite (R400/149,2m)

Fig 6c. Coarse grained apatite associated uralites and pyroxene; note Fig 6d. Coarse grained apatite associated with iron ore, uralites and apatite is euhedral, up to 3mm long (R400/63,9m). biotite note apatite is subhedral (R400/149,2m).

Fig 6e.Apatite up to 5mm in length, and clusters of subrounded grains Fig 6f. Apatite as major mineral and reaches up to 4mm in size; fine- of apatite (R400/138,7m) ^PLev. 7,7 cm grained and needle like apatite mainly embedded in alkali feldspar (R400/141,6m)

and the whole rock was metaluminous (Al 2 O 3 > Na 2 O classification diagram most samples group within the

+ K 2 O < CaO + Na 2 O + K 2 O) (Table 1). This is partly monzogabbro field, which means that they contain at related to the high K 2 O (> 1 %) content of the gabbro. least 10 % alkali feldspar component (Fig. 8). Based on chemical analyses the normative orthoclase The special feature of the Lumikangas gabbro is content is 5 – 10 %, and may be up to 25% in gab- that Ti, Pand Mg correlate very closely as shown in bropegmatoids. IntheStreckeisen-typetriangular drill hole R400 (Fig. 9). This could be explained by

37 Geological Survey of Finland, Special Paper 38 Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

Fig 7. Distribution ofLumikangas gabbroinAFM-diagram. Fig. 8. Lumikangas samples in normative (quartz-orthoclase-plagioclase) triangular diagram. Most samples contain more than 10 % normative orthoclase and have the composition of monzogabbro.

a simultaneous crystallisation of iron-oxide, apatite asseparatecrystals,anhedraltosubhedralgranularag- and Mg-rich silicates (see Fig. 5 and Fig. 6). gregatesandrangeinsizefrom0 .1to1.5mm.Ilmenite occursaswell-developedsinglecrystals(Figs.5c,5d), Ore mineralogy and as latticed oxyexsolution textures in and along the boundaries of magnetite grains (Fig. 5e), where Ilmenite and magnetite the boundaries are often delinated by spinel granules. The ilmenite grains are commonly monomineralic, Based on microscope observation the rocks contain except for occasional magnetite lamellae, rare rutile about 3–20 vol% ilmenite and magnetite. They occur inclusions and spinel needles.

Fig. 9. Variation of magnesium, titanium and phosphorous in two drill holes R400 and R399 from Lumikangas.

38 Geological Survey of Finland, Special Paper 38 Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

Magnetite contains both ilmenite and spinel as ex- is typical of poikilophitic texture (Fig. 6f). solved inclusions (Figs. 5e, 5f), where the magnetite Pure apatite concentrate was made using heavy herecanberefer redtoasilmenomagnetite.Theilm en - liquid separations. The concentrate was analysed by ite exsolution might represent two generations, with ICP-MS for rare elements. The chondrite normalised oriented long lamellae and fine needle like structures REE-array of apatite is rather plain and only gently rangingfromsubmicroscopicto100μmacross,andup decreasing (Fig. 10). Aspecial feature of the Lu- to 1.2mm in length.The fine oriented ilmenite needles mikangas apatite is that there is no Eu minimum as aredistributede venlythroughout themagnetitegra ins compared to neighbouring elements, which is typical along with very fine spinel microcrystals (Fig. 5f). forapatiteintheKauhajärvigabbro.Thisindicatesthat Ilmenite and magnetite show myrmekitic intergrowth plagioclase has not been extracted during magmatic with silicate minerals, mainly pyroxene, uralite and differentiation.ThesimilarshapeoftheREE-arraysof apatite (Fig. 6a), which indicate simultaneous crys - bothLumikangasa ndKauhajärviapa titemayindicate tallisation of the ore and the silicate minerals. Pyrite the same magmatic source for both gabbros. and pyrrhotite are the common sulphides observed, occurringmainlyasseparategrainsassociatedwiththe Electron microprobe analyses ore and gangue minerals. Fine grains of chalcopyrite occur often associated with pyrrhotite and pyrite as TheTiO 2 contentofilmenite(49.3–51.2)is inclusions. Inclusions of pentlandite in pyrrhotite and very close to the theoretical ilmenite composition secondary hematite with pyrrhotite were observed. (TiO 2 =52.65%) indicating no significant alteration

Magnetite is less common within the sections where (Table 2). The MgO and Cr 2 O 3 contents of ilmenite pyrrhotite is abundant. are low as is V 2 O 3 that hardly exceeds 0.15 % in Lumikangasilmenite.TheMnOcont entofboth Apatite ilmenite grains and lamellae in magnetite is constant but relatively high (0.8–1.3 %).

The Lumikangas gabbroic rock consists of about TheTiO 2 contentinthemagnetitelatticeisconsider- 1–6 vol% of apatite (Figs. 6b–6f). Locally elevated ably low (0.0–1.8 wt%) having been taken up by the amounts of apatite covering nearly 25 vol% the rock two generations of exsolved ilmenite lamellae. The are observed in R400/141.6m, which corresponds magnetite lamellae in ilmenite, however, contains tothehighest phosphorouscontent(5.5%P 2 O 5 , up to 3.2 wt% TiO 2 . Interestingly, the Cr 2 O 3 content R400/140–142m). The apatite crystals occur either of magnetite is insignificant, ranging from 0.03 to as single crystals or in small clusters associated with 0.22wt%.Vanadiuminmagnetite,ontheotherhand,is feldspars, pyroxene and Fe-Ti oxides (Figs. 6e, 6f). relativelyhigh(V 2 O 3 =0.5–2.35wt%),andvariesfrom

Inclusions of apatite in the ore minerals (Fig. 6b) and sample to sample, 0.95–1.4 % V 2 O 3 in R398/57.5m in silicates (Figs. 6e, 6f) are the most typical textures. and2.1–2.35wt%V 2 O 3 inR400/63.9m.Thevanadium Apatite occurs in various forms: euhedral (Fig. 6c), content in the Lumikangas magnetite (0.34–1.6 wt% subhedral(Fig.6d)andrangesinsizefromabout50μm V) is within the range of Koivusaarenneva (0.7 wt% to 4–5mm long. Apatite chadacrysts (inclusions in V; Kärkkäinen et al. 2003), Mustavaara (0.83 wt% V; oikocrysts)occurringasfinesubroundedandelongated Juopperi1977)andOtanmäki(0.64wt%V;Kerkkonen structure are enclosed by feldspar oikocrysts, which 1979) but relatively higher than that of Kauhajärvi (0.1–0.4 wt% V; Kärkkäinen & Appelqvist 1999). Inspiteofgrainmorphologyandsizedifferences,the apatite composition is relatively uniform but contains

small amounts of SiO 2 , MnO, FeO and SrO, as these minerals are known to substitute Ca in apatite (Table 2). The fluorine content of apatite (2.0–4.3 wt%) is indicative of fluor-apatite composition. Potassium feldspar is occasionally found to contain extremely high barium content giving a composition of Ba-feldspar (Table 2). The clinopyroxene has a

ferro-augite composition, characterised by low Al 2 O 3

and TiO 2 contents. The clinopyroxene is associated with primary plagioclase, and according to chemical analyses and microscope observation, plagioclase is Fig. 10. Apatite REE arrays of Lumikangas and Kauhajärvi. ^P in part transformed into albite .

39 Geological Survey of Finland, Special Paper 38 Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola discussion REFERENCES

duchesne, J. C. 1972. Fe-Ti oxide minerals in Bjerkreim-Sokn- In almost all igneous rocks, apatite is known as an dal massifs, southwestern Norway. Journal of Petrology 13, accessory mineral. However, apatite enrichment with 57–81. ilmenite and magnetite are recorded in a number of huuskonen, M. & kärkkäinen, N. 1994. TiP-gabrojen etsintä- deposits, for example in mafic intrusions as in Bush- ohjelmaLauhavuorengraniitinympäristössä:korkealentomag- neettiset häiriöt ja Kauhajoen Hyypän intruusion tutkimukset. veld (Von Gruenewaldt 1993), in Sept-Iles (Nabil Geologian tutkimuskeskus,arkistoraporttiM19/1234/94/1/10. etal.2003),Kauhajärvi(Kärkkäinen1999),and 13 p. + 9 apps. in anorthosite complexes as in Bjerkreim-Sokndal Juopperi, A. 1977. The magnetite gabbro and related Mus- (Duchesne 1972, Kornelliussen et al. 2000) and Lac tavaara vanadium ore deposit in Porttivaara layered intrusion northeastern Finland. Geological Survey of Finland, Bulletin Mirepoix (Morisset 2003). 288. 68 p. + 2 apps. Apatite-bearing ilmenite-magnetite deposits and kärkkäinen, N., Sarapää, O., huuskonen, M., koistinen, E. & prospects generally contain ilmenite with low MgO lehtimäki, J. 1997. Ilmenite exploration in western Finland, and Cr O and ilmenite poor in hematite (Schiellerup andthemineralresourcesoftheKälviädeposit.In:Autio,S.(ed.) 2 3 Geological Survey of Finland, Current Research 1995–1996. et al. 2003). One interesting feature at Lumikangas is Geological Survey of Finland, Special Paper 23, 15–24. the early crystallisation of apatite and coeval crystal- kärkkäinen, k. &Appelqvist, h. 1999. Genesis ofalow-grade lisation of apatite, Fe-Ti oxides and mafic silicates apatite-ilmenite-magnetite deposit in the Kauhajärvi gabbro, (Fig. 9). In practice this means that the parent mafic western Finland. Mineralium Deposita 34, 754–769. kärkkäinen, k. & bornhorst, T.J. 2003. the Svecofennian magma was abnormally rich in Pand also Fe and gabbro-hosted Koivusaarenneva magmatic ilmenite deposit. Ti. This kind of Ti-P enriched mafic rocks in crustal Kälviä, Finland. Mineralium Deposita 38, 169–184. environments are often called jotunites (Norway), kerkkonen, O. 1979. The magnetite-ilmenite of the Otanmäki oxide apatite gabbronorites (Canada) or ferrogabbros titanium iron ore, interpretation of the source and development (in Finnish). PhLic thesis, University of Oulu, Finland. (USA) and they are more or less closely related to the korneliussen, A., McEnroe, S., Nilsson, l.P., Schiellerup, anorthosite massifs or rapakivi granite-anorthosite h., Gautneb, h., Meyer, G.b. & Storseth, l.R. 2000. An suite. These kinds of rocks have lately been studied as overview of titanium deposits in Norway. Norges geologiske a possible source of Ti and P, for instance in Norway undersokelse, Bulletin 436, 27–38. lehtimäki, J. 1984. Honkajoen ja Kauhajoen alueiden seismiset (Kornelliussen et al. 2000). luotaukset 1982 ja 1983. Geologian tutkimuskeskus, arkistora- portti, Q19/1234/84/1/23. 8 p. + 17 apps. Conclusion Morisset, C-E. 2003. Astudy of mineral compositions of Lac Mirepoix layered complex, Lac St-Jean anorthosite complex, Quebec, Canada. In: Ilmenite deposits and their geological Lumikangas area was selected as a target for Ti- environment, NGU, Special Pubication 9, 84–85. P-exploration on the basis of a high magnetic and Nabil, h., barnes, S. & higgins, M. 2003. Genesis of phospho- gravity anomaly and its location in the Kauhajoki rous and titanium deposits in Sept-Iles mafic intrusion. Mining apatite-ilmenite gabbro province. The Lumikangas industry conference and exhibition, Abstract, Montreal May 4–7, 2003. apatite ilmenite monzogabbro may be a potential ore Pääkkönen , v. 1962. Tutkimukset Kauhajoella 1961. Geologian resource in the future, containing an average of 19 % tutkimuskeskus, arkistoraportti, M17/Khj-61/1. 2 s. + 1 app. ore minerals: 8.7 % (max. 21 %) ilmenite, 4.8 % (max. Pakarinen,J.1984. RaporttiHonkajoella,KauhajoellajaKarvialla 17%)magnetiteand5.4%(max.1 7%)apatite.Apatite, 15.4.1983-29.2.1984suoritetuis tafosfori-titaani-rauta-malmi - tutkimuksista (Kemira Oy:n ja Geologian tutkimuskeskuksen ilmenite and magnetite were crystallised at the same yhteistyöprojekti). Geologian tutkimuskeskus, arkistoraportti time at a very early stage of magmatic differentiation, M19/1234/84/1/10. 49 p. + 103 apps. becausetheyhaveagoodcorrelationwithmagnesium. Rämö, T. 1986. Honkajoen Perämaan emäksinen intruusio - eri- tyisesti sen gabro-osien petrografia, mineralogia ja petrologia, The drilling profiles did not intersect pyroxenites, in 104 p. which the highest ore contents could be hiding. Schiellerup, h., korneliussen, A., heldal, T., Marker, M., bjerkgård, T. & Nilsson, l. P. 2003. Mineral resources in RogalandAnorthositeProvince,SouthNorway:Origins,history andrecentdevelopments.In:Ilmenitedepositsandtheirgeologi- cal environment. NGU, Special Publication 9, 116–133. vonGruenewalt,G.1993. Ilmenite-apatiteenrichmentintheUp- perZoneofBushveldComplex:amajortitaniumrockphosphate resource. International Geological Review 35, 987–1000.

40 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 41– 47 , 2005.

ThE viTTAJÄNkÄ kAOliN dEPOSiT, SAllA, FiNNiShlAPlANd

by Panu Lintinen 1) and Thair Al-Ani 2)

1) P.O. Box77,FI-96101Rovaniemi, Finland 2) Kallentie 36 B4, FI-45130 Kouvola, Finland E-m ail:[email protected]

Key words (GeoRef Thesaurus, AGI): kaolin deposits, mineral exploration, geophysical methods, weathering, mineral composition, chemical composition, beneficiation, Vittajänkä, Salla, Finland

introduction while the Suolakaarko deposit was discovered more recently, in 1998 (Lintinen 2000). The first investiga- In the search for abundant and high quality kaolin tions in the Salla region were undertaken in 1999, as a resources to satisfy the growing demands of the Finn- result of which white kaolin was found at Vittajänkä. ish paper industry, the Geological Survey of Finland By the end of 2004 three separate drilling programs (GTK) has, over the period 1998–2004, investigated had been carried out at Vittajänkä, with a total length morethan20kaolindepositsinthepre-glacialregolith of 2000 m. At the same time, exploratory drilling has of northern Finland. Research has focussed on Paleo- been undertaken in surrounding terrain, in the search proterozoicmetasedimentaryrocksincentralLapland, for analogous occurrences. particularly in areas of relatively low metamorphic Assessmentofthequalityofkaol inatVittajänkähas grade,usingavarietyofairborneandgroundgeophysi- also been carried out concurrently with delineation of cal techniques, supplemented by drilling. Airborne reserves, with particular emphasis on its suitability as geophysical data are particularly useful in identifying a paper pigment. Preliminary enrichment tests simu- weatheredbedrock,whiledrillingorexcavationduring lating industrial processing have been conducted at earlier bedrock exploration activities has commonly GTK and also at the former VTT mineral processing provided direct confirmation of the presence of kaolin laboratories (now GTK Mineral Processing Labora- and deeply weathered regolith beneath Quaternary tories) and results of studies completed prior to 2004 till. In contrast, there is a paucity of prior indications have been reported by Al-Ani et al. (2004). of kaolin from terrain dominated by granitoids and gneisses of higher metamorphic grade. Geological setting During the course of investigations, research has gradually focussed on two specific regiona, namely The Vittajänkä kaolin deposit is located within the the eastern parts of the Sodankylä municipality and southeasternextensionofthePaleoproterozoicCentral the areas to the east and northeast of the tonwhsip of Lapland greenstone belt (Fig. 1). In this area however, Salla. The presenceofkaolinin theSodankylädistrict, quartz-richmetasediments dominate, bounded to at Siurunmaa, has been known since 1976 the east by the extensive metavolcanics of the Salla (Rask & Lintinen 2001, Pekkala & Sarapää 1989), greenstone area, which continues across the national

41 Geological Survey of Finland, Special Paper 38 Panu Lintinen and Thair Al-Ani

Fig. 1. Geological map showing the location of the Vittajänkä deposit.

border into adjacent Russia. The central Lapland The area delineated by the airborne EM anomaly granitic complex occurs to the south and southwest of was surveyed on the ground as well, firstly along Vittajänkä,whereasArcheangrani ticandsupracrustal widely spaced profiles and then on a systematic grid terrain lies to the north. covering 3.6 km2 . Both EM VLF-R measurements Regionalgeologicalinvestigationshavebeencarried and gravity surveys were made. In addition, a regional out during the Lapland Volcanite Project (LVP), by scale gravimetric survey was carried out over 300 Manninen (1991), on the basis of which the metasedi- km 2 in the Salla district during 2000–2001, with a site mentary Matovaara Formation is considered to be the density of 8 measurements per km 2 . On the basis of protolithfromwhichtheVittajänkäkaolinwasderived. these gravity surveys, the Vittajänkä kaolin deposit Although the area is covered by extensive wetlands, appears to coincide with a northerly trending elongate with very few bedrock exposures, the metasediments 2 mGal gravity minimum, approximately 1.75 km 2 appear to have been calcareous siltstones, with calc- (2.5x0.8km)inextent(Fig.2).Theshapeofthegravity silicate and laminated orthoquartzite intercalations. anomaly is controlled by both degree of weathering and the structurally defined bedrock geology, with Geophysical investigations mafic volcanics surrounding the metasediments.

TheVittajänkäkaolindepositcanbedistinguishedin Sampling strategy regional airborne geophysical data as an electromag- netic anomaly with an intense imaginary component The Vittajänkä deposit was drilled in three stages and a considerably reduced real component. The in 1999, 2001 and 2003, using different equipment Matovaara Formation metasedimentary host rocks and core recovery techniques. Drilling has been both are non-magnetic, although they are surrounded by technicallychallengingand requiredcarefulsampling a narrow, conspicuously magnetic zone of tholeiitic in order to maximize the research value of recovered volcanics belonging to the Tahkoselkä Formation. material.

42 Geological Survey of Finland, Special Paper 38 The Vittajänkä kaolin deposit, Salla, Finnish Lapland

Fig. 2. Bouguer anomlay map of the Vittajänkä kaolin deposit, showing locations of drilling profiles and the distribu - tion of white and coloured kaolin.

The gravity anomaly has been drilled along two Overburden thickness varied from 10–25 m, with a E-W profiles 700 m apart (Figs. 2 and 3). The more mean depth of 15 m. The thickest kaolin intersections northerly profile intersected white or yellowish kaolin were nearly 30 m although the average was around over a distance of 300 m, while the total width of the 20 m. Sporadic quartz-rich horizons, or weathered weathered zone was about 400 m. In the southern accumulations of quartz sandwere sporadicallyfound profile the weathered zone was about 150 m across, within the kaolin. with 75moflight-colouredkaolin. Whitetoye llowish Some diamond drill core was recovered from the kaolintendtooccurinthecentralpartsoftheweathered quartz-rich intercalations, and from the bedrock be- zone, while marginal parts were considerably darker. neath the kaolin deposit, despite their being intensely

Fig. 3. Simplified cross sections of drilling profiles A and B. For locations, see Figure 2.

43 Geological Survey of Finland, Special Paper 38 Panu Lintinen and Thair Al-Ani weathered. Thus, significantlyweathered regolith trifugingwasintendedtorecoverthesizefractionfiner occurs at depths considerably greater than the main than 2 µm. Magnetic separation was performed with kaolin deposit. a Sala HGMS (High Gradient Magnetic Separation) separator. After bleaching, the samples were filtered, laboratory analyses and enrichment trials driedandagainmeasuredforwhitenessandyellowness according to ISOR457-specifications with an Elrepho Methods 2000-colour meter. The final purified samples were then analyzed with both XRD and XRF at the GTK Atotal of 96 samples of kaolin, both white and laboratories. coloured, were taken for systematic analysis at GTK, with an average sample length of 3.8 m. Samples were Whiteness and yellowness classified according to grain size distributions using a combinationofsievingandsedigraphanalysis.Sample Kaolin samples were classified according to the fractions <20 µm were separated and measured for ISO brightness index, for which ’white’refers to a whitenessandyel lownesswithanL &WElrepho-spec- brightness >60 % and coloured to values <60 %. This trophotometer, according to ISO 2496 specifications. approach to classification was also used by Sarapää In addition, the mineralogy and chemical composi- (1996) for the kaolin deposits at Virtasalmi, where tions of the original samples, prior to sieving, as well the 20 µ m size fraction was also used as a cut-off as the <20 µm fractions were analyzed by XRD and threshold; therefore, results from the two studies are XRF respectively. in principle comparable. The best samples of white kaolin were then evalu- Brightness values for kaolin from the <20µm size ated with a trial industrial enrichment process at the fraction were, for the samples classified as white, as VTT (now GTK) Mineral Processing Laboratories high as 80–85 %. Such a result can be considered at Outokumpu. The process consisted of sieving and particularlygoodfor kaolin thathas notbeentreated to centrifuging, followed by magnetic separation and magnetic or chemical purification. TheThe yelloellownessness ofof chemical bleaching with sodium dithionite. The cen- these whitest samples was on average 7–8 %. Pale yel-

Table1.Meanbrightness andyellowness valuesandrespectivemineralogicalandchemicalcomposi- tions for differentsizefractions from the Vittajänkä kaolin deposit.N=number of analyses.

RAwkAOliN<20 microns<2 microns

whitecoloured whitecoloured white N=59 N=37 N=59 N=37 N=10

Brightness % -- 72.250.179.5 Min-- 60 21.7 74.0 Max-- 84.6 59.984.1 Yellowness -- 13.429.95.9

Kaolinite3030 66 56 92 Min70155 85 Max7080909595 Quartz4935911 6 Feldspar 616 10150 Muscovite84 13 6 4

SiO2 76.23 69.95 51.66 52.19 52.35 Al2O313.4714.7227.89 25.60 31.40 TiO20.32 0.520.57 0.64 0.40 Fe2O32.00 4.432.954.151.51 MgO1.183.59 1.86 3.720.84 CaO0.030.23 0.010.100.03 Na2O0.071.84 0.181.41- K2O 3.26 1.78 6.22 3.14 2.62

44 Geological Survey of Finland, Special Paper 38 The Vittajänkä kaolin deposit, Salla, Finnish Lapland

Fig. 4. SEM-image of refined Vittajänkä kaolin. Kaolinite occurs as euhedral flaky particles.

low samples had brightness values between 70–78 % slightly less kaolinite than white kaolin. On the other and corresponding yellowness values of 15–10 %. hand, quartz contents are comparatively lower and Magneticallyand chemicallyrefinedprocessed feldspar abundances somewhat greater. The eastern kaolin in the <2 µm size range had brightness values parts of the drilling profiles tend to contain more only a few percent higher. For example, the brightness plagioclase, up to 40 % in untreated primary samples index for the <20µm fraction increased from 80 % to and as much as 55 % in the <20µm size fraction. In around 83 %. On the other hand, yellowness values the central parts of the profiles, inclusions or inter- fell significantly by about half, to values around 3.5– calations of coloured kaolin within the white kaolin 5 %. Because kaolin products suitable for paper pig- contain significant amounts of hematite, in places up ment require a brightness index of at least 87 % and to 20 %. yellowness below 3 %, these results indicate that the The refined kaolin products were studied under Vittajänkä kaolin would be suitable as a filler only. the scanning electron microscope (SEM), as a result of which illite was identified amongst kaolinite and Mineralogical composition muscovite. XRD analysis of the settled clay fractions of white kaolin samples also showed a characteristic Table 1 shows mineralogical and chemical data for illite peak,whilecolouredkaolinite samples werealso selected elements for white and coloured kaolin at found to contain mixed layer illite-smectite phyllo- various size fractions. Original untreated white kaolin silicates. XRD data were used to determine Hinckley samples contain, on the basis of XRD analyses, an crystallinityindices(Hinckley1963,Aparicio&Galan average of 30 % kaolinite, 49 % quartz, 8 % musco- 1999), with values in the range 0.59–0.88 indicating vite, 6 % feldspar and trace amounts of hematite and a relatively high degree of crystallinity for the kaolin pyroxene. The abundance of kaolin increases to an lattice, in places moderately crystalline. The SEM average of 66 % for the <20µm size fractions, but still images (Fig. 4) also revealed that kaolin crystals contains significant amounts of quartz and muscovite. were nearly euhedral, with a rather uniform grain size The refined <2µm kaolin product contains 85–95 % distribution and a tendency for small flaky particles kaolinite, the remainder comprising from 5–10 % to remain in isolation from one another, rather than quartz and 0–5 % muscovite. aggregate into larger phyllosilicate booklets. Coloured kaolin contains similar proportions of, or

45 Geological Survey of Finland, Special Paper 38 Panu Lintinen and Thair Al-Ani

Chemical composition and exhibit relatively high Na 2 O, Fe 2 O 3 - and MgO- abundances. In contrast, weathered metapelites have

White Vittajänkä kaolin tends to have relatively higher K 2 O abundances, with very low Na 2 O. Thin high SiO 2 - and K 2 O- abundances and low Al 2 O 3 ir- section studies reveal that the mafic volcanics are respective of grain size. After refining, the <2µm size fine-grainedandmassive,withmineralogydominated fraction contained on average 51.6 % SiO2 , 27.9 % by albite and actinolite, the latter locally replaced by

Al 2 O 3 and 2.9 % K 2 O. The abundance of silica and talc. Phyllitic rockssr resemble sericite schists,e, except low alumina can be understood in terms of residual that in addition they contain biotite. quartz, while the retention of muscovite and illite can explain the high potassium and Fe 2 O 3 , which attains The kaolinization process 1.5 % in some samples. By way of comparison, the ideal theoretical kaolinite composition is 46.5 % SiO2 The mineralogical and chemical attributes of the and 39.5 % Al 2 O 3 . As a general rule, kaolin products Vittajänkä kaolin deposit, together with its overall of commercial quality are very close to this ideal geometry indicate that the kaolin formed by in situ composition, although K 2 O abundances may com- weathering of silicate minerals. The high degree of monly exceed 2 %, providing that Fe 2 O 3 -abundances crystallinity and euhedral habit of the kaolin is also remain below 1 %. consistent with a primary weathering origin. The Coloured kaolin in the eastern parts of the profiles presence of muscovite and illite indicate that the show elevated Na 2 O abundances (mean = 1,5–2 %, process had not proceeded to completion, at least at maximum = 9,7 %), which corresponds to relatively the present erosion level. It is probably that most of high amounts of albitic plagioclase. In the <20µm the kaolin formed during decomposition of feldspar size fraction both Na 2 O abundances and plagioclase and muscovite. contents determined by XRD are even higher, which indicates further that the albite is particularly fine- Preservation of kaolin grained.Itisthereforepossible thattheprotolithsforthe regolith in the eastern part of the profile were tholeiitic At least the lower part of the regolith profile at Vit - volcanics of the Tahkoselkä Formation. However, to tajänkä has survived, despite repeated glaciation and the west of the volcanic contact, the coloured kaolin deglaciation events. In general, pre-glacial regolith is has a chemical composition consistent with deriva- moreextensivelypreservedineas ternandnortheastern tion from metapelitic rocks or even calc-silicates of Lapland than elsewhere in the country. At Vittajänkä the Matovaara Formation, given the relatively high the following factors contributed to the preservation abundances of Mg, Fe and K, and locally high Mg+Fe of kaolin: with low K and Na. Locally dark pigmentation within 1) Primarycompositionalvariationsintheprotolithsto the white kaolin is usually caused by hematite, which the kaolin occurrences, in particular more resistant is clearly reflected in Fe O concentrations. 2 3 quartz-rich intercalations have protected adjacent weathered material from the effects of erosion Conclusions 2)The general topographic depression in the area, Protoliths for the kaolin inherited from bedrockgeology,withhighly weathered metasediments surrounded by a ring of Thewhitekaolinis evidentlyderivedfromweather- more resistant, massive and fine-grained tholeiitic ing of sericitic quartzites and sericitic schists. Local metavolcanics (Fig. 1). intercalationsofquartzitehaveweatheredtokaolinitic quartz sand. Thin section studies show that the host Beneficiation and exploitation of kaolin rocks were exceedinglyfine-grained,massiveto weakly laminated and generally only weakly foliated, At present it is only possible to provide a provi- withquartzoccurringamongstfine-grainedphyllosili- sional and speculative estimate of the potential kaolin cates. Accessory minerals include albitic plagioclase, resource at Vittajänkä, using the dimensions of the potassium feldspar, tourmaline and porphyroblasts gravity anomaly and information from the drilling of scapolite. profiles. Given that the gravity minimum is nearly 2 The most likely protoliths for the coloured kaolin km in length and that the mean width and depth of are phyllitic metasediments and mafic metavolcan- the weathered zone are 275 m and 20 m respectively, ics. Weathered volcanics in the eastern part of the and assuming a regolith density of 2000 kg/m 3 , a total drilling profiles contain abundant albitic plagioclase mass ofaround22million tonnes is obtained. Samples

46 Geological Survey of Finland, Special Paper 38 The Vittajänkä kaolin deposit, Salla, Finnish Lapland analyzed to date have on average 60 % white kaolin, REFERENCES of which the average proportion of kaolinite is about Al-Ani, T., lintinen, P. & karhunen, J. 2004. Mineralogical 30 %. Accordingly, the deposit would contain about Description andPreliminaryProcessingoftheVittajänkä 13 Mt of white kaolin, which could yield about 4 Mt of Kaolin Deposit, Salla, Northeastern Finland. Geological Sur- kaolinconcentrate.Itshouldalsobenotedthatalthough vey of Finland, unpublished report M19/4621/2004/1/82, 33 the mean depth of the kaolin regolith is only 20 m, p. + 36 app. Aparicio, P. & Galan, E. 1999. Mineralogical interference on kaolinization is extensive to much greater depths. kaolinite crystallinity index measurements. Clays and Clay After refinement, the Vittajänkä kaolin product still Minerals 47 (1), 12–27. contained considerable amounts of quartz and musco- hinckley, d.N. 1963. Variability in “crystallinity” values among vite, which is reflected in the higher SiO - and lower the kaolin deposits of the coastal plain of Georgia and South 2 Carolina. Clays and Clay Minerals 11, 229–235. Al 2 O 3 - abundances than in commercially available lintinen, P. 2000. Kaoliinitutkimukset Sodankylän Suolakaar- kaolin products. Despite all of the refining processes kossa 1998–1999. GeologicalSurvey of Finland, unpublished used, the brightness remained below the acceptable report M19/3732/2000/1/82, 9 p. + 7 app. levels for kaolin pigment. One of the main reasons for Manninen, T. 1991. Sallan alueen vulkaniitit : Lapin vulka- niittiprojektin raportti. Summary: Volcanic rocks in the Salla this is the fine grain size of the protoliths, particularly area, northeastern Finland: Areport of the Lapland Volcanite quartz and muscovite, as a result of which mechani- Project. Geological Survey of Finland, Report of Investigation cal purification is difficult. Further processing using 104. 97 p. + 5 app. flotation is planned, which will hopefully be effective Pekkala, y.& Sarapää, O. 1989. Kaolinexploration in Finland. In: Autio, S. (ed.) Geological Survey of Finland, Current in removing not only quartz, but also at least some Research 1988. Geological Survey of Finland. SpecialPaper of the mica, resulting in a product with improved 10, 113–118. brightness values. Rask, M. & lintinen, P. 2001. Kaoliinitutkimukset Sodankylän Siurunmaallavuosina1978–1988.GeologicalSurveyofFinland, unpublished report M19/3713/2001/1/82, 12 p. + 6 app. Sarapää, O.1996. Proterozoic primary kaolin deposits at Vir- tasalmi, southeastern Finland. Espoo: Geological Survey of Finland. 152 p. + 6 app.

47 Geological Survey of Finland, Special Paper 36 Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki

48 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 49– 60, 2005.

GEOPhySiCAl ChARACTERiZiNG OFTAiliNGS iMPOuNdMENT – A CASE FROM ThE ClOSEdhAMMASlAhTi Cu-ZN MiNE, EASTERN FiNlANd

by Heikki Vanhala 1) , Marja Liisa Räisänen 2) , Ilkka Suppala 1) , Taija Huotari 1) , Tuire Valjus 1) and Jukka Lehtimäki1)

1) Geological Surveyof Finland, P.O. Box96,FI-02151 Espoo, Finland 2)GeologicalSurveyofFinland, P.O.Box1237,FI-70211 Kuopio,Finland E-mail:[email protected]

Key words (GeoRef Thesaurus, AGI): geophysical methods, environmental geology, abandoned mines, tailings ponds, tailings, sedi- ments, chemical composition, Hammaslahti, Finland

introduction by drilling, including the profile sampling throughout the tailings and underlying parent sediments. The fact We present here preliminary results of a project in that dense drilling, needed for detailed characterising which we test and develop geophysical techniques and 3D modelling of an impoundment, is expensive, for mapping sulphide tailings impoundments. Our led us to start a project to test and develop geophysical studysite, thesmall Hammaslahti Cu-Znmine, techniques for mapping tailings impoundments. Our workedin1973–1986.Thetailingsimpoundmenthav - test site is the closed Hammaslahti mine (Fig. 1). ing an area of 30 hectares and an average height of The mine tailings typically exhibit a low electrical 9 metres, has been established on a bog. The interest resistivity (i.e., high electrical conductivity). There- in developing geophysical techniques for studying fore, electrical and electromagnetic (EM) methods tailings impoundments arises from the need of high- are the most commonly used in mine tailings studies resolution 3D structural, chemical and hydrological (Campbell et al. 1999, Campbell & Fitterman 2000, data for modelling and understanding the tailings Watson et al. 2001). At the Geological Survey of impoundment systems. Finland, airborne geophysics has been for few years Rehabilitation of tailings impoundment for final successfully applied to mapping both regional and closure, as well as assessing the risk of old impound- site-scale environmental impacts of mining in differ- ments require relevant data about the structure and ent kind of geological environments. Beamish and composition of the tailings material and the water Kurimo (2000) used airborne electrical conductiv- table and its temporal and spatial variation inside the ity data to detect acid leaks from active and closed impoundment. In Finland, tailings impoundments of coal mines in the United Kingdom, while Lahti et al. several metal sulphide mines have been engineered (2000) used airborne radiometric, magnetic and EM in bog basins or the depressions of small lakes. In (electromagnetic) and ground geophysical data for both cases, the substrata are organic rich sediments mapping environmental issues related to uranium underlying glaciolacustrine silt sediments, which are mining activities in eastern Germany. Vanhalaet al. compressing under load (Sipilä & Salminen 1995, (2002) studied the environmental, hydrogeological Räisänen2003). Ingeneral,thestratigraphyand and geological issues around an oil shale mining area characteristics of the impoundment are investigated in northeast Estonia. Electrical resistivity sounding

49 Geological Survey of Finland, Special Paper 38 Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

Fig. 1. Location and geology of the study area (Loukola-Ruskeeniemi et al. 1992).

results from the Hitura Ni mine tailings have been inside the impoundment presented by Heikkinen et al. (2002). (c)thickness of the tailings bed and the underlying ThefirstgeophysicaltestsattheclosedHammaslahti sediments, Cu-Zn mine were made in 2000 when a few electrical (d)bedrock relief and fracture zones resistivity soundings (ERT), aimed at locating sub- (e)internal structures (dams, cavities) surface leakage pathways through the impoundment In this paper we present the preliminary results of dam, were measured (Vanhala & Lahti 2001). More the geophysical studies. Furthermore, we discuss on ERT data were collected in 2001 – 2004, but most of the relationship between the geochemistry and the the geophysical measurements (refraction seismic, geophysical data of tailings and underlying sediments gravity, EM and ERT) are from 2003. Drillings and at some reference sites. sampling for chemical analysis were made in 2000, 2003 and 2004. Petrophysical results are from 2004 description of the study site (Table 1). The general objective of the ongoing study is to de- TheHammaslahtiCudepositisloc atedattheeastern velopgroundgeophysicalmethods, gravity,refraction margin of the Early Proterozoic Svecofennian Orogen seismic, EM and ERT, for mapping and monitoring (2.0–1.75 Ga), 12 km west of the exposed Archaean- tailings impoundment and dam constructions and Proterozoic boundary (Fig. 1). The country rocks are bedrock and sediment structures under and around composed of low-grade metamorphosed epiclastic theimpoundment.Petrophysicalproperties(electrical sediments dominated by graded-bedded feldspathic conductivity and induced polarization (IP), seismic graywackes intercalated with black schist layers and velocity and density) of the tailing material have phyllites. Three orebodies (S, N and Z) are located been only poorly known and one of the key tasks is in hydrothermally altered rocks. Major sulphides are to define them. Especially the relationship between pyrrhotite, chalcopyrite and pyrite in the S and N the electrical conductivity and IPand the properties orebodies, and sphalerite in the zinc ore body. of the tailings material is of great importance. The The Hammaslahti Cu-Zn Mine operated in 1973– structural features presumed to be suitable for geo- 1986.OutokumpuOymined7milliontonsoforegrad- physical mapping are the follows ing 1.16 % Cu and minor amounts of Zn and Au. (a)water table and the oxidised zone, The tailings impoundment is situated north of the (b)variation of grain size, mineralogy and chemistry flotation plant. Its surface area is about 30 hectares.

50 Geological Survey of Finland, Special Paper 38 Geophysical characterizing of tailings impoundment ...

Fig. 2. Topographic map of Hammaslahti before mining (upper left); aerial photograph of the tailings impoundment from 1974 (upper right); map of Quaternary deposits (brown=peat, yellow=sand and fine sand, red=bedrock, grey=till, magenta=tailings, (lower left); airborne electrical conductivity map (AEM), out-of-phase, 3.1 kHz, 1991 (lower right). Map area is 1.4 x 1.4 km 2 (Pohjakartta © Maanmittauslaitos, lupa nro 13/MYY105).

The tailings impoundment is dammed on the bog (Fig investigation methods of the tailings 2). The tailings embankment consists of local glacial impoundment till strengthened by country rock stones from the open pits (Pelkonen et al. 1973). The average height of the Profile drilling and sampling heap is 9 metres above the surface of the bog. The impoundment is recovered by a thin basal meltout till The basement and layer structure of the facility, and layer (10–60 cm). At present, plants typical for wild its hydrological conditions were studied by drilling meadows (mainly wild grass), and young birches and with a non-rotated percussion drill equipped with a planted pines grow more or less successfully (Fig. 3, soil core sampler at 22 sites (Fig. 4). Drilling work Räisänen et al. 2003). was done firstly in November 2000, then in May 2003

51 Geological Survey of Finland, Special Paper 38 Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

Fig. 3.Vegetation cover of the tailings in spring 2003 in the old Hammaslahti Cu-Zn mine area, eastern Finland.

and May 2004. In 2000, profile samples from tailings The total sulphur was determined using with the materials and underlying Quaternary sediments were Leco-S technique and total concentration of carbon continuously collected into non-contaminated plastic and nitrogen with a CN analyser. The extractions and (high dense polyethene, HDPE) tubes with a piston ICP-AES, S, C and N determinations were made at the and in 2003 with a special soil core sampler during FINAS accredited Geolaboratory of the Geological the drilling. The sampling technique is developed by Survey of Finland (GTK) in Kuopio. the GTK. In 2004, the tube sampling was used, since it allows the making of petrophysical core sample Geophysical measurements measurements. The sampling was done in a set of 1 and interpretation tools m sample per tube. After the measurements, sample tubeswerehalfopened,andsamplelayersforchemical The geophysical data used in this study is presented analysis were separated on the basis of the oxidation in Table 1. Location of the ground geophysical lines degree of the tailings and physical characteristics and profile sampling sites are in Figure 4. of the underlying sediments. In all cases, samples Tworefraction seismic profiles were measured for chemical analysis were frozen in the field or im- across the impoundment. The seismic measurements mediately after transporting to the Geolaboratory of enable the interpretation of dry overburden (tailings the GTK. + natural sediments), saturated overburden and the For chemical analysis tailings and underlying peat depth to bedrock. The method also gave information and silt sediment samples were freeze-dried and then about the type of overburden and the bedrock. The sieved to <2.0 mm fraction. Ammonium acetate (1 M) fracture zones in the bedrock can be detected from solution buffered to pH 4.5 for chemically adsorbed the low seismic velocity of broken rock. In certain elements (exchangeable, surface complexes) and hot circumstances, layers cannot be detected by seismic (90 o C) aqua regia for mica and clay mineral fraction refraction. This is usually due to the insufficient (including sulphides) (Niskavaara 1995, Räisänen & thickness or velocity contrast between the layers. If Carlson 2003, Räisänen et al. 2003). In contrast to the “hidden” layer is not taken into account in the mineral sediment samples, the nitric acid leach as- interpretation the calculated total thickness of the sisted with microwave (EPA3051) was used for peat overburden is too small. In Hammaslahti, the thick samples (Niskavaara 1995). The ICP-AES technique pile of dry and saturated tailings covers underlying was used for measurements of the element concentra- Quaternary sediments. The underlying natural sedi- tions in the above extracts. ment layer is in most cases undetectable by refraction

52 Geological Survey of Finland, Special Paper 38 Geophysical characterizing of tailings impoundment ... seismic survey. It can only be seen in the middle of misalignment of the loops. Then the layered-earth upper seismic line (Fig. 4). The second problem in interpretationwa smadewithmodel norm-basedinver - refraction interpretation is called the “reversal veloc- sion. In the 1D model, the earth is composed of a stack ity case” – the velocity in a layer is lower than in the of layers, each having a uniform conductivity. The 1D overlying layer. The low velocity cannot be detected conductivity structure, i.e., the conductivities of each by refraction survey. If there is no information of layer,issoughtbytheregularisedinversion.Thegoalis the low velocity layer the calculated total thickness tofindforeverymeasuringpointaminimum-structure of overburden is overestimated. Atypical reversal model,whichcanfitthemeasurementdatasufficientl y velocity case is a sand layer under gravel. well. The minimisation of the objective function (data Sixgravity profiles were measured across the misfit + β x model norm ) has been carried out with a impoundment. Seismic results and the water table damped Gauss-Newton algorithm. interpreted from the seismic data were used as refer- In HLEM measurements20 metre and 40 metre ence data in gravity interpretation. The interpretation coil spacingwere used.Thewiderc oil spacing of thegravitydatawas madeusinga three-layer model means deeper effective depth of investigation. The – bedrock, saturated sediment layer and dry sediment EM system with the shorter coil spacing has a higher layer. For the sediment material, densities of 1500 spatial resolution. Because here the conductivity of kg/m 3 (dry) and 1950 kg/m 3 (saturated) were used. the tailings bed is high enough the multi-frequency Possible sources of error were the density variation slingram system has frequency-dependent sensitivity of bedrock and the water table. to the conductivity variations in that layer. Inversion Ground slingram measurements were carried out results of HLEM data measured with coil separation using a multi-frequency horizontal loop EM method of 20 m and 40 m delineate similar conductivity struc- (HLEM), (APEX MaxMin I+8S system). Eight fre- tures. However in the results measuredwithwider coil quencies (440, 880, 1760, 3520, 7040, 14080, 28160 separation more 3D effects could be seen, probably and 56320 Hz) were measured. caused by the bedrock conductors. 1Dinversionwasusedtointerpre ttheEMdata.First Inaccuracy in loop spacing and alignment of the the quality of the HLEM data was assessed with 1D loops are likely to be the largest sources of error in multi-layer inversion using a few layers with vary- the horizontal loop EM measurements. Areference ing thickness and conductivity, in order to examine cable connects the transmitter and receiver loops the effects caused by 3D conductivity structures and and with the help of the cable the keeping of the coil

Table1.Hammaslahtigeophysicaldata.

METhOd Time Specifications

Airborne data1991 radiometric, magnetic & EM (3.1 kHz), 200 m line spacing, 30 m nominal flight altitude

Gravity 2003, June 6 lines

Refraction seismic 2003, June2 lines (& one short line across PP72)

HLEM2003, June slingram (horizontal loop EM) (8 frequencies, 440, 880, 1760, 3520, 7040, 14080 and 28160, 56320 Hz), 10m/reading: 4 lines, coil spacing 20 m 2 lines, coil spacing 20 m & 40 m

TEM 2003, Julysingle loop (50x50 m 2 ), 7 soundings

ERT 2000 – 2004 wenner & dipole-dipipole,ole, a=1,2,3or 5m5 m,,aautomatic multielectrode system, 28,42 or 56 electrode groundings, most of the drilling sites.

IP2001 1D wenner, a=2 m, 6 soundings

Laboratory resistivity and IP2004, MayDrilling sites N17, N18, N19, N20, N21, N22 (240 samples)

53 Geological Survey of Finland, Special Paper 38 Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

Fig. 4.Geophysical sounding lines and drilling sites (Pohjakartta © Maanmittauslaitos, lupa nro 13/MYY105).

separation is attempted at the constant value (in this samples) in one-metre long plastic sample tubes by a study 20 or 40 m). The error in coil separation is most spectral IPsystem described by Vanhala and Soininen evidently seen in the in-phase component caused by (1995). Small holes were drilled for platinum stick theincompletelycompensatedprimarymagneticfield electrodes at both ends and in the middle of the tube (e.g. Frischnecht et al. 1991). Wehavealsoconsidered so that (for each sample) three resistivity-IPspectra the true coil spacing as an unknown parameter and could be measured. estimated it carefully from the field data. At least in the case of 1D conductivity structure the used model Chemical analysis for the layered ground and for measuring system works better than the inversion assuming constant For chemical analysis tailings and underlying peat coil spacing. and silt sediment samples were freeze-dried and then The firstresistivity soundings (ERT, electrical sieved to <2.0 mm fraction. The hot (90 o C) aqua re- resistivity tomography) at Hammaslahti were made gia digestion method was used to determine element in 2000 (Vanhala & Lahti 2000) and continued an- concentrations in sulphides and mica and clay mineral nually until 2004. All the soundings have been made fractions of the tailings (Niskavaara 1995, Räisänen using AGI/Sting multielectrode system, Wenner or & Carlson 2003, Räisänen et al. 2003). Peat samples dipole-dipole configuration and electrode spacings were digested with the concentrated nitric acid in of 1, 2, 3 or 5 metres. 2D inversion of the 2D field the microwave (EPA3051, Niskavaara 1995). The data has been made using RES2DINVsoftware (Loke ICP-AES technique was used for measurements of & Parker 1996). Presumably because of the dry and the element concentrations in both extracts. In this high-resistivity top-layer and a low-resistivity deeper context, chemical data is only presented from the sub-surface, the resistivity data were partly too noisy reference profiles at site N19 and N20. for reliable interpretation. TotalsulphurwasdeterminedusingwiththeLeco-S 240 samples for laboratory resistivity and IPmeas- technique and total concentration of carbon and nitro- urements werecollectedinMay2004from sixdrilling genwithaCNanalyser. TheextractionsandICP-AES, sites(N17,N18,N19,N20,N21,N22).Thelaboratory S, C and N determinations were made at the FINAS measurements were made within a few hours after the accredited Geolaboratory of the Geological Survey drilling, directly from the original (nearly undisturbed of Finland in Kuopio.

54 Geological Survey of Finland, Special Paper 38 Geophysical characterizing of tailings impoundment ...

Results and discussion Thevariation inthebasegradientbetweenthewest- ernandeasternpondsresults from thecompression The structure of the tailings impoundment capacityofbottom sediments andunderlyingbedrock topography.Theb asementcloseto thesoutherndike Originally,thetailingsimpoundmentwasdivided ofthewesternpo ndliespartially on outcrops ofcr ys - intotwopondsbyadam,whichcannotbevisually tallineArcheanbedrockandpartiallyon thesandytill distinguished from thesurface topography(Fig.2, overlainbyathi npeatlayer. The centralandnorth ern aerialphotoontheright). Theshallowdepression is parts ofthewesternpondlieon thickpeatsediments, mainlylocated inthecentralpart oftheeasternpond. which are underlain by silt and clayey silt sediments. Theretheelevation ofthesurface increasesabout2m Theeasternpond liesentirelyon peatandsiltsedi - towardsthedikeinthenorthandnortheast,whereasit ments. According todrillingdata, thepeatlayeran d doesnotchangemuchtowardthesouth. Bycontrast, partiallytheunderlyingsilthavebeencompressed. thesurfaceelevation ofthewesternpondvariesalot. Thegroundwatertableinthebottom sediments lies Thedifference inthesurfacetopographybetweenthe variably0.5–1.5mbelowthetailings. Thisindicates southernandcentralparts isabout4.5mandbetween thatthebasement ofthetailingsi swatertight. thecentralandnorthernparts about1.5m.Similarly, the base of the eastern pond is more or less flat,whereas Geophysical results in the western pond itdescends about 6mfrom south tonorth(Räisänenetal.2003). The airborne data is from 1991. The tailings im- Accordingtothedrillingdata,tailingsinbothponds poundment canbe seenas alow-resistivityanomalyin canbedivided intodryoxidised andweaklyoxidised the quadrature (out-of-phase) component map. Today layers,andunderlyingwater-saturatedandnon-oxidised the GTK’s airborne system has a dual-frequency (3.1 layer. Intheeasternpond,thewatertable(water-satura- kHz and 14.4 kHz) EM-data acquisition and a high tion zone)hasstayed quiteclosetothesurface, varying accuracy GPS positioning, giving rise to inversion of atthedepthof0.1–3metresfrom thesurface (lowest at subsurface conductivity distribution (see for example theedges). Inspringandrainya utumns,thedepression Suppala et al. 2003, Lintinen et al. 2003). The 1991 oftheeasternpondiswatercovered.Inthewestern EM, radiometric and magnetic data can be used for pond, thebasegradientslants towardthenorth,and regional scale mapping of rock units, major fracture thereforethewatertableismorechangeablethanin zones, overburden thickness and quality estimates, theeasternpond.Thewatertable dropped inthemid but not for detailed mapping of targets like the Ham- 1990swhenthenortherndikewasfractured.In2000, maslahti tailings impoundment. thewater-saturation zonewasatadepthof5mbelow Refraction seismic interpretation from line 1 is thesurfaceandinMay2004,ata bout3mfrom surface. illustrated in Figure 5 (see also Fig. 4). Dry and satu- Similarlytotheeasternpond, thethickness ofoxidised rated overburden as well as the bedrock with fracture layeristhin,beingabout0.7 cmthick.Fortunately,the zones can be detected from the model. The measured accidenthadonlyminorconsequen ces. Onlyasmall seismic velocity for the dry tailings in the profile was amountof tailings flowed out tothe bog. Presumably, 300–480 m/s (Fig. 5). For natural sand and gravel thewaterleakagewasmoderate, s ince no deterioration formations the seismic velocity is typically 400 – 800 wasdetected downstreamintheIiksejoki River. m/sdependingonthegrainsize.Themeasuredseismic

Fig. 5. Seismic interpretation, line L_1.

55 Geological Survey of Finland, Special Paper 38 Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

Fig. 6. 3D bedrock relief model under the tailings inpoundmennt. The model is based on gravity nad seismic data.

velocity of water-saturated tailings was 800 – 1100 derivatives with respect to conductivity, can make m/s. It is clearly lower than the seismic velocity of the inverted conductivity sections also too smooth. natural sediments of 1400 – 1700 m/s. The measured Results from multi-layer inversion using 4 or 5 lay- seismic velocities of the bedrock under the tailing ers are for the most part equally useful. The smooth bed showed that the rock is commonly more or less inversion is just more robust if we do not know the fractured (< 4500 m/s). The seismic velocity for fresh number of layers. rock is typically > 5000 m/s. Figure 9 shows two examples of resistivity sections The interpretation results of the six gravity lines (ERT) and their relationship to thedrilling results. The together with the seismic results were integrated to a upper section also includes a comparison between 3D bedrock relief model shown in Figure 6. Together laboratory and ground resistivity (2004). The electri- with the seismic results, which indicate the fracture cal layering seen in the sections reflect the structure zones, the 3D bedrock relief model (or the depth-to- and composition of the tailings material and the water bedrock map) is of great importance in modelling the table. hydrogeology of the area. Figure 10 shows the relationships between the elec- Figure 7, which present EM interpretation from line trical conductivity and chemistry of tailings profiles 5, shows that the inverted results are in agreement at drilling site N6 (eastern pond). The chemical data with the drill core resistivity data. Constraining with is from samples taken in November 2000 and the the minimum structure model, i.e., minimal spatial electrical resistivity measurement from field data in

Fig. 7. Line 5, drill core resistivity data (N19 and N20) embedded to electricalresistivity section based on HLEM, i.e., multi-frequency slingram data (1D inversion, 20m coil spacing). Here slingram measurements with the wider coil spacing bring more frequency-dependent information from the conductivity of the formation. Possibly due the bedrock conductors, the 1D model explains slightly better the results with coil spacing of 20 m than with the coil spacing of 40 m. Since the inversion results with both coil separations seem to be consistent with each other, the resolution of the inverted results could be improved using join inversion of both measurements.

56 Geological Survey of Finland, Special Paper 38 Geophysical characterizing of tailings impoundment ...

Fig. 8. Line 5, electrical resistivity (HLEM, 1D inversion, 20m coil spacing), embedded to gravity, seismic and drilling results. The tailings bed can be seen as a low-resistivity layer. The higher-resistivity top-layer refers to dry tailings. Note that the eleva- tion is exaggerated.

July 2001. The whole resistivity section (July 2001) is The electrical resistivity values measured for the presentedinFigure9. Thedistributions show similari- tailings in the laboratory and inverted from the field ties, especially above the water tables. Obviously, the data, 5–20 Ohmm (200–50 mS/m), are lower than the actualwatertablewasdeeperdur ingthemeasurements resistivity values of the natural soils and sediments in July 2001 than during drilling in November 2000. in Finland. In earlier papers (Campbell et al. 1998, Figure 11 reveals a significant relationship between Campbell & Fitterman 2000, Campbell & Beanland the electrical conductivity and distribution of Cu and 2001, Campbell 2001, Anderson et al. 2001) IPhas Zn concentrations at drilling sites N19 (western pond) beenfound tobea promisingmethodofcharacterising and N20 (eastern pond). Asimilar trend can also be the tailings. The first results in this study (Fig. 11) are seen for sulphur. The IPdata do not show as detectable not, however, promising. The IPvalues are low and no a relationship as the conductivity. evident relationship to the chemistry is visible.

Fig. 9. Electrical resistivity (ERT) sections from drilling sites N6 and N20. Note the different distance and depth scales. In both sections resistivity reflects the structure of tailings. In the upper section core resistivity data (N20) is also presented. It is very similar to the ERT result.

57 Geological Survey of Finland, Special Paper 38 Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

Fig. 10. (upper) Comparison between electrical resistivity soundings (ERT, red line) and the distribution of Zn, S and Fe in the tailings and underlying peat and silt sediments at drilling site N6 (Vanhala et al. 2004).

discussion and conclusions of the electrical conductivity variations can be related Up to present the geophysical results have seemed to the chemical composition of the tailings, especially promising. Although the tailings impoundment is a to variation of metal sulphide content. very complicated target consisting of material not having a natural origin, the conventional techniques, gravity and seismic, provided accurate results of the REFERENCES bedrock relief and fracture zones. Seismic velocities Anderson,A.l., Campbell, d.l. & beanland, S. 2001. Labora- differ from those of natural sediments and more work tory measurements of electrical properties of composite mine has to done to connect the data to the properties of dumpsamplesfromColoradoandNewMexico.U.S.Geological the tailings material. Survey, Open-File Report 01–158. 11 p. + app. Electricalconductivityseemsto provideinformation beamish,d.&kurimo,M.2000. Trialairbornesurveystoassess minewater pollution in the UK. In: 62nd EAGE Conference and not only on the thickness of the tailings bed and the Technical Exhibition, Glasgow, 29 May-2 June 2000 Extended moisture content and water table in the impoundment, Abstracts. Houten: European Association of Geoscientists & but also on the chemical composition (metal sulphide Engineers. 4 p. content) of the tailings as seen in Figure 11. The fact Campbell,d.l.2001. Spectralinducedpolarizationmeasurements atthemainiron inclineminedumpnearLeadville, Colorado. that the field conductivity data (both the ERTand EM U.S.GeologicalSurvey,Open-FileReport 01–315,9p. results) are very similar to that of the core sample Campbell, d.l., Fitterman, d.v., hein, A.S., & Jones, d.P. conductivities, suggests that geophysics will be an 1998 . Spectral induced polarization studies of mine dumps near effective tool for versatile characterising of tailings Silverton, Colorado. Proceedings of SAGEEP(Symposium on theapplicationof geophysics toengineeringandenvironmental impoundments. problems), March 22–26, 1998, Chicago, Illinois, 761–769. In general, the geophysical methods provided rel- Campbell,d.l.,horton,R.J.,bisdorf,R.J.,Fey,d.l.,Powers, evant information on the main structural elements of M.h., & Fitterman, d.v. 1999. Some geophysical methods the tailings impoundment – relief and structure zones tailings/mine waste work. Tailings and mine waste ’99. Pro- ceedings of the sixth international conference, Fort Collins, of the underlying bedrock, thickness of the tailings Colorado, January, 24–27, 1999. bed, internal embankments and water table. Electri- Campbell,d.l.&Fitterman,d.v.2000. GeoelectricalMethods cal conductivity and refraction seismic data refer to for Investigating Mine Dumps. In: Internation Conference on lateral and vertical variation in the properties and/or AdicRockDrainage(ICARD2000),May21–24,2000,Denver, Colorado. Proceedings from the Fifth International Conference composition of the tailings. Comparison between the on Acid Rock Drainage 2. Colorado: The Society for Mining, chemical and electrical data suggests that at least part Metallurgy, and Exploration Inc., 1513–1523.

58 Geological Survey of Finland, Special Paper 38 Geophysical characterizing of tailings impoundment ...

(a)

(b)

Fig. 11. Comparison between drill-core electrical conductivity and IPwith chemical data of the tailings (Zn, Cu and S), N19 (11a) and N20 (11b). Figure 11b also shows a resistivity sounding (ERT) result from Figure 9.

Campbell, d. l. & beanland, S. 2001. Spectral induced polari- June 2000. ExtendedAbstracts, Volume 1, D20. Houten: Euro- zation measurements at the Carlisle mine dump, New Mexico. pean Association of Geoscientists & Engineers. 4 p. U.S. Geological Survey, Open-File Report 01–363, 11 p. lintinen,P.,Suppala,i.,vanhala,h.&Eklund,M.2003. Survey Frischknecht, F. C., labson, v. F., Spies, b. R. & Anderson, of a buried ice-marginal deposit by airborne EM measurements w. 1991. Profiling methods using small sources. In: Nabighian, – a case from Kyrönjoki valley plain in southern Ostroboth- M. N. (ed.) Electromagnetic Methods in Applied Geophysics nia, Finland. In: Autio, S. (ed.) Geological Survey of Finland, 2, Applications, Part A. Tulsa: Society of Exploration Geo- Current Research 2001–2002. Geological Survey of Finland, physicists, 105–270. Special Paper 36, 67–75. heikkinen, P. M., korkka-Niemi, k., lahti, M. & Salonen, loke,M.h&barker,R.d.1996.Rapidleastsquaresinversionof v.-P.2002 .Groundwaterandsurfacewatercontaminationinthe apparent resistivity pseudosections by a quasi-Newton method. area of the Hitura nickel mine, western Finland. Environmental Geophysical Prospecting 44, 131–152. Geology 42 (4), 313–329. loukola-Ruskeeniemi, k. 1992. GeochemistryofProterozoic lahti, M., kurimo, M. & vanhala, h. 2000. Assessment of metamorphosed black shales in eastern Finland, with impli- environmental risks by airborne geophysical techniques. 62nd cations for exploration and environmental studies. Espoo: EAGE Conference & Exhibition SECC, Glasgow, 29 May – 2 Geologian tutkimuskeskus. 86 p. (dissertation)

59 Geological Survey of Finland, Special Paper 38 Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

Niskavaara, h. 1995. Acomprehensive schemeofanalysis for Republic, August 31st – September 4th 2003: proceedings. soils, sediments, humus and plant samples using inductively Prague: Czech Association of the Applied Geophysicists. 4 p. coupled plasma atomic emission spectrometry (ICP-AES). In: vanhala, h. & lahti, M. 2001. Test of resistivityandIPmethods Autio, S. (ed.) Geological Survey of Finland, Current Research formappingminetailings–ResultsfromHammaslahti,aclosed 1993–1994. Geological Survey of Finland. SpecialPaper 20, Cu mine in eastern Finland. Proceedings of 7 th EEGS-ES Meet- 167–175. ing, Birmingham, England, September 2nd-6th , 2001. 2p. Pelkonen, k.,Alopaeus, E., Penttilä, S. & korhonen, O.1973. vanhala, h,All, T., huotari, T., kattai, v. & lintinen, P. 2002. Outokumpu Oy:n Hammaslahden kaivos. Vuoriteollisuus 2, Test of airborne geophysics for mapping oil shale mining area 90–96. in Kohtla-Järve, NE Estonia. 64th EAGE Conference & Ex - Räisänen,M.l.&Carlson,l.2003. Selectiveextractionmethods hibition, Florence, Italy, 27–30 May, 2002. Houten: European applied for secondary precipitates in the mining environment. Association of Geoscientists & Engineers. 4 p. Nordic Society for Clay Research, Newsletter 14, February vanhala,h.,Räisänen,M.l.,huotari,T.,valjus,T.,lehtimäki, 2003, 6–7. ((EExxtteendednded absabstrtracactts)s) J. & Suppala, i. 2004. Characterising tailings impoundment at Räisänen, M. l., Niemelä, k. & Saarelainen, J. 2003. Rautasul- the closed Hammaslahti Cu-Zn mine, Finland. In: Near surface fidipitoisen rikastushiekan läjitysalueen rakenne ja ympäristön 2004:10thEuropeanMeetingofEnvironmentalandEngineering pintavesien nykytila. Vuosien 2000 ja 2001 seurantatulokset, Geophysics, Utrecht, The Netherlands, 6–9 September 2004: Hammaslahden vanha kuparikaivos. Geological Survey of Extended abstracts book. Houten: EAGE. 4 p. Finland, unpublishedreport S/44/0000/1/2003,27p.(In vanhala, h. & lahti, M. 2000. Sähköisten luotausten käyttö Finnish) kaivosympäristötutkimuksissa – tuloksia Hiturasta, Hammas- Räisänen,M.l.2003. Rehabilitationoptionsfortailingsimpound- lahdesta ja Otravaarasta. In: Carlson, L., Kuula-Väisänen, P. ments – case studies of ”wet” cover and wetland treatment. In: & Loukola-Ruskeeniemi, K. (eds.) Ympäristö, terveys ja tur- Hebestreit C., Kudełko J. & Kulczycka J. (eds.) Mine Waste vallisuuskaivannaisteollisuudessa:seminaari31.10–1.11.2000 managementBest AvailableTechniques. Kraków:CBPM Haikon kartanossa: esitysten lyhennelmät. Vuorimiesyhdistys. Cuprum, Wroclaw and MEERI PAS, 141–150. Sarja B 76, 86–88. Sipilä, P. & Salminen, R. 1995. Environmentalliimpact of three vanhala, h. & Soininen, h. 1995. Laboratory technique for sulphide mine tailings in Finland. In: Autio, S. (ed) Geological measurement of spectral induced polarization response of soil Survey of Finland, Current Research 1993–1994, Geological samples. Geophysical Prospecting 43 (5), 655–676. Survey of Finland, Special Paper 20, 107–114. watson, M. i., locke, C. A. & Cassidy, J. 2001. Imaging of Suppala, i., vanhala, h. & lintinen, P. 2003 . Comparison be- mine tailings leachate using ground penetrating radar and tween ground and airborne EM data in mapping acid sulphate electromagnetic methods at Tui mine, New Zealand. In: 63rd soils and sulphide bearing clays in the river Kyrönjoki valley, Conference and Technical Exhibition, Amsterdam, The Neth- western Finland. In: Mares, S. & Pospísil, L. (eds.) 9th Meeting erlands, 11–15 June. 2001. Houten: European Association of of Environmental and Engineering Geophysics, Prague, Czech Geoscientists & Engineers. 4 p.

60 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 61– 71, 2005.

GEOPhySiCAlChARACTERiSiNGOFSulPhidERiCh FiNE-GRAiNEd SEdiMENTS iN SEiNÄJOki AREA, wESTERN FiNlANd

by Ilkka Suppala, Petri Lintinen and Heikki Vanhala

Geological Surveyof Finland, P.O. Box96,FI-02151 Espoo, Finland E-mail:[email protected]

Key words (GeoRef Thesaurus, AGI): sediments, acid sulphate soils, geophysical methods, airborne methods, ground methods, elec- tromagnetic methods, resistivity, electrical conductivity, Seinäjoki, Finland

Sweden the total extent ofASS is approximately 1400 km 2 (Öborn 1994). Previous studies related to ASS introduction soils have mainly focused on the surficial soil layers to some 3 m in depth, where oxidising and leaching In the Ostrobothnian region of western Finland process operates. extensive parts are covered by sulphide rich clay and The sulphide clays are characterised by an excep- silt sediments, which were deposited during a more tionally high electric conductivity (100–500 mS/m extensive phase of the Baltic Sea, mainly during the (10–2 Ωm)) compared to other glacial sediments, Litorina Sea period 7500–1500 years BC. During whichmakesthemespeciallysuitableforEMmethods. the deposition of organic rich Litorina sediments in Peltoniemi (1982) made the first tests of using AEM shallow sea anoxic conditions prevailed resulting in measurementsforthemappingofconductiveoverbur- sulphate reduction to sulphide. The sulphide-bearing den in the Kyrönjoki river valley. He used apparent sedimentsaltertoharmfulsulphatesoilswhenexposed resistivities and depths and conductive horizontal to the air. In central Ostrobothnia the present rate of thin-layer(1D)modelscalculatedfromone-frequency land uplift is 8–9 mm / year (Donner 1995) leading (3 kHz) AEM data. These results were compared with to continuous exposure of new dry land. In addition ground geophysics and ground truth. Åström (1996) to natural processes, human activities related to cul- used AEM maps (the amplitude of response and the tivation increase the natural oxidation process. Soils ratioofin-phasetoquadraturecomponent)todelineate developed on sulphide rich sediments are character- the fine-grained sulphidic sediments in the Petalax å ised by pH values as low as 3–4 and they are often catchment area. called acid sulphate soils (ASS). Steady oxidation of Puranen et al. (1999a, b) demonstrated howone- sulphides annually releases significant amounts of Al frequency airborne EM data can be used for mapping and other harmful elements, such as Ni and Cd, into the thickness and lateral distribution of the western river water (Palko & Weppling 1994). Finland sulphide clays. These papers also presented Palko (1994) has estimated that in coastal areas of new in-situ conductivityprobingmeasurements,which Finland the total extent of ASS is some 3300 km 2 . In were made in different fine-grained sediment areas

61 Geological Survey of Finland, Special Paper 38 Ilkka Suppala, Petri Lintinen and Heikki Vanhala

in Finland. Puranen et al..( (1999a, b) also pointed out Ilmajoki (Fig.1). The landscape is typical of southern that AEM data should be combined with ground-truth Ostrobothnian with low-lying river valleys filled with data to get a reliable tool for overburden mapping. clay and silt sediments often reaching thickness of 20 In interpretation they used AEM maps of apparent m. Bedrock outcrops, partly covered by till, delineate resistivities and the in-phase/quadrature values. Pu- the river valleys. Fine-grained sediments in the river ranen et al. (1999a,1999b) emphasised the role of valleys are manly cultivated and they are situated at soluble chloride as an important component causing an altitude of 40 m a.s.l, whereas the adjacent gently the high electrical conductivity of sulphide-bearing undulating hills often reach an altitude of 60–90 m fine-grained sediments. a.s.l. The surface relief of Kyrönjoki river valley is InAustraliaBell(20 03) testedgroundEM to pre dict relatively flat with minor topographical differences acidification risk, but found only poor correlation be- mainly caused by recent human activities related to tween the sulphide content and the inverted electrical ditching and the prevention of spring flooding. The conductivity. In that test area saline porewaters are bedrock in the study area is mostly composed of mica probably the main factor controlling the electrical schists (Mäkitie & Lahti 1991, Mäkitie et al. 1991). conductivity. His conclusion was that EM is not an Previousdrillingresultsshowthattheglacioaquatic effectivetoolfordirectlymappingtheacidsulphatesoil and postglacial organic rich clay and silt sediments in hazard of saline (and conducting) Australian soils. the Kyrönjoki river valley are typically about 20 m Thepresentstudystartedin2002andthemainobjec- in total thickness (Kukkonen 1990a,b) and they were tive was to develop airborne EM method for mapping deposited during the earlier, more extensive stages of and delineating the sulphide clay – sulphate soil areas the Baltic Sea. According to Kukkonen (1983), the (Lintinen et al. 2003, Suppala et al. 2003, Vanhala et lowermost 1–2 m of fine-grained sediment was de- al. 2004). As reference data and for detailed studies posited during the Yoldia Sea period, the middle part anddevelopmentofintegratedint erpretation,airborne during the Ancylus Lake period and the upper part magnetic and radiometric, ground EM and resistivity, during the Litorina Sea period. The highest shoreline gravityandrefractionseismicmeasurementswerealso of the Litorina Sea lies at 60 m a.s.l. The uppermost made. Results are compared to chemical and physi- sedimentary unit, usually less than 1 m in thickness, cal properties analysed from reference profile drilled is only found near the Kyrönjoki river, where annual through clay and silt sediments. spring flooding has maintained wetland areas. Based on 30 studied soil profiles Österholm (1998) Geology of the study area estimated that two-thirds of the soils in the Rintala reclamation area, situated within the survey area of Thestudyareaissituatedinthe Kyrönjoki-Seinäjoki this study, are very acid, having a minimum pH value rivervalleyplaininthemunicipalitiesofSeinäjokiand in the oxidised layer of around 3.5. In soils with very

Fig. 1. Location map of the survey area in the Seinäjoki region of Ostrobothnia, western Finland. The highest shoreline, which delineates subaquatic and supraquatic land (3), the isobases (4) of the highest shoreline, and the shoreline of Litorina Sea (2) and the present coast line (1) is marked (after Alalammi 1992).

62 Geological Survey of Finland, Special Paper 38 Geophysical characterising of sulphide rich fine-grained sediments...

Fig. 2. Map of Quaternary deposits in Senäjoki-Ilmajoki region. The ground geophysical lines and sampling/drilling sites are marked. Soil sampling locations of Österholm (1998) are marked with stars (pH ≤ 4) and triangles (pH > 4) indicating minimum pH value for individual soil profiles of about 3 m deep (Pohjakartta © Maanmittauslaitos, lupa nro 13/MYY105).

low pH values the sulphur concentration was typi- immediately performed after piston cores have been cally 0.25–0.8 % in the reduced layer and the carbon opened in the laboratory. The measurements were content 1–3% in the oxidised layer. Whereas in the performed through the surface as quickly as possible rest of the soil profiles the minimum pH was seldom in order to obtain measurement from unoxidised sedi- less than 5, the sulphur content in the reduced layer ment. The laboratory system consists of HP 35665A was typically <0.1 % and the carbon content in the Signal Analyser and a Wenner-type electrode array oxidised layer >4 %. with 1 cm long steel electrodes and 1 cm electrode spacing. Measurements were conducted at an interval Sampling and laboratory analyses of 10 cm in drilled cores. The pH of the samples was determined by a portable analyser. Drilling was conducted by GM 100 drilling rig After logging, resistivity and pH measurements applying a piston sampler with a sampling tube 2 m piston cores were sampled at approximately 0.5–1 m in length and a 45 mm inner diameter. The drilling intervals. Samples consisted of about 0.1 m sequence locations are shown in Figure 4. Standard sedimen- of piston core. In all, 75 soil samples were chemically tological procedures were applied for the logging of analysedat theGeolaboratoryofGTK. Prior chemical drilled samples. Continuous piston core samples of analyses the soil samples were lyophilised. Fluoride, soft sediments, i.e., clay, silt or fine sand were opened chloride,bromide,nitrateandsulphateconcentrations in the laboratory. Coarse-grained sediments difficult were determined from the water leached samples by to penetrate with the piston corer were sampled by ion chromatography (Dionex DX120). Total sulphur flow-through-bit and only studied in 1 m intervals or concentration was analysed with LECO equipment. in intervals related to the changes of the penetration rate indicating consistency differences of the sedi- Geophysical data and interpretation ment. Flow-through-bit samples were studied in the field and they reveal only scattered information on The airborne data was acquired using the GTK’s major sediment units. (Geological Survey of Finland) Twin Otter aircraft Resistivity and pH values of core samples were equipped withmagnetic(horizontalgradiometer

63 Geological Survey of Finland, Special Paper 38 Ilkka Suppala, Petri Lintinen and Heikki Vanhala

– two magnetometers at the wingtips), radiometric 1760, 3520, 7040, 14080 and 28160 Hz) were meas- (earth’s gamma radiation – total count, Th, K, U ured. Nominal coil spacing of 40 m was used in all channels), and dual-frequency EM system (3125 Hz ground EM profiles. Also measurements with terrain and 14368 Hz). The vertical coplanar coils, mounted conductivity metres (EM-31 & GEM-300) have been on the wingtips, have a separation of 21.36 metres. made along the slingram profiles. Adetailed description of the EM system is given by Airbornemagneticsismostusefulformappingbed- Poikonen etal. (1998).The nominal flight altitude was rockgeology(Fig.3,upperleft).Anomaliesarecaused 30 m and the line spacing 100 m. Altogether, 89 lines by magnetic remanence and magnetic susceptibility. were measured. Magnetic susceptibility affects the EM responses, but Ground EM measurements were carried out using in this study are there are no signs of that. Conduc- the multi-frequency horizontal loop slingram method tive overburden dampens the possible contribution of (APEX MaxMin I+8S system). Six frequencies (880, anomalous susceptibility of bedrock.

Fig. 3. Airborne geophysical maps of the Seinäjoki study area – magnetic map (upper left), Total radiation (upper right), Electromagnetic in-phase component, 3.1 kHz (lower left) and the apparent depth, 14.4 kHz (lower right).

64 Geological Survey of Finland, Special Paper 38 Geophysical characterising of sulphide rich fine-grained sediments...

The Earth’s measured gamma radiation, through layer,issoughtbytheregularizedinversion.Thegoalis airborne radiometrics, is highlighted in the uppermost tofindforevery measuringpointa minimum-structure surface material. Values of K, U and Th channels and model,whichcanfitthemeasurementdatasufficiently their ratios have also been used to assist mapping soil well. The 1D responses and sensitivity matrices have deposits in Finland (Hyvönen et al. 2003). Radiomet- beencalculatedbytheAirbeoprogram(Chen&Raiche rics gives a measure of the radioactivemineralcontent 1998). The minimization of objective function (data of the surface, but the intensity of radiation is also af- misfit + β x model norm ) has been carried out with fected by the moisture/water content of the uppermost Haber’s (1997) damped Gauss-Newton algorithm. part of the surface. Figure 3 (upper right) shows the The EM system of Twin Otter (at 3125 and 14368 map of the total count channel. The strongest signal Hz) is most sensitive to the conductivity of a half- reflects the exposed bedrock. The lowest values show space in conductivity aperture of ~ 0.02 – 1 S/m (50 the wetlands and mires. Variation in water or moisture – 1 Ω m). Achange in conductivity will cause clearly content of surface soils is also observable in areas of noticeable changes in at least 3 measured responses fine-grained sediments. (in both in-phase components and at least in one quad- AEM and EM expose the sub-surface conductiv- rature component). So with two-frequencyAEMdata ity structure. Here we are interested in conductive wecanalsogetreasonable results, and the interpreted overburden and that conductivity which is related variationsinconductivityandthickness oftheoverly- to sulphide-bearing fine-grained sediments. Some ingconductingsedimentsdepictthetrueconductivity of the magnetic anomaly zones are also conductive structureofthesediments. (Fig. 3 left, magnetic and EM in-phase at 3125 Hz). Thevolumeof theearthcontributing to theresponse In AEM interpretation the contribution these zones of an AEM system is said to be the illumination foot- make could only be seen in areas without conductive print of the system. There are different definitions overburden. Variation in moisture and water content of the footprint; originally Liu and Becker (1990) of surface soils has an effect on the conductivity of defined it as a side length of a square surface, centred the uppermost part of the sediments. This could be directly below the transmitter coil that contains the seen in ground EM measurement, e.g. in the results induced currents which accounts for 90% of the ob- of the terrain conductivity metres. served secondary field. Beamish (2003) has defined The maps of apparent resistivity and depth are a transmitter footprint using only induced current. useful for first-pass interpretation. These maps are We have visualized the illumination footprints of provided togetherwiththemeasuringquantities. used EM systems by using 3D sensitivity functions Apparent resistivity and apparent distance mean that (distributions) of these coil systems (Suppala et al. the resistivity of a homogeneous half-space and that 2003). Considering the footprint of the ground EM distance of that half-space from the sensor system, systems the electromagnetic coupling between the whichexplainmeasured in-phasea ndquadrature induced current system and the receiver should be responses (Fraser 1978; Peltoniemi 1982). Appar- takenintoaccount,asintheLiu-Beckerfootprint(Reid ent depth is then apparent distance minus measured & Vrbancich 2004) or in the 3D sensitivity functions flight altitude. This transformation is the simplest 1D approach. The footprint of the EM system is only interpretation method. one qualitative measure of its lateral resolution, and Resistivity mapping is a proper display method for usually these estimates have been calculated using a AEM data, at least in these low resistive clay areas. homogeneous half-space. Here the conducting homogeneous half-space can be FortheAEMsystemoftheTwinOtterthemost quiteavalidmodel toexplain themeasured responses. sensitiveregion isbelowthecoil systemandelongated The skin depth is one measure of electrical attenua- perpendiculartotheflightdirection.Verticalcoilswhose tion (e.g. Peltoniemi 1982). Assuming a resistivity axes are oriented parallel tothe flightline means agood of 7 Ω m, the skin depths are 23.8 and 11.1 m for the spatial resolution along the flightline and an adequate low and high frequency, respectively. In the deeper lateral coverage perpendicular tothe flightline. For parts of this clay area the apparent resistivities (at thegroundhorizontalloopsystem,themost sensitive high frequency at least) are near the spatial average region is elongated along the profile between the coils. resistivity of these fine-grained sediments. FortheAEMsystemthefootprintislargerthanforthe In this study, 1D layered-earth interpretation of the APEX MaxMin ground EM system withthe coil spac- EMdatawas madewithmodelnorm-basedinversion. ingof40m.Thefootprintofthe terrain conductivity In the 1D model, the earth is composed of a stack of metres EM-31 with the coil separations of 3.66 mis layers, each having a uniform conductivity. The 1D less than10m. conductivity structure, i.e., the conductivities of each

65 Geological Survey of Finland, Special Paper 38 Ilkka Suppala, Petri Lintinen and Heikki Vanhala

Fig. 4. Airborne electrical conductivity map (apparent resistivity, 14.4 kHz), the ground geophysical lines and drilling sites (D-1, D-2). The lines L2 and L5 and AEM lines 42, 43 and 44 are discussed in Figures 5, 6 and 8.

Results The apparent depth map delineates the Kyrönjoki riverbank (see the topography in Figure 5), so that Figure 3 (lower right) shows the map of apparent there the uppermost more resistive layer seems to be depthandFigure4 shows themap ofapparent resistiv- thicker than elsewhere in the cultivated area. ity,transformedfromtheAEMmeasurementsat14368 One 4 km long gravity profile (L-5) and three short kHz. With the apparent depths the validity of the 1D refraction seismic lines (on L-5) were measured in homogeneous half-space model can be assessed. In order to get reference data (i.e., the thickness of the areas where the apparent depth is negative, the cause Quaternary sediments) for EM interpretation (Fig. 5). of the AEM response is most probably a thin low re- Seismics provides information also on the water table sistive overburden and the apparent resistivity value as well as the quality of the sediments. overestimatestheaverageresistivityoftheoverburden. Figure 6 shows the inversion result from the profile In Figure 3 these negative apparent depths are shown L-2 (shown in Fig. 4). The slingram profile runs over the bluish colours. the low-resistivity sediments and the buried ice-mar- The apparent resistivity and depth maps show that ginal deposits (at D-2) (Lintinen et al. 2003). D-1 and the main part of the low resistive clay and silt sedi- D-2 are drilling sites. In Figure 6 resistivity data from ment area seems to be thick enough for this kind of the drilling site D-1 is presented in the separate box. interpretationwhentheAEMdataat14368Hzisused. Also shown is the measured and modeled slingram There the apparent resistivities are spatial averages data. Excluding the 3D effect caused by the buried of true resistivity of these sediments. Small positive ice-marginal deposits, the 1D model explains the apparent depths indicate that the uppermost part of measurements well. In the 1D interpretation also the the sediment is more resistive than the deeper part. true coil spacing has been considered as an unknown

66 Geological Survey of Finland, Special Paper 38 Geophysical characterising of sulphide rich fine-grained sediments...

Fig. 5. 2D bedrock relief model based on gravity and refraction seismic data, line L-5. Groundwater table is interpreted from the refraction seismic data.

parameter. It has been estimated carefully from the good agreement with the drill-core samples, as well field data. The inverted and measured resistivities are as the results in Figure 6. According to the inverted consistent with each other. ERT results, the resistivity of the uppermost surface Figure 7 shows the electrical conductivity of drill- is lower when moving to SE along the line L-2. This core samples from the drilling site D-1 (the same data resistivity decrease in the uppermost layer could be asintheboxinFigure6)andtheinversionresultsfrom seen approximately in Figure 6 and from the inverted theAEM data and from electrical resistivity tomogra- AEM results. phy (ERT). The ERT data is 80 m to SE of the drilling Figure 8 shows a comparison between airborne and site (along the line L-2). The inversion results are in ground EM inversion results. The ground geophysical

Fig. 6. An example of 1D inversion of ground EM data, resistivity model (lower) and measured and fitted data. Drill- core resistivity data from drilling site D-1 is presented in the separate box.

67 Geological Survey of Finland, Special Paper 38 Ilkka Suppala, Petri Lintinen and Heikki Vanhala

measurements along the line L-5 were carried out in 2003 and the flight in 2002. TheAEM lines 42, 43 and 44 (Fig. 4) cross thegroundEMlineL-5. The slingram inversion results are fairly consistent with the gravity andseismicinterpretationbutalsoshow“higher-resis- tivity” layers between the low-resistivity fine-grained sediments and the high-resistivity bedrock. TheAEM system cannot detect the contact between the possible coarse (high-resistivity) sediments and the bedrock, but resolves only the biggest resistivity contrast (i.e., between the low-resistivity fine-grained sediments and the material below it). The inversion results of theAEM and slingram data (e.g. from Figs. 6,8,10) show that here the slingram system operating at6frequencies has abetter depth resolution withaslightlydeeperexploration depththan Fig.7.Comparisonbetweentheelectricalconductivityofdrill-coresamples and the inversion results of the AEM data and ground resistivity data. The theAEMdual-frequencysystem. ground resistivity data is 80 m to SE from the drilling site. Drilling at D-1 terminated at a depth of 20.1 m. Nei- ther bedrock nor till was detected. The whole drilled sequenceconsists of soft clay, silt and sand-sized sedi- ments, which are divided into three lithostratigraphi- cal units. The lowermost unit from a depth of 20.1 m to 17 m is composed of laminated clay and silt/fine chloride concentration (Fig. 9). The lamina thickness sand. In each rhythmite coarser layers are from 2 to gradually decreases and dark sulphide rich laminated 10 cm in thickness and finer layers are from 0.3 to clay and silt with 1–3 mm lamina thickness overlies 1.0 cm in thickness. Dropstone structures with peb- the lowermost unit. In this unit chloride concentration ble-size clasts were observed in this unit. This unit is is distinctively elevated compared to the unit below. also characterised by low sulphate, total sulphur and At a depth of 12–11 m the laminated sediment unit

Fig. 8. Comparison between AEM and ground EM inversion results (see Figure 4). Note that AEM lines 42, 43 and 44 crosses line L-5 and the gravity and seismic data (the inverted bedrock surface) is from line 5.

68 Geological Survey of Finland, Special Paper 38 Geophysical characterising of sulphide rich fine-grained sediments...

Fig. 9. Chemical data from drilling site D-1 (a), Comparison between the electrical conductivity of drill-core samples and chemistry. Note the similarity of the conductivity-depth curve and the sum of the water-soluble chloride and sulphate.

gradually changes to the upper weakly laminated or structure is obtained in the Rintala area, where the massive sulphide clay and silt unit. This unit is char- resistivity of the fine-grained sediment can be still acterised by total sulphur concentrations of 0.3–1.0 less than 5 Ω m. %. The Cl 2 concentrations do not correlate with the Puranenetal.(199(1999a,b)andandÅströmröm(199(1996)showed totalSconcentrations.Theresultwasexpectedbecause that by using one-frequency airborne EM data, the oc- both results indicate different geochemical regime in currenceoflow-resistivitysulphide-bearingsediments a water body. The overall decrease of chloride from can be delineated. With two-frequency AEMdatawe deeper layers to the surficial layers possibly indicates canalso interpretvariationsinthe resistivityandthick - the natural decrease of salinity during the Litorina Sea ness oftheoverlyinglowresistivesediments. period. Subaerialleachingcannot totallybeexcluded, Theslingram system operating at6frequencies has but its effect may be minimal. This view is supported abetterdepthresolution withslightlydeeperexplora- by the fact that the Rintala area was artificially drained tion depththantheAEMdual-frequencysystem. The for agricultural purposes by ditching and pumping groundEMhasabetterspatialre solutiontoo.Toincrease only few decades ago. Also the low permeability of thedepthresolution oftheAEMsystemitshouldbe fine-grainedsediment,andthegroundwatertableatthe upgraded tooperateatmorethan twofrequencies. A depth of about 2 m support the view that the leaching frequencyhigher than 14368Hzwould help toresolve effect has had a minimal effect on the chloride content subtleresistivityvariationsnearthesurface, while of the profile studied. afrequencylowerthan3125Hzwo uldincreasethe exploration depth.Togainthebest possibleresolution discussion and concluding remarks fromanEMsystemthecalibrationandlevellingshould be done properly. Peltoniemi(1982)validatedone-frequencylowalti- The thicknesses of the fine-grained deposit, in- tudeAEM data, which was measured by DC-3 aircraft verted from the AEM data, were in good agreement with a vertical coaxial coils system and showed the with other available data. Furthermore, the resistivity usefulness of the simple 1D models in area of low- distributions based on AEM data were very similar to resistivity fine-grained sediments. He made his test the drill-core, resistivity soundings and ground EM at a distance of less than 10 km from the Rintala area results.Thehighelectricalconductivityofthesulphide along the lower course of the Kyrönjoki river. The clay arises from the salinity and sulphate of the pore typical layer-structure of the overburden is, accord- water. However, the salinity originates from the same ing to the results of Peltoniemi (1982): organic soil depositional environment as the sulphides, and the in the surface (45–120 Ω m), sulphide clay and gyttja results strongly suggest that the AEM data can be an (7–21 Ω m), and till (> 340 Ω m). Asimilar resistivity economic tool for regional scale sulphide clay maps

69 Geological Survey of Finland, Special Paper 38 Ilkka Suppala, Petri Lintinen and Heikki Vanhala

Fig. 10. 3D Model of the electrical resistivity based on 1D inversion of AEM and ground EM data.

and acidification predictions. The other geophysical leachingofsulphide-bearingfine-grainedsedimentsinsouthern data played invaluable role not only as reference and Ostrobothnia, Western Finland. Åbo Akademi University. 44 p. (dissertation) calibration data for AEM interpretation, but also in beamish, d. 2003. Airborne EM footprints. Geophysical Pros- characterisation of soil types. pecting, 51, 49–60. The need to resolve conductivity variation near the bell, b. 2003. Can electromagnetics directly map the acid sul- surface and at depth over a large area suggested an phate soil hazard in Australia? Preview, Australian Society of Exploration Geophysicists 107, 29–31. airborne EM system as most appropriate. Here we Chen, J. & Raiche, A. 1998. Inverting AEM data using a haveusedAEMdata tocomplement other information damped eigenparameter method. Exploration Geophysics 29, (with higher resolution), ground EM measurements 128–132. and in-situ conductivities,todelineatethe conductivity donner, J. 1995. The Quaternary History of Scandinavia: World and Regional Geology 7: Cambridge, United Kingdom: Cam- structure in the area (Fig. 10). We have not constrained bridge University Press. 199 p. one inversion using in-situ or inverted conductivities Fraser,d.C.,1978. Resistivitymappingwithanairbornemulticoil from other data sets. By comparing the different re- electromagneticsystem:Geophysics,43,144–172. sults we can validate e.g. the calibration of the AEM haber, E. 1997. Numerical strategies for the solution of inverse problems. Ph.D. thesis, The University of British Columbia. measurement. hyvönen, E., lerssi, J. & väänänen, T. 2003. Airbornegeo- Duetotopographycontrolleddepositionanderosion physical surveys assessing the general scale Quaternary map- processes, as well as differences in redox conditions ping project in Finland. In: 9thEEGS Meeting, Prague, Czech Republic, August 31st – September 4th 2003: proceedings. prevailing in the water body and sediment, the results Prague: Czech Association of the Applied Geophysicists. 4 p. gathered from one area are not directly applicable to kukkonen,M.1990a. Könni.GeologicalMapofFinland another research area without new reference drilling, 1:20000, Quaternary Deposits, Sheet 2222 02. Geological samplingandchemicalanalyses. However,when Survey of Finland. kukkonen, M. 1990b. Jouppila. Geological Map ofFinland thebasin-related relationshipbetweenchemistry 1:20 000, Quaternary Deposits, Sheet 2222 05. Geological and EM-results are carefully worked out the applied Survey of Finland. integrated methodology shows great potential char- kukkonen, E., kokko, J. & herola, E. 1983. Seinäjoki, Geo- acterising potentially problematic sulphur-rich clay logical Map of Finland 1:20 000, Quaternary Deposits, Sheet 2222 08. Geological Survey of Finland. and silt deposits. lintinen,P.,Suppala,i.,vanhala,h.&Eklund,M.2003. Survey of a buried ice-marginal deposit by airborne EM measurements – a case from Kyrönjoki valley plain in southern Ostroboth- REFERENCES nia, Finland. In: Autio, S. (ed.) Geological Survey of Finland, Current Research 2001–2002. Geological Survey of Finland, Alalammi,P.(ed.)1992. AtlasofFinland,Folio123–126.Geology. Special Paper 36, 67–75. 5 thedition. Helsinki:NationalBoardofSurveyandGeographi- liu, G. & becker, A.1990. Two-dimensional mapping of sea- cal Society of Finland. 58 p. 3 app. maps, 29 app. pages. ice keelswithairborneelectromagnetics. Geophysics55, Åström, M. 1996 . Geochmistry, chemical reactivity and extent of 239–248.

70 Geological Survey of Finland, Special Paper 38 Geophysical characterising of sulphide rich fine-grained sediments...

Mäkitie, h., lahti, S., i., Alviola, R. & huuskonen, M. 1991. logicalSurveyofFinland(GTK). Exploration Geophysics29 Seinäjoki.GeologicalMapofFinland1:100000,Pre-Quaternary (1–2), 46–51. Rocks, Sheet 2222, Geological Survey of Finland. Puranen, R., Sahala, l., Säävuori, h. & Suppala, i. 1999a . Mäkitie,h.&lahti,S.i.1991. Seinäjoenkartta-alueenkallioperä. Airborne electromagnetic surveys of clay areas in Finland. Summary: Pre-Quaternary rocks of the Seinäjoki map-sheet In: Autio, S. (ed.) Geological Survey of Finland, Current area. Geological Map of Finland 1:100 000, Explanation to Research,1997–1998. Geological Survey of Finland, Special the Maps of Pre-Quaternary Rocks, Sheet 2222. Geological Paper 27, 159–171. Survey of Finland. 60 p. Puranen, R., Säävuori, h., Sahala, l., Suppala, i., Mäkilä, Öborn, i. 1994 . Morphology, chemistry, mineralogy and fertility M. & lerssi, J. 1999b . Airborneeeelectromagnetic mapping of of some acid sulfate soils in Sweden. Reports and Dissertations surficial deposits in Finland. First Break 17 (5), 145–154. 18, Swedish University of Agrocultural Sciences, Uppsala, Reid, J., E. & vrbancich, J. 2004. Acomparison of the induc- Sweden. tive-limitfootprintsofairborneelectromagneticconfigurations. Österholm,P. 1998. Geokemisk studieav svavelhaltiga sediment Geophysics 69, 1229–1239. IRintalatorrläggningsområdeiSyd-Österbotten.ÅboAkademi Suppala, i., vanhala, h. & lintinen, P. 2003. Comparison be- University. Unpublished master’s thesis, 57 p. (In Swedish) tween ground and airborne EM data in mapping acid sulphate Palko, J. 1994. Acid sulphate soils and their agricultural and en- soils and sulphide bearing clays in the Kyrönjoki river valley, vironmental problems in Finland. Acta Univerrssitatis Ouluensis westernFinland.In:9thEEGSMeeting,Prague,CzechRepublic, C 75. 5588 p. August 31st – September 4th 2003: proceedings. Prague: Czech Palko, J. & weppling, k. 1994. Lime requirement experiment Association of the Applied Geophysicists. 4 p. in acid sulphate soils. Acta Agriculturae Scandinavica 44, vanhala,h.,Suppala,i.&lintinen,P.2004. Integrated 149–156. geophysical study of acid sulphate soil area near Seinäjoki, Peltoniemi,M.1982. Characteristicsandresults ofanairborne southern Finland [Electronic resource]. In: Sharing the Earth: electromagneticmethodofgeophysicalsurveying:Geological EAGE 66th Conference & Exhibition, Paris, France, 7–10 SurveyofFinland, Bulletin321.229p. June 2004E: extended abstracts. Houten: EAGE. 4 p. Optical Poikonen,A.,Sulkanen,k.,Oksama,M.&Suppala,i.1998. disc (CD-ROM) Novel dual frequencyfixed wing airborne EM system of Geo-

71 Geological Survey of Finland, Special Paper 36 Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki

72 Geological Survey of Finland, Current Research 2003–2004, Edited by Sini Autio. Geological Survey of Finland, Special Paper 38, 73– 82, 2005.

EvAluATiON OF PORTAblE X-RAy FluORESCENCE (PXRF) SAMPlE PREPARATiON METhOdS

by Jussi V-P. Laiho 1) and Paavo Perämäki2)

1) Geological Survey of Finland (GTK), Geolaboratory, PO Box 96 FIN-02151 Espoo, Finland Present address: AEL, Kaarnatie 4, FI-00410 Helsinki, Finland 2) University of Oulu, Department of Chemistry, PO Box 3000 FIN-90014 Oulu, Finland E-mail: [email protected]

Key words (GeoRef Thesaurus, AGI): environmental geology, soils, pollution, heavy metals, X-ray fluorescence, in situ, measure- ment, sample preparation

introduction on quality control and sample preparation procedures. On the other hand, the greater the requirement for ac- The performance of four different field-based port - curacy and precision required, the more difficult the able X-ray fluorescence (PXRF) instruments for the procedure will be to run. determinationofheavy-metalcontentsincontaminated Field-based portable X-ray fluorescence analysers soils were evaluated. Instead of inter-comparison of operate on the principle of energy dispersive X-ray the instruments, this investigation focused on testing fluorescencespectrometry,wherebythec haracteristic of several different sample preparation methods for X-ray excited spectra are analysed directly taking into the assessment of contaminated soil. The results ob- account their energy proportional response in an X- tained by PXRF methods were compared with results ray detector. Traditionally PXRF analysers have used obtained by inductivelycoupled plasma-atomicemis- sealed radioisotope sources to excite samples with sion spectrometry (ICP-AES) and X-ray fluorescence gamma rays and X-rays of the appropriate energy. spectrometry (XRF). During the last two years, however, a few manufac- In this study, the soil moisture and the particle size turers have introduced analysers that utilise a rugged of the samples were the two factors, which mostly X-ray tube instead of radioactive isotopes. affected the trueness of the results. These effects were In situations where the precision, accuracy, and observed with all of the tested PXRF instruments. detection limits of the XRF technology are consistent The work highlighted the importance of sample withthedataqualityobjectivesofasitecharacterisation preparation when analysing soil samples at contami- project, PXRF provides a fast, powerful, non-destruc - nated sites by PXRF instruments. As a conclusion of tive, and cost effective technology for multielemental the study, a list of recommendations was produced analysis.Inrecentyears,thePXRFanalysershavebeen for sampling and measurement of contaminated soil appliedincreasinglytoenvironmentalcharacterisation samples by PXRF. and remediation measurements, particularly in the It is desirable for the PXRF measuring method to analysis of heavy metal contaminants in soils. be simple, inexpensive and fast, but at the same time In1995, the U.S. EnvironmentalProtectionAgency capable of producing analytical data of low detection (EPA) supported a study of innovative PXRF tech- limits and high reliability. This puts several demands nology at two Superfund sites to characterise the

73 Geological Survey of Finland, Special Paper 38 Jussi V-P. LaihoandPaavoPerämäki

performance of the latest models of commercially to improve the reliability of results, without creating available PXRF analysers. This study found that the procedures that are too complicated for routine use. PXRF analysers were effective tools for field-based analysis of soil samples for metal contamination. The Site descriptions data from these trials provided background material for the creation of a draft method (EPA1998). This The sites selected for field study represent typical method provides guidance to users of PXRF for en- sites contaminated with heavy metals in southern vironmental characterisation. Finland (Table 1). It is well known that accuracy of the XRF technique SiteA:Thefirstsitewasafallowfieldattheoutskirts is dependant on the homogeneity of the samples. of thecityofLohjaabout 50kmnorthwest ofHelsinki. PXRF should, therefore, be defined as a screening Awood impregnation plant had operated at this site, method used together with confirmatory analysis of causing slightly raised As, Cu, and Cr concentrations laboratory methods. Furthermore, the quality and (typically 50-1000 mg kg -1 ). Investigations of this site precision of PXRF results are strongly dependent on were focused on an area of 200 m 2 in order to find the sample collection and sample preparation methods “hot spots” of the site. (including sieving and drying) and calibration of Site B:An industrial area of about 40 000 m 2 located instruments. XRF emission of a particular element is in the city of Vantaa near Helsinki. Here, the heavy usually stronglydependent on thenatureof the sample metal pollution derives from Pb smelting in the 20 th matrix and interfering elements that might be present. century.RecentI CP-AESanalyses(Laiho2003) Site-specificreferencesamplesthathavesimilarmatrix revealed Pb concentrations between 100 and 80000 characteristics to the samples to be analysed, are used mg kg -1 in the top 0 – 400 mm soil layer. in some procedures to optimise calibrations Site C:Ashooting range in central Finland. Several Several approaches can be used for calibrating XRF sand samples were found to be contaminated with Pb. analysers(KalnickyandSinghvi2 001).Onemethodis Samples from this area was primarily used for inter- based on the fundamental parameter method, another comparison of the four PXRF instruments. method is to perform an empirical calibration based on site-specific calibration standards analysed by an Experimental appropriate reference method. Measuring soil samples by XRF-based techniques Sampling usually requires multi-step sample preparation proce- dures in order to obtain accurate and precise results. Several persons from different organisations col- Elementsingeologicalsamplesareusuallydetermined lected soil samples, using different techniques. The by XRF using loose powder samples that have been uncertainty due to variation in sampling practices is fused as a glass disk or pressed as powder pellets not taken into consideration, and therefore the term (Potts 1987). sample is used here to note for an untreated fresh Currently PXRF instruments are used to an increas- sample. ing extent to provide immediate results at lower costs, than conventional laboratory techniques, in particular Materials in connection with the investigation and remediation ofcontaminatedsoilandgroundwater. On-siteanalysis Sampleswerecollectedbytraditionalmethods is thus performed by the field staff using simple equip - usinghandauger(drill)andshovel,afterremoving mentandnon-standardisedmethodsandwithoutcostly thesurfacevegetation from thesamplingpoint. andtime-consumingqualityassurance(QA)schemes. Washingall theequipments bywaterbetweenthe The major disadvantage of any scheme that does not sampleseliminated gross contamination.Table1 incorporate an appropriate QAprocedure is that the describesthesamplematerialused forthesein- analytical quality of the data is not then known, i.e.: vestigations. Sampleswerehomogenised manually it is not possible to know the precision and the bias andstored inthinpolypropylenebags(Minigrip, associated with the data, or even if the equipment is PE-LD04). Non contaminated plasticNylon sieves functioning properly. (<0.5and<2.0mm)wereused forsievingtests and The primary aim of this study is to recognise and thesieveswerecleaned withcompressed airand

minimise systematic errors related to in homogene- ethanolbetweenthesamples. HNO3 (65%, Baker, ity and matrix effects of the sample, which may be ProAnalysis) andHCl(37%,Baker,ProAnalysis) associated with measurements when analysing soil wereused foracidextraction ofICP-AESanalyses samplescontaminatedwithheavymetalsbyPXRFand inthelaboratory.

74 Geological Survey of Finland, Special Paper 38 Evaluation of portable x-ray fluorescence...

Table1.Samplematerialsused fortheinvestigations.

Sample(s) Sampling Soil typeUsed for following Note site investigations

BlankUn- Sand Control of PXRF Uncon- known instruments taminated, analysed by ICP-AES

Reference sample, Un- Sand Control of PXRF Analysed by GTKREF1 known instruments ICP-AES

Reference sample, Site BSand Control of PXRF Analysed by GTKREF2 instruments ICP-AES

Sample ASite AClayLimit of detection, Total amount sample preparation of samples: tests 29 from site A

Sample BSite BSand Precision of PXRF Total amount on high level con- of samples: centration of Pb 21 from site B

Eleven C samples Site CSandInter-comparison of Total amount (Fig. 5) PXRF instruments of samples: (Fig. 5) 33 from site C

NIST CRM 2710Montana Validation soil

NIST CRM 2711 Montana Validation Soil

Sample preparation methods tive for quick field-type measurements. Count time for measurement was typically 120 s. The typical size of samples was 500-1000 g. The The following sampling protocol (GTK protocol) samples were split into sub-samples of about 100 g. was developed for sampling and measuring contami- These were used for testing varying parameters, such nated soil samples by PXRF: as grain size (0.5 mm and 2.0 mm), humidity, count time of the measurement (from 30 s to 240 s), and • Removestonesandplantfragments from the temperature (between –5 C and +25 C). ° ° sampling point In the study mentioned above, the simplest field- based sample preparationmethodconsistedof remov- • Choose a sample for sample preparation ing vegetation and other organic material, as well as (500–1000 g) particles larger than 10 mm. The sample (samples • Pre-homogenise the sample manually Aand B) was homogenised manually in a plastic (in plastic bag) bag. Samples were neither dried nor sieved, and the measurement was taken directly through the bag on a • Dry the sample (water content must be less than small wooden table without replicate measurements, 20 % before measuring) using a 30 s count time. • Sieve the sample to a pre-defined particle size Themostcomplicatedofthetestedfield-basedsam- (grain size < 2.0 mm) ple preparation procedures was similar to the sample Place the sample into a plastic bag preparation preceding ICP-AES determination in the • laboratory(InternationalOrganizationofStandardiza- • Use at least 10 mm thickness of sample for tion 1994). In this method, the soil samples (sub-sam- measuring (100–500 g) ples from sites Aand B) were dried at a temperature • Usethesamebackgroundplateorstrongtableunder < 70 C for 24 hours and sieved to < 2.0 mm or <0.5 ° the sample, in order to avoid different background mm fraction. Several tests, with samples prepared as effects between the measurements pressed powder pellets, were also performed. Pellet preparation procedure is rather time consuming and • Flattentheplasticbagcontainingthesampleevenly requires skilled personnel, which makes it less attrac- on the surface

75 Geological Survey of Finland, Special Paper 38 Jussi V-P. LaihoandPaavoPerämäki

• Use 120 seconds count time a closed polypropylene bag at room temperature, in order to avoid contamination. • Perform a minimum of three replicate measure- ments ICP-AES • Report all three results, calculate the average • Record observations and decisions All the laboratory ICP-AES analyses and measure- mentswerecarrie doutattheGeol aboratoryofGeol ogi - • Confirm at least 5 % of the results by alternative, cal Survey of Finland in Espoo. An ICP-AES Thermo preferably accredited, analytical methods Jarrel Ash IRIS Advantage instrument was used for • Measure control samples, a blank sample and a obtaining reference data to compare with the PXRF reference sample, before and after every sample results. Sieved soil samples (from sites A, B and C) set (also after every ten samples or after service were analysed by ICP-AES using an internationally of instrument) accepted method for soil analysis, the ISO standard method 11464. The acid leach was performed as fol- • Clean and/or service the instrument if control lows: 2.00 (±0.10) g of soil sample were digested with sample measurement fall outside approval range 12 ml of aqua regia (9.0 ml HCl + 3.0 ml HNO3) at 90 • Service the instrument if drift control measure- ºC for 8 hours. After addition of 50 ml H2O, samples ment fall outside approval range (if provided by were centrifuged for 20 minutes at 3000 rpm (Jouan C manufacturer) 412).Theclearsolutionwasusedfor(further)analysis. An in-house reference material of pulverised soil was used as a control sample. To obtain more reliable PXRF measurements, fol- lowing should also be considered: PXRF • Compare in situ results to confirmatory laboratory results to obtain a correlation curve and/or prepare Four PXRF analysers were used for the sample severalcalibrationsamplestodeterminecorrelation preparation study for inter-comparison of Pb-con- curve taminated sand samples (Table 2). • Extend the count time to up to 300 seconds The preliminary analyses of the study samples were carriedoutbothinthelaboratoryandunderfieldcondi- • Use up to 10 replicate measurements instead of tions for comparing the PXRF instruments. Samples three fortheinter-comparisonstudywerecollectedfromsite • Prepare duplicate samples C. The minimum amount of sample for measurement was about 10 g, which formed a layer of about 10 mm • Carry out measurements on samples prepared as in the plastic bag used in the procedure. Further field pressed powder pellets measurementsandtestsonsamplepreparationmethods were undertaken with the INNOV-X analyser. instrumental analysis Calibration and quality control (QC) and quality XRF assurance (QA) of PXRF´s

All the laboratory XRF analyses and measurements PXRFinstrumentscanbeusedforseveralpurposes, were carried out at the Geolaboratory of Geological eachrequiringdifferentQCandQAprocedures. Survey of Finland in Espoo. The in-house reference Typically, PXRF instruments have been used for material was analysed by Philips PW 1480 XRF spec- locating contaminated areas, in particular hotspots, trometerinthelaboratoryusingpressedpowderpellets. when absolute values are not as important as finding Pellets were prepared by weighting dried and sieved a variation of high and low values. soil samples from site B (Table 1) in to a pulverising In this study internal calibration,using fundamental swing-mill (Herzog HSM 100P) and pulverised in a parameters software chosen by individual, was used. carbonsteelbowl.Forpreparationofthepressedpellet, PXRF instruments also require user to make drift 7.0 g of pulverised (< 75 µm) sample was mixed with correction, for example with a stainless steel plate, 0.4 g of organic binder and pulverised in a tungsten before starting the measurements. carbide bowl to obtain a grain size of 95 % < 10 µm. Asacompromisebetweenideaqualityassuranceand The pulverised pulp was pressed into a pellet at 20 ease of operation, two control samples, one reference tons, using a steel piston press. Pellets were stored in sample and one blank sample of uncontaminated sand

76 Geological Survey of Finland, Special Paper 38 Evaluation of portable x-ray fluorescence...

Table 2.Technical specifications of the PXRF-analysers used for the investigations.

MODEL: INNOV-X X-MET 2000 NITON XLi 700 NITON XLt700

Manufacturer Innov-X-Sys - MetorexInc., Niton Corp.,USANiton Corp.,USA tems,USA Finland

Operation EDXRF EDXRF EDXRF EDXRF principle

X-raysource X-raytube, sil- 55 Fe, 109 Cd, 55Fe, 109 Cd, X-raytube, silver veranode 241 Am-isotopes 241 Am-isotopes anode

DetectorHigh resolution High resolution High performance High Performance Si-PIN Si-PIN Si-PIN Si-PIN

CoolingsystemThermo electri- Thermo electri- Thermo electricalThermo electrical cal cal

Main Singleunitwith SIPS-probeand Singleunitwith Singleunitwith components integrated PC PC-unit VGAtouchscreen VGAtouchscreen

Weight1.8kg 1.6kg 0.72kg1.4kg (5.8kgwithPC)

Table3. Resultsofthe reference samples analysed byINNOV-X PXRF instrumentand reference values bywell-established laboratorymethodsusing the XRF and ICP-AES techniques (mg kg-1 ).

Samplename: Elements PXRF XRF ICP-AES Certified Values (ppm±SD)

GTKREF 1Mn500±93*400 92

GTKREF 1Cu550±41*170150

GTKREF 1Zn 570±67 4130

GTKREF 1As 54±16*4646

GTKREF 1Pb

GTKREF 2Zn450±19 * 166 140

GTKREF 2Pb170±18*340280

NIST CRM2710Mn 14700±360 7780 10100±400

NIST CRM2710Cu3450±782900 2950±130

NIST CRM2710Zn8200±120 6250 6950±91

NIST CRM2710As910±53598 626±38

NIST CRM2710Pb 6200±86 5300 5532±80

NIST CRM2711 Mn 1260±210* 501 638±28

NIST CRM2711 Cu145±38*102114±2

NIST CRM2711 Zn400±29*325350.4±4.8

NIST CRM2711 As138±29*99 105±8

NIST CRM2711 Pb 1360±37 * 1095 1162±31

*)Thesevalueswerefollowed duringtheinvestigations

77 Geological Survey of Finland, Special Paper 38 Jussi V-P. LaihoandPaavoPerämäki

Fig. 1. The effect of sieving on final results (average of ten measurements) of the PXRF measurement. Other elements were not detected in the sample (High concentrations of Ti and Fe result divided by 100 an Mn by 10).

(Table 1), were measured after each ten samples, as and measured by one PXRF analyser from different well as at the beginning and in the end of each sample side of the sample. Relative difference between the set. The reference materials used in this study were highest and the lowest result rose up to 1000% with also analysed in the laboratory by XRF using pressed inhomogeneous samples containing particles of vari- powder pellets and by ICP-AES after acid extraction ous sizes. Similar results were observed for all PXRF (Table 3.). analysers when the test was repeated with the same An average of 25 replicate measurements by PXRF sample. The relative difference was found the most were used on field to control the sampling and meas- significant when analysing wet samples, or inhomo- uring conditions, precision and the bias associated geneous samples such as waste material. with the data. Only elements described above were Another preliminary test, an inter-comparison test determined from the samples (site Aand site B). The between different PXRF analysers, was run on site reference sample and blank sample were chosen to C. Eleven air dried sand samples were homogenised represent the soil type and elements at the site, even manually in plastic bags and analysed by four differ- if some of the measurements were close to detection ent PXRF analysers (Fig. 5). The yield of the PXRF limits. analysers (ICP-AES = 100%) was measured to be Therecanbeseveralreasonsforlowdetectionlimits; between 65 % and 160 %. Accordingly it was judged probablyasilveranodetubedoes noteffectivelyexcite that this test showed that PXRF analysers are suitable Mn, Cu and Zn. Also the standard deviation (SD) was for analysing Pb from sand samples, as in this case the varying between the different soil types. The low Mn differences between results from different analysers result analysed by ICP-AES is thought to be due to was not significant. some minerals not completely soluble to acid. Thesepreliminarytestsshowedclearlythatsoiltype Preliminary tests on different (site-characteristic) canstronglyeffecttherepeatabilityofPXRFmeasure- empirical calibration procedures were run with NIST ments as well as the comparability of PXRF results standard reference materials (Table 3), but those were to the laboratory analyses. Hence, it was essential to found to be too complicated for routine use under field start developing PXRF measurements by evaluation conditions.However,sitecharacteristiccalibrationcan of sample preparation methods. be recommended for minimising the systematic error The first investigation, dealing with soil sample observed between different analytical methods. preparation procedures, was to evaluate the effect of sieving on the subsequently analysed elemental con- Results and discussion centration, since particle size is known to affect the results of XRF analyses (Clark et al. 1999). It is clear Preliminarytestswerecarriedoutunderfieldcondi- that the type of sample and the concentration levels tions (sites A, B and C) in order to test the simplest also affect the results. The sample chosen for the first samplepreparationmethoddescribedabove.Untreated sievinginvestigationswasasandyclaysample(sample samples (size 500 - 1000 g) were put in plastic bags Afrom site A, Table 1), containing a concentration

78 Geological Survey of Finland, Special Paper 38 Evaluation of portable x-ray fluorescence...

Table4.Comparison ofZnconcentrations(mgkg -1 )inFinnish the PXRF instrument and that the samples should be soil byparticle sizefraction as determined byPXRF during the sieving tests(n=10). sieved before the measurements. Relative standard deviation was calculated for ten ParticlesizeMeanLowest Highest Highest / replicatemeasurementsofadriedsandsample(sample lowest,% A), after different sample preparation procedures: (1) Total8148 115240 without sieving, (2) sieving to > 2.0 mm, (3) sieving >2.0mm 8139135 346 to < 2.0 mm, and (4) sieving to < 0.5 mm. The results <2.0mm 88 64 115180 can be seen in Figure 2. The repeatability of the PXRF <0.5mm 8054 109202 measurement was generally better for samples of smaller particle size: this effect was observed for all the elements measured. At the second stage of the investigation the effect of sample preparation on the sensitivity of the PXRF of heavy metals near the background values found in measurements was studied. Detection limits were Finland (Puolanne et al. 1994). The sample was very determined by taking ten replicate measurements homogeneous and air-dried. on soil samples. Based on these measurements, the Sieving had an effect on the mean concentration standarddeviationwascalculated.Thedetectionlimits measured byPXRF.Figure 1showsthatalmost presented in the Figure 3 are defined as 3 times the without exception, the highest values (average of 10 standard deviation for each analyte. replicates) were obtained for the smaller particle size Inthisstudythedetectionlimitsof9environmentally fractions (<0.5 mm or <2.0 mm). This was expected important elements were determined by four different due to enrichment of elements in the smallest particles sample preparation methods. Two EPAmethods (EPA and the different mineralogy of samples. 1998) were compared with two of our own sample More significantdifferences betwe en replicate preparation protocols, of which one is a field method measurements were observed, for all fractions, when and the other is the GTK protocol outlined above. analysingeitherrelativelyhighconcentrations(<1000 EPA1 uses quartz (SiO 2 ) to determine interference- mg kg -1 ) or concentration near the detection limit of free detection limits and EPA2 is a field-based method PXRF measurement (Fig.3). For example, a variation applied to dried soil samples. SampleA(Table 1) was in the low concentration of Zn in different particle the selected study sample, because it was relatively size fractions is substantial, when comparing the dif- homogeneous, it did not contain particles larger than ferent grain size fractions, and could lead to errors 2 mm, which could cause physical interferences in the in decision-making on field (Table 4), if for example measurement. It was also observed, that the limit of remediation level for Zn is based on lower guideline detection for Cr, Cu and Zn rose considerably when value (150 mg kg -1 ). measured after sample preparation by field protocol The study indicated that for the best results, at least (EPA2 and GTK1), using relatively dry soil material three replicate measurements should be made with (moisture content 5 % – 10 %). This should be consid-

Fig. 2. The effect of sieving on precision of the PXRF measurement (Other elements were not detected in the sample)

79 Geological Survey of Finland, Special Paper 38 Jussi V-P. LaihoandPaavoPerämäki

Fig. 3. Detection limits of some environmentally harmful elements determined by different PXRF methods, present study compared to EPA 6200. EPA = Environmental Protection Agency. GTK = Geological Survey of Finland.

ered when analysing soil samples by PXRF analysers thermore, errors due to sample preparation can easily from relatively unpolluted sites. beminimisedbypropersamplepre parationtechniques. In Figure 4 the detection limits of 9 environmen- Thesestudiespointedoutthatso ilmoistureandparticle tally important elements are compared with Finnish size of the samples were the two factors, which mostly guideline values for contaminant concentrations in affected the trueness of the results. As a conclusion soil (Puolanne et al. 1994). It was observed that PXRF of the study, a list of recommendations was produced instruments could easily be applied for determination for sampling and measurement of contaminated soil of low concentration levels of Pb and Zn, whereas samples by PXRF. there were some problems to detect even relatively However, not all the errors can be avoided by more high concentrations of Cr or Cd. Similar results were accurate sample preparation, and differences between observed with all of the PXRF instruments tested. thePXRFinstrumentsincreaseddramaticallywhensoil The effect of moisture content on the accuracy of samples of high concentration levels (>1000 mg kg -1 ) PXRF measurement was investigated by adding 5 % were analysed without soil-characteristic calibration. - 40 % of distilled water to the dried and sieved sam- This is suspected to be due to different fundamental ple. Water content of the soil sample was determined calibration given by the instrument manufacturers. gravimetrically.Theresultsshowedclearlythatoverall Therefore, it is always recommended to compare in error was minor when moisture content was small situ resultstoconfirmatorylaboratoryresultstoobtain (5 %–15 %), and sample moisture contents above a correlation curve and/or prepare several calibration 20 % was leading to significant errors in PXRF meas- samples todeterminecorrelationcurvebefore starting urements of the tested types of materials. Moisture any big projects. alters the matrix and therefore the penetration depth During the study it was also observed that further of the radiation. For example, the concentration of Pb work is needed for the improvement and harmonisa- and Zn in a dry sample was about 2.0 times higher tion of the PXRF methods as well as quality control than the concentration obtained for samples with of in situ analyses. Various field methods are being moisture contents of 30 %. These results were similar developed, to an increasing extent, in order to opti- to results of previous investigations (Kalnicky et al. mise investigation and remediation of soil and ground 1992, Laine-Ylijoki et al. 2002). water pollution. There is an urgent need to establish a common methodology for assessing the analytical Conclusions quality of the data obtained, i.e. a set of practical QA schemes. The QAschemes should be a compromise In this study it was observed that both different betweenthelaboratoryQA(ENISO/IEC17025:2000) techniques and sample preparation affected the final and the current very limited QAused for most field results. According the results, it can be presumed that methods. Aguide for environmental administrators sample preparation can lead to more significant errors should be provided to enable them to evaluate data than the differences between PXRF instruments. Fur - obtained by these field methods properly. Harmonisa-

80 Geological Survey of Finland, Special Paper 38 Evaluation of portable x-ray fluorescence...

Fig. 4. Detection limits of some environmentally harmful elements measured in the field and compared with Finnish guideline values for contaminant concentrations in soil (Puolanne et al.1994).

Fig. 5. An example of Inter comparison of four PXRF instrument: Pb concentration in sand from shooting range. Laboratory = ICP- AES.

tion of methodologies would provide not only more REFERENCES reliable results of field measurements, but also more Clark,S.,Menrath,w.,Chen,M.,Roda,S.&Succop,P.1999. comparable results between all users. Use of aField Portable X-rayFluorescence analyser todetermine Good planning of the survey is needed before using theconcentration ofleadandothermetalsinsoil samples,Ann. PXRF for in situ field-based analysis, in order to gain Agric. Environ. Med. 1999, 6,27–32. as much information as possible on estimates of both ENiSO/iEC170252000. GeneralRequirementsfortheCompetence ofTestingandCalibration Laboratories,CENMarch2000. concentration values and uncertainties, and to permit EPA1998. Method 6200:Field Portable X-rayFluorescence spec- a realistic interpretation of the extent of contamina- trometryforthedetermination ofelementalconcentrationsinsoil tion at the site. andsediment.EnvironmentalProtection Agency,USA.

81 Geological Survey of Finland, Special Paper 38 Jussi V-P. LaihoandPaavoPerämäki international Organisation of Standardisation 1994. Interna- laiho J. v-P. 2003. Unpublished research data of Geological tional Standard ISO 11464. Survey of Finland. kalnicky d.J., Patel J. & Singhvi R. 1992. Factors affecting laine-ylijoki,J.,Rustad,i.,Syrjä,J-J.&wahlström,M.2002. comparability of field XRF and laboratory analyses of soil Technical report PRO3/23/02: Suitability of XRF –methods on contaminants, in: Proceedings of the Forty-First Annual Con- on-site testing of waste materials. VTT 42. ference on Applications of X-ray Analysis, Colorado Springs, Potts, P.J. 1987. Ahandbook of Silicate rock Analysis. Blackie August 1992. & Son limited, London. kalnicky d.J. & Singhvi R. 2001. Field portable XRF analysis Puolanne, J., Pyy, O. & Jeltsch, u. 1994. Saastuneet maa-alueet of environmental samples, J. of Hazardous materials 83 (2001) ja niiden käsittely Suomessa, final report. TThehe FFinnishinnish MMinisinistrtry 93–122. of the Environment.

82 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

PAPERS PubliShEdbyGEOlOGiCAlSuRvEyOFFiNlANdSTAFF iN2003–2004

The following list includes references from the database FIN- Autio, Sini (ed.) 2003. Geological Survey of Finland, Current GEO (situation at 31th May 2005) to papers published in 2003 Research 2001–2002. Geological Survey of Finland. Special and 2004 (or in 2002, if not reported previous Current Research Paper 36. 97 p. publication) with at least one author from GTK staff. Backman, Birgitta 2004. Groundwater quality, acidification, Ahonen, Lasse; Kaija, Juha; Paananen, Markku; Ruskeeniemi, and recovery trends between 1969 and 2002 in South Finland. Timo; Hakkarainen, Veikko 2004. PPalmoalmotttutu nnaattuurralal aanalognaloguee:a: a Geological Survey of Finland. Bulllletin 401. 110 p. + 8app. summary of the studies. Tiivistelmä: Palmotunluonnonanalogia- Backman,Birgitta;Lahermo,Pertti2004.Arsrseenieenipohjapohjavesissä.esissä. tutkimus : yhteenveto tutkimuksista. Geologian tutkimuskeskus. Summary:Arsenic in groundwater. In: Loukola-Ruskeeniemi, K. Ydinjätteiden sijoitustutkimukset. Tiedonanto YST-121. 39 p. &Lahermo,P.(eds.)ArseeniSuomenluonnossa,ympäristövaiku- + 1 app. tukset ja riskit. Espoo: Geologian tutkimuskeskus, 103–112. Ahtola, Timo; Reinikainen, Jukka; Seppänen, Hannu 2004. Balykin,P. A.;P olyakov,G.V.;H anski,E.;Walker,R.J.;Huhma, Paleoproterozoic marbles in the Svecofennian Domain, Finland. H.; Tran, T. H.; Ngô, T. P.; Hoàng, H. T.; Tran, Q. H.; Glotov,A. I.; In: Castor, S. B., Papke, K. G. & Meeuwig, R. O. (eds.) Betting Petrova, T. E. 2004. The Late Permiankomatiite-basalt complex on industrial minerals : proceedings of the 39th Forum on the in the Sông Dà Rift, northwestern Viêt Nam. Journal of Geology. GeologyofIndustrialMinerals,Reno/Sparks,Nevada,May Series B (23), 52–64. 18–24, 2003. Nevada Bureau of Mines and Geology. Special Barkov,Andrei Y.; Fleet, Michael E.; Martin, Robert F.; Halko- Publication 33, 11–15. aho, Tapio A. A. 2004. Apotentially new konderite-like sulfide Airo, Meri-Liisa 2003. Relation ofmagnetic rock pprropertiesst to of Fe, Pb, Cu, Rh, Pd, and Ir from the Penikat layered complex, aeromagnetic characteristics of an Archean TTG-migmatite and Finland. In: Mungall, J. E., Meurer, W. P. & Martin, R. F. (eds.) gneiss area, the northern Fennoscandian Shield. In: IUGG 2003 Platinum-group elements : petrology, geochemistry, mineralogy. : XXIII General Assembly of the International Union of Geod- The Canadian Mineralogist 42 (2), 499–513. esy and Geophysics, June 30 – July 11, 2003, Sapporo, Japan : Blyth,Alexander;Frape,Shaun;Ruskeeniemi,Timo;Blomqvist, abstracts. Week B. Sapporo: IUGG, 262. Runar 2004. Origins, closed system formation and preservation Airo, M.-L.; Loukola-Ruskeeniemi, K. 2004. Charaharactererizationion of calcites in glaciated crystalline bedrock : evidence from the ofsulfidedepositsbyairbornemagneticandgamma-rayresponses Palmottu natural analogue site, Finland. Applied Geochemistry in eastern Finland. In: Coveney, R. M. & Pasava, J. (eds.) Ores 19 (5), 675–686. and organic matter. Ore Geology Reviews 24 (1–2), 67–84. Breilin, Olli;Tikkanen, Jaakko;Kesola,Reino;Leveinen, Alenius, Teija 2004. Siitepölyanalyysi maankäytön ja kasvilli- Jussi; Mursu, Juha 2003. GGroroundndwateerr ffromrom ccrryssttallinllinebe bededrockrock suushistorian tutkimusvälineenä. In: Korpela, J. (author) Viipurin in municipal of Leppävirta in southeast Finland. In: Krásny, J., läänin historia. Osa 2: Viipurin linnaläänin synty. Lappeenranta: Zbynek, H. & Bruthans, J. (eds.) Proceedings of the international Karjalan Kirjapaino, 288–289. conference on Groundwater in fractured rocks, 15–19 September Alenius, Teija; Grönlund, Elisabeth; Simola, Heikki; Saksa, 2003, Prague, Czech Republic : extended abstracts. IHP-VI series Aleksandr 2004. Land-usehistoryof RiekkalansaariIslandin the on groundwater (7), 31–32. northern archipelago of , Karelian Republic, Russia. Breilin, O.; Elhammer, A.; Björk, L.; Edén, P.; Fredén, C.; Vegetation History and Archaeobotany 13 (1), 23–31. Kero, L.; Kotilainen, A.; Nenonen, K.; Ojalainen, J.; Ransed, G.; Alenius, Teija; Haggrén, Georg; Jansson, Henrik; Miettinen, Rodhe, L.; Stén, C.-G.; Sigurdson, O.; Sohlenius, G.; Virransalo, Arto 2004. Ulkosaariston asutuksesta autiokyläksi – Inkoon Ors P. 2004. Geonat – Geological information and nature values for poikkitieteellisenä tutkimuskohteena. SKAS (1), 4–19. the sustainable development of the northern Kvarken area – a Alenius, Teija; Ojala, Antti; Tiljander, Mia 2004. Paleomag-Paleomag- new co-operation project 2003–2005. In: Mansfeld, J. (ed.) The netic dating of pollen stratigraphy from lake sediment based on 26th Nordic Geological Winter Meeting, January 6th – 9th 2004, PSVmaster curve from central Finland. In: 34th International Uppsala, Sweden : abstract volume. GFF 126 (1), 142. Symposium on Archaeometry, 3–7 May 2004, Zaragoza, (Spain) Breilin, Olli; Kotilainen, Aarno; Nenonen, Keijo; Räsänen, : program and abstracts. Zaragoza : Barcelona: University of Matti; Ollqvist, Sanna 2004. TThehe unniqiqueme mooraineraine momorphologrphology, Zaragoza : University of Barcelona, 37. stratotypes and ongoing geological processes at the Kvarken Ar- Andrén, T.; Best, G.; Flodén, T.; Harff, J.; Jensen, J. B.; Korja, chipelago on the land uplift area in the western coast of Finland. A.; Kotilainen, A.; Lemke, W.; Meschede, M.; Puura, V.; Usci- In:32ndInternationalGeologicalCongress,Florence,Italy,August nowicz, S.; Vejbæk, O. 2004. Towards a Baltic Sea IODP. In: 20–28, 2004 : abstracts. Part 1, 627. Puura, I., Tuuling, I. & Hang, T. (eds.) The Baltic : the Eighth Breilin, Olli; Kotilainen, Aarno; Nenonen, Keijo; Virransalo, Marine Geological Conference, September 23–28, 2004, Tartu, Petri; Ojalainen, Jukka; Stén, Carl-Göran 2004. GGeologeologyofof thehe Estonia : abstracts, excursion guide. Tartu: University of Tartu, Kvarken Archipelago. Espoo: Geological Survey of Finland. Institute of Geology, 7. 47 p. Antikainen, Merja; Backman, Birgitta; Rusanen, Kaisa; Finér, Britschgi, Ritva;Ahonen, Ismo; Lammila, Jyrki; Lähteenmäki, Leena2003.Vaikuttaakometsänkäsittelypohjavesialueidenveden Pasi; Sahala, Lauri; Vuokko, Jouko 2003. Pohjavesien suojelun ja laatuun?. In: Finér, L., Laurén,A. & Karvinen, L. (eds.)Ajankoh- kiviaineshuollon yhteensovittaminen : Satakunnan loppuraportti. taista metsätalouden ympäristökuormituksesta – tutkimustietoa Satakuntaliitto. Sarja A 267. 91 p. + 3app.app. maps.maps. ja työkaluja – seminaari Kolin Luontokeskus Ukko 23.9.2002. Brown,D.;Carbonell,R.;Kukkonen,I.;Ayala,C.;Golovanova, Metsäntutkimuslaitoksen tiedonantoja 886, 63–68. I. 2003. Composition of the Uralide crust from seismic velocity Antikainen, Merja;Lyytikäinen, Ari;Pihlaja, Jouni 2003. (Vp,Vs),heatflow,gravity,andmagneticdata.EarthandPlanetary Pohjavesien suojelun ja kiviaineshuollon yhteensovittaminen : Science Letters 210 (1–2), 333–349. loppuraporttiOutokummunseudulta.Absstrtract:Theharmonization Bruneton, M.; Pedersen, H. A.; Farra, V.; Arndt, N.; Kukko- ofgroundwaterprotectionandaggregateservice:finalreportfrom nen, I.; Vacher, P. 2004. Evolution of Precambrian lithosphere in the surroundings of Outokumpu. Alueelliset ympäristöjulkaisut Finland as inferred from seismic surface and mantle xenoliths 304. 40 p. + 1 app. map. [Electronic resource]. In: EGU General Assembly 2004, Nice,

83 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004

France, 25–30 April 2004. Geophysical Research Abstracts 6, 1 districtofnorthwesternRussia.In:Ehlers,J.&Gibbard, P.L.(eds.) p.. Optical disc (CD-ROM). Quaternaryglaciations:extentandchronology.Part 1:Europe. Bruneton, Marianne; Pedersen, Helle A.; Vacher, Pierre; Kuk - DevelopmentsinQuaternaryScience 2,321–336. konen, Ilmo T.; Arndt, Nicholas T.; Funke, Sigward; Friederich, Deutsch, A.;Pesonen,L.J.;Pihlaja, P. 2003.NNofofossilossil microm-microm- Wolfgang; Farra,Véronique 2004. Layered lithospheric mantle in eteoritesintheJotniansandstoneofFinland–criticalre-assessment thecentralBalticShieldfromsurfacewaves andxenolithanalysis. of the evidence. In: 66thAnnual Meteoritical Society Meeting, July Earth and Planetary Science Letters 226 (1–2), 41–52. 28–August 1,2003,M�nster,Germany:abstracts. Meteoritics& Carlson, Liisa 2004. Bentonite mineralogy. Part 1 : Methods of PlanetaryScience supplement38(7),A102. investigation – a literature review. Part 2 : Mineralogical research Edfelt,Åsa;Eilu,Pasi;Martinsson, Olof;Niiranen,Tero;Wei - of selected bentonites. Posiva. Working report 2004–02. 105 p. hed, Pär2004.ThenorthernFennoscandiaIOCG-province.SGA Cermak, V. (ed.); Kukkonen, I. T. (ed.) 2003. Heatflowand the News(18),1,4–9. structure of the lithosphere. Physics and Chemistry of the Earth Ehlers, Carl;Skiöld, Torbjörn;Vaasjoki, Matti2004. Timing of 28 (9–11), 345–519. SvecofenniancrustalgrowthandcollisionaltectonicsinÅland, Charman, Dan; Mäkilä, Markku 2003. Climalimatere receconsonstrtructiionon SW Finland. Bulletin of the Geological Societyof Finland 76 from peatlands. PAGES Newsletter 11 (2–3), 15–17. (1–2), 63–91. Chernet, T.; Marmo, J. 2003. Direct comparison on mechanical Eilu,Pasi;Niiranen,Tero2003.OnkoSuomessarautaoksidi-kupa- and digital size analyses of Kemi chromite, Finland. In: Applied ri-kulta-assosiaation(FeOx-Cu-Au,IOCG)esiintymiä?Summary: mineralogy : papers presented at Applied mineralogy ’03, Hel- ArethereIOCGdeposits inFinland?. Geologi55 (1),4–11. sinki, Finland, 17–18 March 2003. Minerals Engineering 16 (11 Eilu,Pasi;Sorjonen-Ward, Peter;Nurmi,Pekka;Niiranen, Suppl.), 1245–1249. Tero2003.Areviewofgoldmineralization stylesinFinland.In: Chernet, T.; Marmo, J. 2003. Direct comparison on mechanical Sundblad, K.&Cook,N.J.(eds.) Agroupofpapers devoted to and digital size analyses of Kemi chromite [Electronic resource]. themetallogenyofgoldintheFennoscandianShield.Economic In: Applied mineralogy ’03, Helsinki, Finland, March 17–18, Geology98(7),1329–1353. 2003, 3 p.. Optical disc (CD-ROM). Eilu,Pasi;Lahtinen, Raimo 2004. Arseeni kallioperässäjamal- Chernet, Tegist 2003. Effect of mineralogy and texture of miutuneissavyöhykkeissä.Summary:Anomalousarsenicinbedrock sand and hard-rock ilmenite in TiO2 pigment production by the andoresinFinland.In:Loukola-Ruskeeniemi,K.&Lahermo,P. sulphate process, a case study on Australian ilmenite concentrate (eds.) ArseeniSuomenluonnossa,ympäristövaikutuksetjariskit. and Tellnes ilmenite concentrate, Norway. In: Duchesne, J.-C. Espoo:Geologiantutkimuskeskus,29–43. & Korneliussen, A. (eds.) Ilmenite deposits and their geological Ekdahl, Elias;Kukkonen, Ilmo 2003.Deeeeppsseismiceismic reflection environment with special reference to the Rogaland Anorthosite surveyin Finland :amajor scientific co-operation between Finland Province including a geological map at scale 1:75,000 and a CD andRussia.EuropeanGeologist (15),15–17. with a guide to the province. Norges geologiske undersøkelse. Eklund, Olav(ed.) 2003.Lapland2003:excursion guide to Special publication 9, 45–46. FinnishandSwedishLapland1.–7.9.2003.Geocentertiedottaa. Chernet, Tegist; Marmo, Jukka 2003. Direct comparison on Report 20.59p. mechanical and digital size analyses of Kemi chromite, Finland. Elminen, T.;Airo, M.-L.;Mertanen, S.;Pajunen, M. 2003.MMul- In: Autio, S. (ed.) Geological Survey of Finland, Current Re- tiplereactivationsofthePorkkala-Mäntsäläshearzone, southern search 2001–2002. Geological Survey of Finland. Special Paper Finland.In:Deformationmechanisms,rheologyandtectonics,St. 36, 17–21. Malo, France,14–16April 2003 :abstractvolume, 53. Chernet, Tegist; Pakkanen, Lassi 2003. Estimation of ferric Elo,Seppo2003.GravityoperationsoftheGeologicalSurvey iron, crystal water and calculation of chemical formulae for ofFinland.In:Poutanen,M.,Jokela,J.&Ollllikikainen,M.(eds.) altered ilmenite from electron microprobe analyses, based on GeodeticoperationsinFinland2000–2003.Helsinki:Geoddeeeettinen stoichiometric criteria. In: Autio, S. (ed.) Geological Survey of laitos,31–33. Finland, Current Research 2001–2002. Geological Survey of Elo, Seppo;Uusihakala,Mauri 2004. GPS-gGPS-graravitytyapplicaapplicationsions Finland. Special Paper 36, 23–28. atawastetreatmentcentre[Electronicresource].In:Sharingthe Chevrel, S.; Kuosmanen, V.; Grösel, K.; Marsh, S.; Tukiainen, Earth:EAGE 66thConference &Exhibition, Paris, France, 7–10 T.; Schäffer, U.; Quental, L.; Vosen, P.; Loudjani, P.; Kuronen, E.; June2004:extended abstracts. Houten:EAGE,4p.. Opticaldisc Aastrup, P. 2003. Remote-sensing monitoring of environmental (CD-ROM). impacts. Mining Environmental Management 11 (6), 19–23. Fabbri,Andrea G. (ed.);Gaál,Gabor (ed.);McCammon,Richard Chevrel, Stéphane; Kuosmanen, Viljo; Grösel, Klemens H. B.(ed.) 2002.Depositandgeoenvironmentalmodelsforresource J.; Marsh, Stuart; Tukiainen, Tapani; Schäffer, Uwe; Quental, exploitation andenvironmentalsecurity.NATOScienceSeries. Lidia; Vosen, Peter; Loudjani, Philippe; Aastrup, Peter 2004. Series2.Environmentalsecurity80.532 p. +CD-ROM. Hyperspectralremote-sensingassessmentofmining-related Frape, S. K.;Blyth,A.;Blomqvist,R.;McNutt,R.H.;Gascoyne, environmental impacts – examples from the MINEO project. In: M. 2003.Deepfluids in the continents:II. Crystalline rocks. In: 32nd International Geological Congress, Florence, Italy, August Holland, H.D.,Turekian,K.K.&Drever,J.I.(ed.) Treatiseon 20–28, 2004 : abstracts. Part 2, 1116. geochemistry.Vol.5:Surface andgroundwater,weathering,and Ciobanu, Cristiana L.; Cook, Nigel J.; Sundblad, Krister; Ko- soils. Oxford: Elsevier,541–580. jonen, Kari 2004. Tellurides and selenides in Au ores from the Frape, ShaunK.;Shouakar-Stash, Orfan;Blomqvist,Runar; Fennoscandian Shield : a status report. In: 32nd International Blyth, Alec R.;McNutt,RobertH.;Gascoyne, Mel 2004. Infor- Geological Congress, Florence, Italy, August 20–28, 2004 : ab- mation gained from isotopegeochemistryon evolution ofbrines stracts. Part 1, 274. incrystallinerocks. In:32ndInternationalGeologicalCongress, Cosgrove, John; Jokinen, Jarkko; Siivola, Jaakko; Tirén, Sven Florence, Italy,August 20–28,2004:abstracts. Part 1,708. 2003. IMGS 2002 report : the geological and strstructuralcharac- Fredén, Curt; Karis, Lars;Lundqvist,Sven;Ransed, Gunnel; terization of the Olkiluoto site in a critical perspective. STUK- Suominen, Veli;Johansson,Carl Erik 2004. GEOSITES in prac- YTO-TR 196. 19 p. tice –trans-nationalcomparison andcorrelation.In:Parkes,M. Demidov, Igor N.; Houmark-Nielsen, Michael; Kjær, Kurt H.; (ed.) Naturalandculturallandscapes–thegeologicalfoundation : Larsen, Eiliv; Lyså, Astrid; Funder, Svend; Lunkka, Juha Pekka; proceedingsofaconference, 9–11 September2002,DublinCastle, Saarnisto,Matti2004.ValdaianglacialmaximaintheArkhangelsk Ireland. Dublin: Royal Irish Academy, 113–116.

84 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

Frindt,Stephen;Haapala,Ilmari;Pakkanen,Lassi2004.Anoro-noro- Gustafsson, Juhani (ed.); Ahonen, Ismo; Lammila, Jyrki; Läh- genic Gross Spitzkoppe granite stock in central western Namibia teenmäki, Pasi; Lyytikäinen, Ari; Nurmi, Heikki; Salonen, Vesa : Part I. Petrology and geochemistry. American Mineralogist 89 2002. Pohjavesien suojelun ja kiviaineshuollon yhteensovittami- (5–6), 841–856. nen – loppuraportti Loimaan seudulta. Turku: Varsinais-Suomen Furnes, H.; Banerjee, N. R.; Muehlenbachs, K.; Staudigel, H.; liitto. 70 p. +7+ 7 app. maps.ps. De Wit, M.; Kontinen, A. 2003. Evidence for bioalteration in Haavisto-Hyvärinen,Maija;Korhonen,Riitta;Mäkilä,Markku pillow lavas of Precambrian ophiolites. In: Geoscience horizons, 2004. Tuovi Kankainen in memoriam. Geologi 56 (7), 165. Seattle 2003 : GSAAnnual Meeting and Exposition, November Häikiö, Jukka; Herranen, Teuvo 2004. Merijärvellä tutkitut 2–5, 2003. Geological Society of America. Abstracts with Pro- suot ja niiden turvevarat. Osa 1. Abstract: The peatlands and grams 35 (6), 455. peat reserves of Merijärvi. Part 1. Geologian tutkimuskeskus. Geologian tutkimuskeskus GTK : vuosikertomus 2002. 2003. Turvetutkimusraportti 349. 45 p. + 4 app. Espoo: Geologian tutkimuskeskus. 51 p. Halkoaho, Tapio 2002. The Vaara – Kauniinlampi komatiite Geological Survey of Finland GTK : annual report 2002. 2003. cumulate complex. In: Niemelä, M. (ed.) Talc-magnesiteeddeeposits Espoo: Geological Survey of Finland. 51 p. in Finland, September 10–15, 2002, Finland : third field correla- Geologian tutkimuskeskus GTK : vuosikertomus 2003. 2004. tion, 21–26. Espoo: Geologian tutkimuskeskus. 55 p. Halmemies, Sakari; Gröndahl, Siri; Arffman, Mika; Nenonen, Geological Survey of Finland GTK : annual report 2003. 2004. Keijo; Tuhkanen, Tuula 2003. VaVacuumem extxtrracactionion basedbased responseresponse Espoo: Geological Survey of Finland. 5555 p. equipment for recovery of fresh fuel spills from soil. Journal of Gervilla, F.; Cabri, L. J.; Kojonen, K. K. R.; Oberthür, T.; Hazardous Materials 97 (1–3), 127–143. Weiser, T.; Johanson, B.; Sie, S. H.; Campbell, J. L.; Teesdale, Hänninen, Pekka; Sutinen, Raimo; Penttinen, Sari 2002. Maa- W. J.; Laflamme, J. H. G. 2003. Understanding the distribution perän seuranta-asemat.In: Pietola, L. & Esala, M. (eds.) Maa, of platinum-group elements in some mineral deposits : compari- josta elämme : II Maaperätieteiden päivien laajennetut abstraktit. son of trace element analyses obtained by electron microprobe Pro Terra 15, 123–126. and micro-PIXE. In: EMAS 2003 : 8th European Workshop on Hanski,Eero2003.Nampa.Suoommengeologinenkartta Modern Developments andApplications in MicrobeamAnalysis, 1:100 000 :kallioperäkartta=Geological map of Finland 18 to 22 May 2003, Chiclana de la Frontera (Cádiz), Spain. [S.l.]: 1:100 000 : pre-Quaternary rocks lehti = sheet 3623. European Microbeam Analysis Society, 121–135. Hanski, Eero; Walker, Richard J.; Huhma, Hannu; Polyakov, Gervilla, F.; Kojonen, K.; Parkkinen, J.; Välimaa, J. 2003. Gleb V.; Balykin, Pavel A.; Tran, Trong Hoa; Ngô, Thi Phuong Platinum-groupelementmineralogy,geochemistryand3-D 2004. Origin of the Permian-Triassic komatiites, northwestern modeling of the Keivitsa Ni-Cu-PGE sulfide deposit, northern Vietnam. Contributions to Mineralogy and Petrology 147 (4), Finland. In:Eliopoulos, D. G...... [et al.] (eds.) Mineralexplora- 453–469. tion and sustainable development : proceedings of the Seventh Härmä, Paavo 2003. Itä-Uudenmaan rakennuskivivarojen kar- Biennial SGAMeeting,Athens, Greece, 24–28August 2003. Vol. toitus, osa I. Itä-Uudenmaan liitto. Julkaisu 62. 19 p. + 4 app. 1. Rotterdam: Millpress, 583–586. Härmä, Paavo 2003. Itä-Uudenmaan rakennuskivivarojen kar- Gervilla, Fernando; Cabri, Louis J.; Kojonen, Kari; Oberthür, toitus, osa II. Itä-Uudenmaan liitto. Julkaisu 80. 16 p. + 6 app. Thomas;Weiser,Thorolf W.;Johanson, Bo;Sie, SoeyH.; Hartikainen, Aimo; Nikkarinen, Maria 2002. Maaperän ja Campbell, John L.; Teesdale, Williams J.; Laflamme, J. H. Gilles perunan alkuainepitoisuuksien vertailua kahdella kohdealueel- 2004. Platinum-group element distribution in some ore deposits : la Itä-Suomessa. In: Pietola, L. & Esala, M. (eds.) Maa, josta results of EPMAand micro-PIXE analyses. MicrochimicaMicrochimica Acta elämme : II Maaperätieteiden päivien laajennetut abstraktit. Pro 147 (3), 167–173. Terra 15, 127–130. Gornostayev, S.; Hiltunen, R.; Mutanen, T.; Härkki, J. 2003. Hattori, K. H.; Cabri, L. J.; Johanson, B.; Zientek, M. L. Mineralogical research on chromitites of the Akanvaara deposit, 2004. Originnoof placer lauritefrom Borneo:SeandAs contents, northern Finland and products of their reduction [Electronic and S isotopic compositions. Mineralogical Magazine 68 (2), resource]. In: Applied mineralogy ’03, Helsinki, Finland, March 353–368. 17–18, 2003, 2 p. Optical disc (CD-ROM). Heikkinen, P. M.; Räisänen, M. L. 2003. Mineralogical and Gornostayev, S.; Mutanen, T. 2003. TheThe plaplatininum-grom-groupmp min-in- geochemical evidence of nickel mobility and retention in the erals in chromitites of the Akanvaara deposit, northern Finland Hitura sulphide mine tailings [Electronic resource]. In: Applied and in their processing products. In: Applied mineralogy : papers mineralogy ‘03, Helsinki, Finland, March 17–18, 2003, 3 p. presented at Applied mineralogy ’03, Helsinki, Finland, 17–18 Optical disc (CD-ROM). March 2003. Minerals Engineering 16 (11 Suppl.), 1307–1312. Heldal, Tom; Selonen, Olavi 2003. Environmental impact of Gornostayev,S.S.;Mutanen,T.;Härkki,J.2003.TheThe plaplatiinnumm-- the natural stone industry. In: Selonen,O. & Suominen,V.(. (eds.) group minerals (PGM) in somechromititelayers of theAkanvaara Nordic stone. Paris: UNESCO : IAEG, 50–51. deposit, northern Finland [Electronic resource]. In: Vancouver Heldal, Tom; Selonen, Olavi 2003. History and heritage. IIn:n: 2003. GeologicalAssociation of Canada, MineralogicalAssocia- Selonen, O. & Suominen, V. (eds.) Nordic ssttone. Paris:UNESCO tion of Canada & Society of Economic Geologists joint annual : IAEG, 13–18. meeting,Vancouver,B.C.,Canada,May25–28,2003.Opticaldisc Hellmuth, Karl-Heinz; Tarvainen, Timo; Backman, Birgitta; (CD-ROM). GAC-MAC program with abstracts 28, 1 p. Hatakka,Tarja;Vesterbacka, Pia; Savolainen, Heimo 2003. IAEA Gornostayev, S. S.; Walker, R. J.; Hanski, E. J.; Popovchenko, Coordinated Research Project (CRP) ”The use of selected safety S. E. 2004. Evidence for the emplacement of ca. 3.0 Ga man- indicators(concentrations,fluxes)intheassessmentofradioactiv e tle-derived mafic-ultramafic bodies in the Ukrainian Shield. waste disposal”. Report 4: Natural geochemical concentrations Precambrian Research 132 (4), 349–362. on the Baltic Shield of Finland for use as indicators of nuclear Grinenko, L. N.; Hanski, E.; Grinenko, V. A. 2003. Usloviâ wasterepositorysafety.Geologiantutkimuskeskus.s.Ydinjätteiden obrazovaniâ Cu-Ni mestorozdeniâ Keivitsa, severnaâ Finlândiâ, sijoitustutkimukset. Tiedonanto YST-109. 161 p. po izotopnym dannym sery i ugleroda. Geohimiâ (2), 181–194. Hellstén, Pasi; Nystén,Taina; Salminen, Jani; Granlund, Kirsti; Grönholm, Sari (ed.);Alviola, Reijo; Kinnunen, KariA.; Kojo- Huotari, Taija; Vallinkoski, Veli-Matti 2004. Kaliumformiaatin nen, Kari; Kärkkäinen, Niilo; Mäkitie, Hannu 2004. Retkeilijän hajoaminen maaperässä ja pohjavedessä : MIDAS-loppuraportti. kiviopas. Espoo: Geologian tutkimuskeskus. 88 p. Abstract:Biodegradationofpotassiumformiateinsoilandground-

85 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004 water – final report of studies on alternative de-icing chemicals. Huttunen, Timo;Saarelainen,Jouko;Väänänen, Tapio;Putki- Suomen ympäristö 675. 53 p. nen, Seppo;Ikonen, Jorma;Kohonen, Jarmo;Pekkarinen, Lauri; Helmens, K. F.; Eskola, K. O.; Johansson, P. W.; Räsänen, M. Vuollo, Jouni;Äikäs, Olli 2003.KKoolili ::ggeeologinenologinenrreetkkeileilykkarartttta E. 2004. TheLast Interglacial/GlacialCycle recorded inanearly =geologisk friluftskarta=geological outdoor map 1:20 000. continuous sediment sequence from the Sokli Basin in Finnish Kuopio:Geologiantutkimuskeskus. Lapland.In:Mansfeld,J.(ed.)The26thNordicGeologicalWinter Huttunen, Timo (ed.);Hytönen, Markku; Kejonen, Aimo; Meeting, January 6th – 9th 2004, Uppsala, Sweden : abstract Rönty,Hannu; Saarelainen, Jouko;Tervo, Tapani;Väänänen, volume. GFF 126 (1), 135. Tapio;Äikäs, Olli 2003.Koli :geologinen retkeilykarttaja Holma, M. J.; Keinänen, V. J.; Ojala, V. J.; Eilu, P. 2003. TheThe opaskirja.Kuopio:Geologiantutkimuskeskus.73p. Levijärvi – LoukinenAu-Ni-Cu occurrence : a Palaeoproterozoic Huttunen, Timo;Johansson, Peter;Putkinen, Satu; Haa- polymetallic orogenic gold mineralisation in the Sirkka Line tec- visto-Hyvärinen,Maija2004.Maaperäkartansovelluksia tonic structure, northern Finland. In: Eliopoulos, D. G...... [et al.] yhdyskuntasuunnitteluun.In:Kaakinen,A.(ed.) Geologian (eds.)Mineralex plorationandsus tainabledevelopm ent:proceed- 3.tutkijapäivät,10.–11.3.2004,Helsinki.Helsinki:Helsingin ingsoftheSeventhBiennialSGAMeeting,Athens,Greece,24–28 yliopisto,geologianlaitos,73. August 2003. Vol. 2. Rotterdam: Millpress, 1073–1076. Hyvönen,Eija;Lerssi, Jouni;Väänänen,Tapio 2003.Aiirrbboorrnne Hongisto,H.;Jokinen,J.;Jokinen,T.;Säävuori,H .;Oksama,M. geophysicalsurveysassessingthegeneralscaleQuaternary 2004.FullscaleEMmodellingonseaice[Electronicresource].In: mappingprojectinFinland.In:Mares,S.&Pospísil,L.(eds.) Sharing the Earth : EAGE 66th Conference & Exhibition, Paris, 9thMeetingofEnvironmentalandEngineeringGeophysics, France, 7–10 June 2004 : extended abstracts. Houten: EAGE, 4 Prague, CzechRepublic, August 31st –September4th2003: p. Optical disc (CD-ROM). proceedings. Prague: CzechAssociationoftheAppliedGeo- Hongisto, Hannu; Oksama, Matti; Jokinen, Jarkko; Suppala, physicists,3p. Ilkka 2004. Field test ofa trtransient EM-systemmoonn seaice. In: Hyvönen,Eija;Pänttäjä, Markku; Sutinen, Marja-Liisa; Puska, L. (ed.) Sähkömagnetiikka 2004, 26. elokuuta 2004. Sutinen,Raimo 2003.AssessingsitesuitabilityforScots pine Espoo: CSC, 8–9. usingairborneandterrestrialgamma-raymeasurements in Hubberten, H. W.; Andreev, A.; Astakhov, V. I.; Demidov, I.; FinnishLapland.CanadianJournalofForest Research33 (5), Dowdeswell, J. A.; Henriksen, M.; Hjort, C.; Houmark-Nielsen, 796–806. M.; Jakobsson, M.; Kuzmina, S.; Larsen, E.; Lunkka, J. P.; Lyså, Iisalo,Esko2003.Till stratigraphyandgeochemicaldiffer- A.; Mangerud, J.; Möller, P.; Saarnisto, M.; Schirrmeister, L.; encesbetweentill bedsinwesternFinland.In:Räisänen,M.L. Sher, A. V.; Siegert, C.; Siegert, M. J.; Svendsen, J. I. 2004. TheThe &Nikkarinen,M.(eds.) Complexityofglacialdispersaland periglacial climate and environment in northern Eurasia during hydromorphicprocessesintill geochemistry.GeologicalSurvey the last glaciation. In: Thiede, J. (ed.) Quaternary environments ofFinland.SpecialPaper34,21–42. of the Eurasian North (QUEEN). Quaternary Science Reviews Iljina, M. 2004.The unique Konttijärvi marginal series PGE 23 (11–13), 1333–1357. oreofthePortimo Layered IgneousComplex,Finland[Elec- Huhma, H.; Mutanen, T.; Whitehouse, M. 2004. OOldesldestt rrocksocks tronicresource].In:St. Catharines2004.GeologicalAssocia- of the Fennoscandian Shield : the 3.5 Ga Siurua trondhjemite tion ofCanada&MineralogicalAssociationofCanadajoint gneiss in the Archaean Pudasjärvi Granulite Belt, Finland. In: annualmeeting,St. Catharines,Ontario,Canada,May12–14, Mansfeld, J. (ed.) The 26th Nordic Geological Winter Meeting, 2004.GAC-MAC programwithabstracts 29,255.Opticaldisc January 6th – 9th 2004, Uppsala, Sweden : abstract volume. GFF (CD-ROM). 126 (1), 10. Iljina, MarkkuJ. 2004. FennoscFennoscaandiandiannllaayerereded mafic intru - Huhma, H.; Mutanen,T.;Whitehouse, M. 2004. OldesOldestt rrocksocks ofof sionsandrelated Cu-Ni-PGE deposits. In:Iljina,M.&Sullivan, the Fennoscandian Shield : the 3.5 Ga Siurua trondhjemite gneiss J.(eds.) Fennoscandianseminar,March5,2004,[Toronto]: in the Archaean Pudasjärvi Granulite Belt, Finland. In: Abstracts agenda,abstracts andbiographies,2p. of the 14th Annual V. M. Goldschmidt Conference, Copenhagen, Iljina, Markku(ed.);Sullivan, John (ed.) 2004. FFennoscaennoscann-- Denmark, June 5–11, 2004. Geochimica et Cosmochimica Acta dianseminar,March5,2004,[Toronto]:agenda,abstracts and 68 (11S), A754. biographies. 15p. Huhta,Pekka2003.Satakunnankallioperäon vaikuttanut Johansson, Carl Erik;Andersen, Steen;Erikstad, Lars;Suo - maaperänerityispiirteisiin. Sarka. SatakunnanMuseonvuosikirja minen,Veli 2004.GeodiversityinNordicnatureconservation. 2001–2002, 62–67. In:32ndInternationalGeologicalCongress,Florence, Italy, Huhta, Pekka; Korhonen, Riitta; Korsman, Kalevi; Vuorela, August 20–28,2004:abstracts. Part 1,579. Irmeli 2003. Ainutlaatuinen Satakunnan maankamara tarjoaa Johansson,Peter2003.Aeolianlandformsanderosion in haasteita tutkijoille ja soveltajille. Sarka. Satakunnan Museon northernFinland.In:Raukas,A.&Kukk,H.(eds.) International vuosikirja 2001–2002, 56–81. symposiumonHumanImpactandGeologicalHeritage, 12–17 Hukka, Juho 2003.Lyijyhohde. Vuoriteollisuus61(2), May2003,Tallinn,Estonia:excursion guide andabstracts. 54–55. Tallinn:InstituteofGeologyatTallinn TechnicalUniversity, Hukka, Juho 2003. Maasälvät. Vuoriteollisuus 61 (1), 50–51. 72–73. Huotari, T.; Vanhala, H.; Hellstén, P.; Vaittinen, K. 2004. Johansson,Peter2003.Eskers andbedrockgorges(tunnel Monitoring an alternative de-icer in salt contaminated aquifer valleys) inthePakasaivoarea,westernFinnishLapland.Bulletin using ERT. In: Near surface 2004 : 10th European Meeting oftheGeologicalSocietyofFinland75(1–2),5–15. of Environmental and Engineering Geophysics, Utrecht, The Johansson,Peter2003.Kalliojamaaperä.In:Kuusisto,A. Netherlands, 6–9 September 2004 : extended abstracts book. (ed.) Ylläs-Aakenuksenalueenluonto.Metsähallituksenluon- Houten: EAGE, 4 p. nonsuojelujulkaisuja.SarjaA141,19–21. Huotari, Taija;Kukkonen, Ilmo 2004. TThermhermaallexpanpansionsion Johansson,Peter(ed.) 2003.Pallas-Ounastunturi:geologinen properties of rocks : literature survey and estimation of thermal retkeilykartta=geological outdoor map 1:50000.2nd rev.ed.. expansion coefficient for Olkiluoto mica gneiss. TiTiiivisisttelmä:elmä: Rovaniemi:Geologiantutkimuskeskus. Kivien lämpölaajenemisominaisuudet : kirjallisuustutkimus sekä Johansson,Peter(ed.);Mäkinen,Kalevi(ed.)2003.KKooilliskairailliskaira Olkiluodon kiillegneissin lämpölaajenemiskertoimen estimointi. :geologinen retkeilykartta=geological outdoor map 1:100 000. Posiva. Working report 2004–04. 62 p. 2ndrev.ed.Rovaniemi:Geologiantutkimuskeskus.

86 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

Johansson,Peter2004.Eskersystemsofdifferentagesineast- Kallinen,Riitta-Liisa2004.Kaavillatutkitutsuotjaniiden ernFinnishLapland.In:Zelcs,V.&Seglins,V.(eds.)International turvevarat. Osa2.Abstract:Thepeatlandsandpeatreservesin field symposiumonQuaternarygeologyand modern terrestrial Kaavi.Part 2.Geologiantutkimuskeskus.Turvetutkimusraportti processes,westernLatvia,September12–17,2004:abstracts of 350.28p. +3app. papers andposters. Riga:UniversityofLatvia,18–19 . Kananoja,Tapio2004.Kallioperänsuojelu-jaopetuskohteita Johansson,Peter2004.Evidencesofglaciationanddeglaciation Kainuussa.Abstract:Sitesforgeologicalprotecection andeduca- inwesternFinnishLapland.In:Lappalainen,E.(ed.)Vitalityand tion in Kainuu.SSuomen ympärismpäristö692.124p. peace ofmindfrom GreatTeuravuomaaapamire:post congress Kananoja,Tapio2004.Kallioperänsuojelu-jaopetuskohteita excursion toLapland, 11–16June, 2004, 52–58. Pohjois-Pohjanmaalla.Abstract:Sitesforgeologicalprotecection Johansson,Peter2004.Jäätikköjokimuodostumat.In:Koivisto, andeducation innorthernOstrobothnia(Pohjois-Pohjanmaa). M.(ed.) Jääkaudet. Helsinki:WSOY,139–151. Suomenympäristö714.157p. Johansson,Peter2004.Maaperäkartoituksenkeskeisetke- Kane,JeanS.(ed.);Niskavaara,Heikki(ed.);Hämäläinen,Lea hittämistavoitteet. In:Kaakinen,A.(ed.) Geologian3.tutkija- (ed.);Sandström, Harry(ed.);Ramsey,Michael H. (ed.) 2004. päivät,10.–11.3.2004,Helsinki.Helsinki :Helsinginyliopisto, Geoanalysis2003.GeostandardsandGeoanalyticalResearch geologianlaitos,10. 28(1), 9–136. Johansson,Peter;Haavisto-Hyvärinen,Maija;Huttunen,Timo; Kankainen, Tuovi;Vuorela, Irmeli 2003.Rapolan rantaker- Putkinen,Satu2004.Maaperäkartansovelluksiamaaperänja rostumankertomaa –kasvillisuudenrakenteestajaviljelyn pohjavedensuojeluunSiilinjärvellä.Abstract:Applicationsofthe historiasta.In:Heikkurinen-Montell,T.&Taskinen,H.(eds.) map of surficial geologytosoil and groundwater conservation SääksmäenRapolanrautakautinenmaisemajaelinkeinotVal- inSiilinjärvi,centralFinland.In:Seppälä,J.&Idman,H.(eds.) keakoskella.Rapola-tutkimuksia3,124–152. Maaperänsuojelu:GeologiantutkimuskeskuksenjaSuomen Käpyaho,A.;Mänttäri, I.;Huhma,H.2004. EEpisodicpisodicArrchaeanchaean ympäristökeskuksentutkimusseminaari5.11.2004.Suomen crustalgrowthandcrustalrecyclinginKuhmo,easternFinland: ympäristö726,63–66. U-Pbzircon andSm-Ndwhole-rockstudyofplutonicrocks. In: Johansson,Peter;Koivisto, Marjatta2004. Moreenimuo - Mansfeld, J. (ed.) The 26thNordic Geological Winter Meeting, dostumat. In:Koivisto,M.(ed.) Jääkaudet. Helsinki:WSOY, January6th–9th2004, Uppsala, Sweden :abstractvolume. 130–138. GFF 126 (1), 11. Johansson,Peter;Manninen, Tuomo 2004. Maankamaran Karhu,Eila2003.SuomenKivikeskusaloittitoimintansa syntyjakehitys. In:Kajala,L.(ed.) Lemmenjoki :Suomen Juuassa. Tietohippu(3–4), 4–6. suurinkansallispuisto–Thelargest nationalparkinFinland. Karhunen,Ritva2004.Iniön jaTurunkartta-alueidenkal- Ivalo:Metsähallitus,150–173. lioperä =Berggrunden inom Iniö och Åbo kartblad. Summmmarary: Johansson,Peter;Rainio, Heikki;Kejonen,Aimo 2004. Man- Pre-QuaternaryrocksoftheIniöandTurkumap-sheetareas. nerjäätikönreunalla–tuulikerrostumatjapölymaat.In:Koivisto, Suomengeologinenkartta1:100 000 :kallioperäkarttojenseli- M. (ed.) Jääkaudet.Helsinki: WSOY,106–113. tyksetlehdet1041 ja 1043.76 p. +1app. map. Jones, A.P.;Mutanen, T.;Tuisku,P.;Hanski, E.;Price, G. D. Kärkkäinen,Niilo2003.Gabbro-hostedilmenitedeposits in 2003. ThePecechenga strstructure,Russia:giantNii--Cumineralilisation Finland.In:Duchesne, J.-C.&Korneliussen,A.(eds.) Ilmenite related tolargemeteoriteimpact?. In:McDonald, I.... [etal.] deposits andtheirgeologicalenvironmentwithspecialreference (eds.) Worldclass mineraldeposits andEarthevolution,18–21 totheRogalandAnorthositeProvinceincludingageologicalmap August 2003.Applied EarthScience112(2),B149–B150. atscale1:75,000 andaCD withaguide totheprovince.Norges Juntunen, Risto;Vartiainen, Sirkka;Pullinen, Arto2004. Ar - geologiskeundersøkelse.Specialpublication 9,80–82. seeniPirkanmaanporakaivovesissä.Summmmary:Arsenicinwater Kärkkäinen, Niilo K.;Bornhorst,Theodore J. 2003.The from drilled bedrockwellsinPirkanmaa,southernFinland.In: Svecofenniangabbro-hosted Koivusaarennevamagmaticil- Loukola-Ruskeeniemi,K.&Lahermo,P.(eds.)ArseeniSuomen menitedeposit,Kälviä,Finland.MineraliumDeposita38(2), luonnossa,ympäristövaikutuksetjariskit. Espoo:Geologian 169–184. tutkimuskeskus,111–122. Kauniskangas, Esa;Saijos, Henri 2004. Geologian tutkimus - Juvonen,Riitta;Bartha,Andras;Lakomaa,Tuula M.;Soikkeli, keskuksellegeologistenkarttojentuotantojärjestelmä.ESRI Leena A.;Bertalan, Éva;Kallio, EevaI.;Ballók, Maria 2004. Finlanduutiset(2),3–5. Comparison of recoveries bylead fire assayand nickel sulfide Kauppila, Tommi;Valpola, SamuE. 2003.RResponseesponseofofa fire assayin the determination of gold, platinum, palladiumand shallowboreallaketorecentnutrientenrichment–implications rheniuminsulfide ore samples. In: Kane, J. S. ... [etal.] (eds.) fordiatom-based phosphorusreconstructions. Hydrobiologia Geoanalysis2003.GeostandardsandGeoanalyticalResearch 495(1–3),47–58. 28(1),123–130. Keinänen, M. M.;Korhonen, L. K.;Martikainen, P. J.;Varti - Kahelin, Hanna;Kallio,Eeva2004. Arseenin kemiallinen ainen, T.;Miettinen, I. T.;Lehtola, M. J.;Nenonen, K.;Pajunen, analysointi.Summmmary:Determination ofarsenicconcentrations H.;Kontro,M.H.2003.GGaasschromachromatographographic-massic-massspecspecttrromeomettrricic ingeologicalandenvironmentalsamples. In:Loukola-Rus- detection of2-and3-hydroxy fattyacidsasmethylesters from keeniemi,K.&Lahermo,P.(eds.) ArseeniSuomenluonnossa, soil, sedimentand biofilm. Journal of ChromatographyB783 ympäristövaikutuksetjariskit. Espoo:Geologiantutkimuskes- (2),443–451. kus,19–28. Kejonen,Aimo 2003.Geologienelämänviisauksiajapalindro- Kaija,Juha;Rasilainen, Kari;Blomqvist,Runar 2003.IIAEA meja.Geologi55 (2),34–37. Coordinated ResearchProject(CRP)”Theuseofselected safety Kejonen,Aimo2003.Yhdysvaltojenkadonneetkultakaivokset. indicators (concentrations, fluxes) in the assessmentof radioac- Kivi21(4),20–21. tivewastedisposal”. Report6:Site-specific natural geochemical Kejonen, Aimo;Kejonen,Eetu 2003.Lahden kivimessut concentrations and fluxes atthe Palmottu U-Th mineralisation hajaannuksenjahygienatuotteidenpyörteissä.Geologi55 (7), (Finland)foruseasindicators ofnuclearwasterepositorysafety. 186–189. Geologiantutkimuskeskus.Ydinjätteidensijoitustutkimukset. Kejonen,Aimo 2004.Kansanuskomuksiajageologiaa.In: TiedonantoYST-114.45 p. Koivisto, M. (ed.) Jääkaudet.Helsinki: WSOY,226–233. Kakkuri,Juhani;Virkki,Hanna2004.Maanousee.In:Koivisto, Kejonen,Aimo 2004.Kiinalaisenkadonnutkultakaivos. Kivi M. (ed.) Jääkaudet.Helsinki: WSOY,168–178. 22 (2),24–25.

87 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004

Kejonen, Aimo 2004. Mannerjäätikön reunalla – routiva maa. Koivisto, Marjatta 2004. Rantakerrostumat. In: Koivisto, M. In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 114–116. (ed.) Jääkaudet. Helsinki: WSOY, 179–184. Kejonen, Aimo 2004. On the Finnish pseudokarsts. In: Gaál, Koivisto, Marjatta 2004. Suomen maaperän mineraalit. In: L. (ed.) Proceedings of the 8th International Symposium on Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 157–163. Pseudokarst, Teply Vrch – Slovakia, 2004. Liptovsky Mikulás: Koivisto,Marjatta2004.UuttatietoaLappajärvestä.In:Koivisto, Slovak Caves Administration, 24–31. M. (ed.) Jääkaudet. Helsinki: WSOY, 164–167. Kejonen, Aimo 2004. Suomi ennen jääkautta. In: Koivisto, M. Koivisto,Marjatta;Kejonen,Aimo2004.Maalajit.In:Koivisto, (ed.) Jääkaudet. Helsinki: WSOY, 11–13. M. (ed.) Jääkaudet. Helsinki: WSOY, 117–120. Kejonen, Aimo; Johansson, Peter 2004. Geologiset maise- Kojonen, K.; Isomäki, O.-P.; Knauf, V. 2002. PPlalatiinnummggrrooup ma-alueet. In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, minerals and an undefined (Re, Mo, Cu, Os, Fe, Ni, Co)1.93S3 211–225. from theProterozoicHituraNi-Cu-PGEdeposit,westernFinland. Kejonen,Aimo;Kejonen,Eetu2004.Lahdenkivimessuillauusi In: 18th General Meeting of the International Mineralogical As- pitopaikka ja järjestäjä. Geologi 56 (7), 162–164. sociation : mineralogy for the new millennium, 1–6 September Keskitalo, Katriina (ed.); Kurkinen, Ilpo; Malkavaara, Terhi; 2002,Edinburgh,Scotland:programmewithabstracts.Edinburgh: Liljeqvist, Lasse; Lyytikäinen, Ari; Nurmi, Heikki; Ranta, Panu; International Mineralogical Association, 285. Sahala, Lauri; Timperi, Jukka; Tossavainen, Jyrki; Vallinkoski, Kojonen, K.; Isomäki, O.-P.; Pulkkinen, K.; Knauf, V. 2003. Veli-Matti; Britschgi, Ritva 2004. Pohjavesien suojelun ja kivi - Mineral processing of base metal sulphides and platinum group aineshuollon yhteensovittaminen – Kymenlaakson loppuraportti. minerals (PGM) at the Proterozoic Hitura Ni-Cu-PGE deposit, Abstract: The adjustment of groundwater protection with aggre- western Finland [Electronic resource]. In: Applied mineralogy gate service – final report from Kymenlaakso region. Alueeeelliselliset ’03, Helsinki, Finland, March 17–18, 2003, 4 p. Optical disc ympäristöjulkaisut 349. 134 p. + 3 app. maps. (CD-ROM). Kinnunen, Heli; Holopainen, Toini; Räisänen, Marja Liisa; Kojonen, K.; Zaccarini, F.; Garuti, G. 2003. PlaPlatiinnumm-gr-group Kärenlampi, Lauri 2003. Fluoriddee inbirch leaves,ground vegeta- elements and gold geochemistry and mineralogy in the Ray-Iz tion, litter and humus in the surroundings of a fertilizer plant and ophiolitic chromitites, Polar Urals. In: Eliopoulos, D. G...... [et al.] apatite mine in Siilinjärvi, eastern Finland. Boreal Environment (eds.)Mineralexplorationandsustainabledevelopment:proceed- Research 8 (2), 185–192. ingsoftheSeventhBiennialSGAMeeting,Athens,Greece,24–28 Kinnunen,KariA.2003.AidostaL apinkultahipustatakuutuote. August 2003. Vol. 1. Rotterdam: Millpress, 599–602. Prospäkkäri 27 (4), 24–31. Kojonen,Kari2004.Tarkianiitti(Cu,Fe)(Re,Mo)4S8uusisulfi- Kinnunen, Kari A. 2003. Hurrikkaan tutkimustulokset. Lapin dimineraali Hituran kaivoksesta Nivalasta. Kivi 22 (3), 20–25. Kullankaivaja (17), 33–34. Kojonen, Kari;Isomäki,Olli-Pekka2004. Tarkianiitti Kinnunen, Kari A. 2003. Jaspista Susiluolassa : viime kesän (Cu,Fe)(Re,Mo)4S8–uusimineraaliHiturankaivoksesta.Materia kaivauksilta taltioitu piikiven veroista kivimateriaalia. Karijoen 61 (3), 36–41. joulu 2003, 24–25. Kojonen,Kari;Välimaa,Jukka;Gervilla,Fernando;Parkkinen, Kinnunen, Kari A. 2003. Korukivien tunnistaminen on yhteis- Jyrki 2004. Platinum-group element mineralization pipes of the työtä. Kivi 21 (4), 6–12. early Proterozoic Keivitsa mafic-ultramafic intrusion, Sodankylä, Kinnunen, Kari A. 2003. Mercury-rich coating on some gold northernFinland.In:32ndIntern ationalGeologicalCongress,Flor - nuggets from Ivalojoki placers, northern Finland. In: Autio, S. ence, Italy, August 20–28, 2004 : abstracts. Partt22,1, 1267–1268. (ed.)GeologicalSurveyofFinland,CurrentResearch2001–2002. Kojonen, Kari K.; Roberts, Andrew C.; Isomäki, Olli-Pekka; Geological Survey of Finland. SpeciaSpeciall Paper 36,29–33. Knauf, Vladimir V.; Johanson, Bo; Pakkanen, Lassi 2004. TaTarki-rki- Kinnunen, Kari A. 2003. Santorinin kivet. Kivi 21 (1), 33. anite, (Cu,Fe)(Re,Mo)4S8, a new mineral species from the Hitura Kinnunen, Kari A. 2004. Hohtokordieriitti, uusi kotimainen mine, Nivala, Finland. In: Mungall, J. E., Meurer, W. P. & Martin, korukivi. Kivi 22 (1) , 8–21. R. F. (eds.) Platinum-group elements : petrology, geochemistry, Kinnunen, Kari A. 2004. Karijoen Susiluolasta tunnistettu mineralogy. The Canadian Mineralogist 42 (2), 539–544. jaspista. Kivi 22 (3), 14–19. Konishi, Hiromi; Alviola, Reijo; Buseck, Peter R. 2004. 2111 Kinnunen, Kari A. 2004. Kulta kiteytyi kvartsijuoneen. Pros- biopyriboleintermediatebetween pyroxeneandamphibole:artifact päkkäri 28 (4), 14–20. or natural product?. American Mineralogist 89 (1), 15–19. Kinnunen, KariA. 2004. Kultaa ja kalsedonia samassa hipussa. Kontinen,Asko 2002. Jormua Ophiolite Complex. In:Niemelä, Kivi 22 (2), 26–27 . M. (ed.) Talc-magnesiteeddeeposits in Finland, September 10–15, Kinnunen, Kari A. 2004. Puskuojalta kultapitoista kalsedonia. 2002, Finland : third field correlation, 14–20. Prospäkkäri 28 (2) , 8–13. Kontinen,Asko; Meriläinen, Kauko 2004. PalPaltaniemniemi.i. Suomenomen Kinnunen, Kari A. 2004. Tapio-kultahipun tutkimus. Prospäk- geologinen kartta 1:100 000 : kallioperäkartta = Geological map käri 28 (1), 14–20. of Finland 1:100 000 : pre-Quaternary rocks lehti = sheet 3432. Koistinen, Tapio; Stephens, Michael; Bogatchev, Vladimir; Korhonen, J. V. (comp.);Aaro, S. (comp.);All, T. (comp.); Elo, Nordgulen, Oystein; Wennerström, Marit; Korhonen, Juha Ville S.(comp.);Haller,L.Å.(comp.);Kääriäinen,J.(comp.);Kulinich, 2004. Geological map of the Fennoscandian Shield1:2 000 000. A.(comp.);Skilbrei,J.R.(comp.);Solheim,D.(comp.);Säävuori, In:32ndInternationalGeologicalCongress,Florence,Italy,August H. (comp.); Vaher, R. (comp.); Zhdanova, L. (comp.); Koistinen, 20–28, 2004 : abstracts. Part 1, 565. T. (comp.) 2002. Bouguer anomaly map of the Fennoscandian Koivisto, Marjatta (ed.) 2004. Jääkaudet. Helsinki: WSOY. Shield : IGSN 71 gravity system, GRS80 normal gravity formula. 233 p. Bouguer density 2670 kg/m³, terrain correction applied.Anomaly Koivisto,Marjatta2004.Jäätikkökuljetus.In:Koivisto,M.(ed.) continued upwards to 500 m above ground : scale 1 : 2 000 000. Jääkaudet. Helsinki: WSOY, 152–156. Espoo : Trondheim : Uppsala : Moscow: Geological Survey of Koivisto, Marjatta 2004. Jäätikön jäljet. In: Koivisto, M. (ed.) Finland : Geological Survey of Norway : Geological Survey of Jääkaudet. Helsinki: WSOY, 58–62. Sweden : Ministry of Natural Resources of Russia. Koivisto, Marjatta 2004. Moreeni. In: Koivisto, M. (ed.) Jää- Korhonen, J. V. (comp.); Aaro, S. (comp.); All, T. (comp.); kaudet. Helsinki: WSOY, 121–126. Nevanlinna, H. (comp.); Skilbrei, J. R. (comp.); Säävuori, H. Koivisto, Marjatta 2004. Moreenin tutkimus. In: Koivisto, M. (comp.); Vaher, R. (comp.); Zhdanova, L. (comp.); Koistinen, T. (ed.) Jääkaudet. Helsinki: WSOY, 127–129. (comp.)2002.MagneticanomalymapoftheFennoscandianShield

88 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

: DGRF-65 anomaly of total field. Anomaly continued upwards Kortelainen,NinaM.;Karhu,JuhaA.;Lallukka,Heli;Lindqvist, to 500 m above ground : scale 1 : 2 000 000. Espoo : Trondheim Kristian 2003. Compositional and isotopicceevolution offgground- : Uppsala : Moscow: Geological Survey of Finland : Geological water in a carbonate-bearing glacigenic aquifer, SWFinland. In: Survey of Norway : Geological Survey of Sweden : Ministry of Batts, B. D. & Batts, J. E. (eds.) 5th International Symposium Natural Resources of Russia. on Applied Isotope Geochemistry, Heron Island, Queensland, Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Elo, Seppo; Australia, May 26–30, 2003 : program and abstracts, 115–116. Koistinen, Tapio; Kulinich, Anatoli; Kääriäinen, Jussi; Skilbrei, Kortelainen, N. M.; Karhu, J. A. 2004. TTrraacingcing thhee decdecomposi-omposi- Jan Reidar; Solheim, Dag;Vaher, Rein; Zhdanova, Ludmila 2003. tion of dissolved organic carbon in artificial recharge by carbon Correlation of potential field anomalies, petrophysical properties isotoperatios.In:Isotopehydrologyandintegratedwaterresources andevolutionoftheFennoscandianShield.In:IUGG2003:XXIII management:internationalsymposiumheldinVienna,19–23May General Assembly of the International Union of Geodesy and 2003 : unedited proceedings. IAEAConference & Symposium Geophysics, June 30 – July 11, 2003, Sapporo, Japan : abstracts. Papers 23/P, 123–124. Week B. Sapporo : IUGG, 35. Kortelainen, N. M.; Karhu, J. A.; Lallukka, H.; Lindqvist, K. Korhonen,JuhaVille;Säävuori,Heikki;Koistinen,Tapio2003. 2004. Evolutionofgfgroundwater inacarbonate-bearingggglacigenic Lithospheric sources of magnetic and gravity anomalies of the aquifer, SWFinland : hydrochemical and isotopic evidence. In: Fennoscandian Shield. In: IUGG 2003 : XXIII GeneralAssembly International conference on isotopes in environmental studies of the International Union of Geodesy and Geophysics, June 30 –aquaticforum2004,Monte-Carlo,Monaco,25–29October2004 – July 11, 2003, Sapporo, Japan : abstracts. Week B. Sapporo : : book of extended synopses. Vienna: IAEA,141–142. IUGG, 28. Kortelainen, Nina; Gustavsson, Nils 2004. Virttaankankaan Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Elo, Seppo; pohjavedenjaKokemäenjoenjokivedenhapenjavedynisotooppi- Kulinich, Anatoly; Skilbrei, Jan Reidar; Säävuori, Heikki; Va- koostumusseuranta:seossuhteidenvirhetarkastelusimuloinneilla. her, Rein; Zhdanova, Ludmila; Koistinen, Tapio 2004. Bouguerer Summary:The oxygen and hydrogen isotope ratio inVirttaankan- anomaly map of the Fennoscandian Shield 1:2 000 000. In: 32nd gasgroundwaterandKokemäenjokiriverwatermonitoring InternationalGeologicalCongress,Florence,Italy,August20–28, program. TurunSeudunVesiOy:njulkaisu1/2004. 30 p. 2004 : abstracts. Part 1, 565. Kortelainen, Nina M.; Karhu, Juha A. 2004. RRegionalegional aandnd sea-sea- Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Nevanlinna, sonal trends in the oxygen and hydrogen isotope ratios of Finnish Heikki;Skilbrei, Jan Reidar;Säävuori, Heikki;Zhdanova, groundwaters : a key for mean annual precipitation. Journal of Ludmila; Koistinen, Tapio 2004. MagneMagneticic anomalanomalymapmap ofof thehe Hydrology 285 (1–4), 143–157. Fennoscandian Shield 1:2 000 000. In: 32nd International Geo- Kortelainen,P.;Pajunen,H.;Rantakari,M.;Saarnisto,M.2004. logical Congress, Florence, Italy,August 20–28, 2004 : abstracts. Carbon pool in boreal Holocene lake sediments. In: SIL XXIX Part 1, 565. Congress, Lahti, Finland, 8–14 August 2004 : book of abstracts. Korhonen, Juha Ville; Lahtinen, Raimo 2004. MMagneagnetizatiionon Lahti: Societas Internationalis Limnologiae (SIL), 241. components of Precambrian rocks in Finland, central Fennoscan- Kortelainen, Pirkko;Pajunen, Hannu; Rantakari, Miitta; dianShield.In:32ndInternationalGeologicalCongress,Florence, Saarnisto, Matti 2004. Alargeeccarbon pool and small sinkkiin Italy, August 20–28, 2004 : abstracts. Part 2, 1348–1349. boreal Holocene lake sediments. Global Change Biology 10 Korhonen, Juha Ville; Reeves, Colin; Ghidella, Marta; Maus, (10), 1648–1653. Stefan; McClean, Susan; Ravat, Dhananjay 2004. WWoorrldld Diig-g- Kotilainen, A. T.; Alvi, K.; Hämäläinen, J. M. S.; Kotilainen, ital Magnetic Anomaly Map. In: 32nd International Geological M. M.; Rantataro, J. 2004. TheThe NorNortthAtllananticcOOscillscillatioionnaanndd thehe Congress, Florence, Italy, August 20–28, 2004 : abstracts. Part Baltic Sea during the past 8000 years. In: Puura, I., Tuuling, I. & 1, 779. Hang, T. (eds.) The Baltic : the Eighth Marine Geological Confer- Korhonen,JuhaVille;Säävuori,Heikki;Koistinen,Tapio2004. ence,September23–28,2004,Tartu,Estonia:abstracts,excursion Bulk density and magnetic properties of central Fennoscandian guide. Tartu: University of Tartu, Institute of Geology, 26. Shield in time and space. In: 32nd International Geological Kotilainen, Aarno;Hutri,Kaisa-Leena 2004. Submarinebmarine Congress, Florence, Italy, August 20–28, 2004 : abstracts. Part Holocene sedimentary disturbances in the Olkiluoto area of the 2, 951–952. GulfofBothnia,BalticSea:ac aseofpostglacialpalaeoseismici ty. Korhonen, Riitta 2003. Kalliomme ja maaperämme. In:Sar- Quaternary Science Reviews 23 (9–10), 1125–1135. lund, S. (ed.) Tavinsalmen KuninkaankartanostaKäärmelahteeeen Kotilainen,Aarno; Hämäläinen, Jyrki; Kohonen, Jarmo; Korja, : kotiseutukirja ja historiikki Maaningalta Haapamäen, Kinnu- Annakaisa; Mertanen, Satu; Ojala, Juhani; Rämö, Tapani; Sund- lanlahden,KäärmelahdenjaTavinsalmenkylistä.Maaninka: blad, Krister; Vaarma, Markus 2004. Syväkairausta Itämerellä Sinikivi-työryhmä, 9–10. – haaveista totta tällä vuosituhannella?. Summary: Ageological Korhonen, Riitta 2003. Satakunnan soiden käyttömahdollisuu- drilling programme for the Baltic Sea Basin – will the dreams det. Sarka. Satakunnan Museon vuosikirja 2001–2002, 76–79. come true in this millennium? GeologGeologii 56(9–10), 204–207. Korhonen, Riitta; Suomi, Timo 2003. Jalasjärvellä tutkitut suot Kousa, Anne; Nikkarinen, Maria 2003. GGeocheeochemmisistrtry ooff llocalocal ja niiden turvevarat. Osa2. Abstract:The mires and peatrt reserves ground water in relation to the incidence of chronic diseases. In: of Jalasjärvi. Part 2. Geologian tutkimuskeskus. Turvetutkimus- Autio, S. (ed.) Geological Survey of Finland, Current Research raportti 343. 36 p. + 5 app. 2001–2002. Geological Survey of Finland. SpecialSpecial Paper 36, Korja, Annakaisa; Lahtinen, Raimo; Nironen, Mikko; Heikki- 53–59. nen,Pekka;Kukkonen,IlmoT. 2004.TTheheggrorowwtthhooffFFeennoscandiannoscandia Kousa, A.; Moltchanova, E.; Taskinen, O.; Nikkarinen, M.; by Paleoproterozoic accretionary orogenies – results from FIRE Tuomilehto, J.; Karvonen, M. 2004. Chhemisemistrtry ofof weellll wateerr aandnd and BABEL reflection profiles. In: 32nd Internatioal Geological the acute myocardial infarction (AMI) incidence in Finland. In: Congress, Florence, Italy, August 20–28, 2004 : abstracts. Part Törrönen, R. & Gylling, H. (eds.) The 20th Anniversary Sympo- 2, 1225. sium of the Department of Clinical Nutrition, March 18–19, 2004, Kortelainen, N. M.;Karhu,J.A.2003.TTrracingacingthheeddecomposi-ecomposi- Kuopio, Finland : abstracts. Kuopio University Publications D. tion of dissolved organic carbon in artificial recharge bycarbon Medical Sciences 325, 44. isotoperatios. In:Internationalsymposiumonisotopehydrology Kousa,A.; Moltchanova, E.; Viik-Kajander, M.; Rytkönen, M.; andintegratedwaterresourcesmanagement,Vienna,Austria,19–23 Tuomilehto, J.; Tarvainen, T.; Karvonen, M. 2004. GGeochemiseochemistrtry May2003 :book of extended synopses. Vienna: IAEA,25–26. of ground water and the incidence of acute myocardial infarction

89 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004 in Finland. Journal of Epidemiology and Community Health 58 ments (REE) in deep basin sediments of the Baltic Sea. Baltica (2), 136–139. 17 (2), 53–62. Kousa,Anne; Moltchanova, Elena; Taskinen, Olli; Nikkarinen, Kuosmanen,V. V.;Arkimaa,H.A.;Kuosmanen,E.L.;Laitinen, Maria; Tuomilehto, Jaakko; Karvonen, Marjatta 2004. GGeochem-eochem- J. L. 2003. Combined use of AISA,HyMap and ultraspectral istry of local ground water in relation to the incidence of acute image data for detection of environmental features, a case his- myocardial infarction (AMI) in Finland. In: 32nd International tory from Elijärvi chromium mine, Finland. In: Benes, T. (ed.) Geological Congress, Florence, Italy, August 20–28, 2004 : ab- Geoinformation for European-wide integration : proceedings of stracts. Part 2, 1371–1372. the 22nd Symposium of the European Association of Remote Kousa,Jukka;Luukas,Jouni2002.Piippola.Suomengeologinen Sensing Laboratories, Prague, Czech Republic, 4–6 June 2002. kartta 1:100 000 : kallioperäkartta = Geological map of Finland Rotterdam: Millpress, 473–478. 1:100 000 : pre-Quaternary rocks lehti = sheet 3411. Kuusisto, Erna 2004. Arseeni kasveissa. Summary: Arsenic in Kozlovskaya, E.; Elo, S.; Hjelt, S.-E.; Yliniemi, J.; Pirttijärvi, plants. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Ar- M. 2004. 3-D density model of thece crust of southernandcd ceentral seeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo: Finland obtained from joint interpretation of the SVEKALAPKO Geologian tutkimuskeskus, 67–71. crustal P-wave velocity models and gravity data. Geophysical Lahti, Seppo I. 2003. Mineraalien värien syntymekanismeista. Journal International 158 (3), 827–848. Osa 3. Kivi 21 (1), 8–17. Kozlovskaya,E.;Hjelt,S.-E.;Yliniemi,J.;Ushakov,A.;Elo,S.; Lahtinen, Raimo (ed.); Korja, Annakaisa (ed.); Arhe, Katriina Pirttijärvi, M. 2004. 3-D inversion of P- and S-wave arrivals from (ed.); Eklund, Olav (ed.); Hjelt, Sven-Erik (ed.); Pesonen, Lauri J. local events recorded during the SVEKALAPKO deep seismic (ed.)2002.Lithosphere2002:secondsymposiumonthestructure, experiment [Electronic resource]. In: EGU General Assembly composition and evolution of the lithosphere in Finland, Geologi- 2004, Nice, France, 25–30 April 2004. Geophysical Research cal Survey of Finland, Espoo, Otaniemi, November 12–13, 2002 Abstracts 6, 2 p. Optical disc (CD-ROM). : programme and extended abstracts. Institute of Seismology. Kozlovskaya, Elena; Korhonen, Juha Ville; Elo, Seppo; Hjelt, University of Helsinki. Report S-42. 146 p. Sven-Erik; Yliniemi, Jukka; Pirttijärvi, Markku 2003. Crussttalal Lahtinen, R.; Nironen, M.; Korja, A. 2003. PPalaeoproalaeoproteerorozooicic model for southern and central Finland (Fennoscandian Shield). orogenic evolution of the Fennoscandian Shield at 1.92–1.77 In: IUGG 2003 : XXIII General Assembly of the International Ga with notes on the metallogeny of FeOx-Cu-Au, VMS, and Union of Geodesy and Geophysics, June 30 – July 11, 2003, Sap- orogenic gold deposits. In:Eliopoulos, D. G...... [et al.] (eds.) poro, Japan : abstracts. Week B. Sapporo: IUGG, 35. Mineral exploration and sustainable development : proceedings Kukkonen, I. T.; Kinnunen, K. A.; Peltonen, P. 2003. ManMantlele of the Seventh Biennial SGAMeeting, Athens, Greece, 24–28 xenoliths and thick lithosphere in the Fennoscandian Shield. In: August 2003. Vol. 2. Rotterdam: Millpress, 1057–1060. Cermak, V. & Kukkonen, I. T. (eds.) Heat flow and the structure Lahtinen, Raimo; Korja, Annakaisa; Nironen, Mikko 2004. of the lithosphere. Physics and Chemistry of the Earth 28 (9–11), Paleoproterozoic evolution of the Fennoscandian (Baltic) Shield. 349–360. In:32ndInternationalGeological Congress,Florence,Italy,August Kukkonen, Ilmo T.; Jõeleht, Argo 2003. WeWeichselianichselian tempera-empera- 20–28, 2004 : abstracts. Part 1, 563. tures from geothermal heat flow data. Journal of Geophysical Laiho, Jussi V.-P. 2003. Ympäristötutkimuksissa käytettävi- Research 108 (B3), 11 p. en kenttämittareiden luotettavuutta voidaan helposti parantaa, Kukkonen, Ilmo T.; Jõeleht, Argo 2003. WeWeichselianichselian tempera-empera- esimerkkinä kannettavat XRF-kenttämittarit. GGeologieologi 55 ((4–5),4–5), tures from geothermal heat flow data. In: IUGG 2003 : XXIII 94–99. General Assembly of the International Union of Geodesy and Lambie,Katherine;Frape,Shaun; Stotler, Randy;Ruskeeniemi, Geophysics, June 30 – July 11, 2003, Sapporo, Japan : abstracts. Timo; Hobbs, Monique 2004. Site characterization techniques Week A. Sapporo: IUGG, 199. using fracture minerals for radioactive waste disposal. In: Geo- Kukkonen,IlmoT.;Peltonen,Petr i;Kinnunen,Kari2003. MManantle scienceinachangingworld:GSA AnnualMeetingandExposition, xenoliths and thick lithosphere in the Fennoscandian Shield. In: Denver, Colorado, November 7–10, 2004. Geological Society of IUGG 2003 : XXIII GeneralAssembly of the International Union America. Abstracts with Programs 36 (5), 358–359. of Geodesy and Geophysics, June 30 – July 11, 2003, Sapporo, Lappalainen, Eino (comp.); Luukkanen, Ari (ed.) 2003. Suo - Japan : abstracts. Week A. Sapporo: IUGG, 175. seura ry:n opintoretki Kolarin Suur-Teuravuomalle 9.–10.9.2003. Kukkonen, I. T.; Kinnunen, K.; Peltonen, P. 2004. ManMantlele Helsinki : Kuopio: Suoseura Ry : Geologian tutkimuskeskus. xenoliths and thick lithosphere in the Fennoscandian Shield 104 p. – geophysical implications. In: Mansfeld, J. (ed.)The 26th Nordic Laurén, Ari;Koivusalo,Harri;Kokkonen, Teemu; Pentti - Geological Winter Meeting, January 6th – 9th 2004, Uppsala, nen, Sari;Nenonen, Keijo;Hänninen, Pekka;Finér,Leena; Sweden : abstract volume. GFF 126 (1), 12. Mannerkoski, Hannu 2003. Uusia työvälineitä metsätalouden Kukkonen, Ilmo 2004. Suomen kallioperän seismiset heijas- ympäristökuormituksen hallintaan–Femma. In: Finér,L., tusluotaukset päätökseen. Materia 61 (1), 24–27. Laurén, A. & Karvinen, L. (eds.) Ajankohtaista metsätalouden Kukkonen, Ilmo 2004. Suomen syvimmän reiän kairaus käyn- ympäristökuormituksesta–tutkimustietoajatyökaluja–seminaari nissä Outokummussa. Vuorityö ja -tekniikka, 26–27. Kolin Luontokeskus Ukko 23.9.2002. Metsäntutkimuslaitoksen Kukkonen, Ilmo; Korja, Annakaisa; Lahtinen, Raimo; Heik- tiedonantoja 886, 89–95. kinen, Pekka 2004. Thermalmodellingofcrustal ststackingand Lauri, Laura S.; Karinen, Tuomo; Räsänen, Jorma 2003. TheThe exhumation during the Palaeoproterozoic orogenic growth of the earliestPaleoproterozoicsupracrustalrocksinKoillismaa,northe rn central Fennoscandian Shield. In: 32nd International Geological Finland – their petrographic and geochemical characteristics and Congress, Florence, Italy, August 20–28, 2004 : abstracts. Part lithostratigraphy. Bulletin of the Geological Society of Finland 2, 1467–1468. 75 (1–2), 29–50. Kultti, Seija; Väliranta, Minna; Sarmaja-Korjonen, Kaarina; Lehtonen, M. L.; O’Brien, H. E.; Peltonen, P.; Johanson, B. S.; Solovieva, Nadia; Virtanen, Tarmo; Kauppila, Tommi; Eronen, Pakkanen,L.K.2004.Layeredlithosphericmantleattheedgeofthe Matti2003.Palaeoececologicaleviddeenceofchangesinvegetationand Karelian Craton : P-Tand compositions of kimberlitic xenocrysts climate during the Holocene in the pre-Polar Urals, northeast Eu- and xenoliths from Kaavi-Kuopio, Finland. In: Mansfeld, J. (ed.) ropean Russia. Journal of Quaternary Science 18 (6), 503–520. The 26th Nordic Geological Winter Meeting, January 6th – 9th Kunzendorf, Helmar; Vallius, Henry 2004. Rare earth ele- 2004, Uppsala, Sweden : abstract volume. GFF 126 (1), 12.

90 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

Lehtonen, M. L.; O’Brien, H. E.; Peltonen, P.; Johanson, B. Backman, B.;Juntunen, R.;Pullinen, A.;Vartiainen, S. 2003. S.; Pakkanen, L. K. 2004. LLaayeeredred mmanantllee attt thhee KKarelianarelian Crraaton Naturallyhigh arseniccontents ingroundwaterinareaswith margin:P-Tofmantlexenocrysts andxenolithsfrom theKaavi- abundantgoldoccurrences,Finland.In:Gobran,G.R.&Lepp, Kuopiokimberlites,Finland.In:Mitchell,R.H.... [etal.](eds.) N.(eds.) 7thInternationalConference on theBiogeochemistryof Selectedpapersfromthe8thInternationalKimberliteConference, TraceElements,Uppsala,Sweden,June15–19,2003:conference Victoria,BC,Canada,22–27June2003.Vol.2:TheJ.Barry proceedings. Vol.2:Symposia.Uppsala:SwedishUniversityof Hawthorne volume. Lithhosos 77 (1–4), 593–608. AgriculturalSciences, 86. Lehtonen,Marja2004.KaavinLahtojoensekäKuhmon Sei- Lukkarinen,Heikki 2002.Kuopio.Suomomengeologinen taperänkimberliittienindikaatiotpohjamoreenissa.Summmmary: kartta1:100 000 :kallioperäkartta=Geological map of Finland Glacialdispersion studiesoftwoeasternFinlandkimberlitesin 1:100 000 :pre-Quaternaryrocks lehti=sheet3242. Quaternarytill. GeologGeologii556(4–5), 92–103. Lunkka,JuhaPekka;Johansson,Peter;Saarnisto,Matti;Sallas- Leino,Jukka2004.Tohmajärvenkunnassatutkitutsuotjaniiden maa,Olli 2004.GlaciatioonnoofFinland.In:Ehlers,J.&Gibbardd,, turvevarat. Osa1.Abstract:Thepeatlandsandpeatreservesof P.L.(eds.) Quaternaryglaciations:extentandchronology.Part Tohmajärvi.Parrtt1.Geologiantutkimuskeskus.Turvetutkimus- 1:Europe.Developments inQuaternaryScience2,93–100. raportti355.58 p. +4app. Luodes, Hannu; Selonen, Olavi2003.GTK:n luonnonkivikar- Leinonen,Seppo2002.TheJuurikkaniemisoapstonedeposit. toituksellauusiakivilaatuja.Suomalainenkivi(4),48–51. In:Niemelä,M.(ed.) Talc-magnesitedeposits inFinland, Sep- Luukkanen,Ari2002.Kiuruvedellätutkitutsuotjaniiden tember 10–15, 2002,Finland :third field correlation, 32–33. turvevarat. Osa4.Abstract:ThemiresandpeatreservesofKiu- Leinonen,Seppo2002.TheKivikangasandHaaponensoap- ruvesi.Part 4.Geologiantutkimuskeskus.Turvetutkimusraportti stonedeposits. In:Niemelä,M.(ed.) Talc-magnesitedeposits 341. 68p.+3app. in Finland, September 10–15, 2002,Finland :third field cor- Luukkanen,Ari2003.Kiuruvedellätutkitutsuotjaniiden relation,27–29. turvevarat. Osa5.Abstract:ThemiresandpeatreservesofKiu- Leinonen,Seppo2003.Kivilajiensynty.In:Vuorjoki,K. ruvesi.Part 5.Geologiantutkimuskeskus.Turvetutkimusraportti (author) Kivimatka.Helsinki:Sarmala,10–15. 346.69p.+4app. Leivuori, Mirja;Vallius, Henry2004. Arseenirseenimerisedi-merisedi- Luukkanen,Ari2003.Kiuruvedellätutkitutsuotjaniiden menteissä.Summary:Arsenicinmarinesediments. In:Lou- turvevarat.OOsasa 6.Abstracract:The peatlands and peatreserves of kola-Ruskeeniemi,K.&Lahermo,P .(eds.) ArseeniSuomen Kiuruvesi. Part6.Geologian tutkimuskeskus. Tur vetutkimusra-sra- luonnossa,ympäristövaikutuksetjariskit. Espoo:Geologian portti348. 62 p. +4app. tutkimuskeskus, 89–96. Luukkanen,Ari2004.Lapinlahdellatutkitutsuotjaniiden Leveinen,Jussi;Harlin,Ali;Nou siainen,Pertti2003. Funcnctionalional turvevarat. Osa1.Abstract:Thepeatlandsan dpeattrreservesof fibre materials in passivetreatmentof polluted groundwater.In: Lapinlahti.Part 1.Geologiantutkimuskeskus.Turvetutkimus- EuroNanoForum2003.Europeanandinternationalforumon raportti354.50p. +3app. nanotechnology,Trieste(Italy), 9–12December2003:catalogue Luukkonen,Erkki 2003.Nurmes. Suomengeologinen ofposters,1p. kartta1:100 000 :kallioperäkartta=Geological map of Finland Leveinen, Jussi;Lintinen, Petri 2003.FFlolowmodelmodelofofanan 1:100 000 :pre-Quaternaryrocks lehti=sheet4321. industrialsiteinPori,W-Finlan d–asimpleapproximation Maier,W.D.;Peltonen, P.;Grant ham, G.;Mänttäri, I. 2003. ofacomplexdrainagesystem.In:Poeter,E.... [etal.](orgs.) Anew1.9GaagefortheTrompsburgintrusion,SouthAfrica. MODFLOWandmore2003:understandingthrough modeling: Earthand PlanetaryScience Letters 212(3–4), 351–360. proceedings,September16–19,2003,ColoradoSchoolofMines. Makarikhin, Vladimir;Suominen, V eli;Systra, Ylo 2004. Vol.1.Golden,CO:ColoradoSchoolofMines,188–192. Uniqueobjects oftheEarlyPrecambrianintheeasternFen- Lindholm, Tapio;Heikkilä, Raimo;Kuznetsov,Oleg;Mäkilä, noscandianShield.In:32ndInternationalGeologicalCongress, Markku2004.Ypäyssuo,ahugeEast Fennoscandi anproposed Florence, Italy,August 20–28,20 04:abstracts. Part 1,580. RAMSARmiresiteinRussianKarelia.In:Barry,M.(comp.) Mäkelä-Kurtto, Ritva;Louekari, Kimmo;Nummivuori, Sari; IMCGScientific Symposium, 24–25September 2004, [Paarl, Sippola,Jouko;Kaasalainen, Marika;Kuusisto,Erna;Virtanen, SouthAfrica]:managementchalle ngesforwetlands,miresand Virpi;Salminen, Reijo;Tarvainen,Timo;Malm, Jukka 2003. peatlandsinthe21st century,1p. KadmiumSuomenpeltoekosysteemeissä:pitoisuuksia,taseita Lintinen, P.;Savolainen, H.;Jarva, J. 2003.SSuggesggestteeddnenew jariskejä.Abstract:CadmiuminFinnishagro-ecosystems: guidelinevaluesforCu,Cr,NiandZnandcomparison withcon- concentrations,balancesandrisks. Maa-jaelintarviketalous centrationsinsoilparentmaterialinFinland[Electronicresource]. 27. 51p. +app. In:ConSoil 2003.8thInternationalFZK/TNO Conference on Mäkilä,Markku2004.Electricconductivitywithinaraised ContaminatedSoil,12–16May2003,Gent,Belgium:conference boginsoutheasternFinland:implicationsforbogdevelopment. proceedings. Gent:ICC,2p.. Opticaldisc(CD-ROM). In:7thINTECOL InternationalWetlandsConference, Utrecht, Lintinen, P.;Suppala,I.;Vanhala, H.;Eklund, M. 2003.SSurvey TheNetherlands,25–30July2004:bookofabstracts. Utrecht: ofaburied ice-marginaldepositbyairborneEMmeasurements UtrechtUniversity,191–192. –acasefrom Kyrönjoki valleyplaininsouthernOstrobothnia, Mäkilä, Markku; Saarnisto, Matti2004.Ananaaapapamiremireininnnorortthh-- Finland.In:Autio,S.(ed.) GeologicalSurveyofFinland, Cur- ernFinlandasacarbon sinkandsource duringtheHolocene. rentResearch2001–2002.GeologicalSurveyofFinland.Speeccial In:7thINTECOL InternationalWetlandsConference, Utrecht, Paper 36,67–75. TheNetherlands,25–30July2004:bookofabstracts. Utrecht: Lintinen, Petri;Tarvainen, Timo 2004. Luontaisetmetallipi- UtrechtUniversity,191. toisuudetpilaantuneessamaaperässä.Kuntatekniikka59(2), Mäkinen,Jari2003.Amathematicalmodeltoexplaintheeffect 44–47. of comminution, resedimentation and outwashing on the finest Loukola-Ruskeeniemi,K.;Kantola,M.;Halonen,T.;Seppänen, fractionsoftill infourtest areasincentralFinland.In:Räisänen, K.;Henttonen, P.;Kallio, E.;Kurki,P.;Savolainen, H. 2003. M.L.&Nikkarinen,M.(eds.) Complexityofglacialdispersal Mercury-bearingblackshalesandhumanHgintakeineastern andhydromorphicprocessesintill geochemistry.Geological Finland:impactandmechanisms.In:Mercury.Environmental Surveyof Finland. Special Paper 34, 43–69. Geology43(3),283–297. Mäkinen,Jari2004.Arseenijärvisedimenteissä.Summary: Loukola-Ruskeeniemi, K.;Tanskanen, H.;Lahermo, P.; Arsenicinlakesediments. In:Loukola-Ruskeeniemi,K.&La-

91 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004 hermo,P.(eds.)ArseeniSuomenluonnossa,ympäristövaikutukset Utrecht,TheNetherlands,25–30July2004:bookofabstracts. jariskit. Espoo:Geologiantutkimuskeskus,73–88. Utrecht:UtrechtUniversity,212. Mäkinen, Jari;Makkonen, HannuV. 2004. PPeettrrologologyandand Moore, Tim R.; Turunen, Jukka 2004. Carbonarbon accaccumulalationion structureofthePalaeoproterozoic(1.9Ga)Rytkynickelsulphide and storage in mineral subsoil beneath peat. Soil Science Society deposit,centralFinland:acomparison withtheKotalahtinickel of America Journal 68 (2), 690–696. deposit. MineraliumDeposita39(4),405–421. Mutanen, Tapani; Huhma, Hannu 2003. TheThe 3.5.5 GaGa SiSiurua Mäkinen, Jari;Pajunen, Hannu2004. Twoopppposiositecompo-ompo- trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, sitiontrendsinboreallakesedimentcolumns. In:32ndInter- northern Finland. Bulletin of the Geological Society of Finland nationalGeologicalCongress,Florence, Italy,August 20–28, 75 (1–2), 51–68. 2004:abstracts. Part2,1360–1361. Mutanen, T.; Väänänen, J. 2004. PGE-PGE-Au-Cu--NNipi potenentialial ofof Mäkinen, Kalevi;Pihlaja, Jouni 2003.LLaandndusseeon ddrrummlinslins postkinematicappinitic(1.79Ga)intrusionsinFinland.In:McPhie, inFinland.In:Raukas,A.&Kukk,H.(eds.) Internationalsym- J. & McGoldrick, P. (eds.) Dynamic earth : past, present and future posiumonHumanImpactandGeologicalHeritage, 12–17May : 17th Australian Geological Convention, 8–13 February 2004, 2003,Tallinn,Estonia:excursion guide andabstracts. Tallinn: Hobart, Tasmania, Australia : abstracts and program. Geological InstituteofGeologyatTallinn TechnicalUniversity,95–97. Society of Australia. Abstracts 73, 104. Mäkitie, Hannu; Lahti, Seppo I. 2004. Jalasjärven kart - Muurinen, Tapio; Aro, Ilkka 2002. Tutkimus Haukiputaan ta-alueenkallioperä.Summary:Pre-Quaternaryrocksof soista ja turvevarojen käyttökelpoisuudesta. Abstract:Themires theJalasjärvimap-sheetarea.Suomengeologinenkartta and peat reserves and their usefulness in the municipality of 1:100 000 :kallioperäkarttojen selityksetlehti2221. 63 p. + Haukipudas. Geologian tutkimuskeskus. Turvetutkimusraportti 1app.,1app. map. 342. 58 p. + 2 app. Makkonen, HannuVeli;Mäkinen, Jari 2004. TThehePalaePalaeooproprot- Muurinen, Tapio; Aro, Ilkka 2004. Kiimingin suot, turvevarat erozoic(1.9Ga)Rytkynickelsulphide deposit:discoveryand ja niiden käyttökelpoisuus. Osa 2. Abstract: The peatlands of geology.In:32ndInternationalGeologicalCongress,Florence, Kiiminki, peat reserves and their potential use. Part 2. Geologian Italy,August 20–28,2004:abstracts. Part 1,474. tutkimuskeskus. Turvetutkimusraportti 351. 39 p. + 2 app. Mangerud, J.;Jakobsson,M.;Alexanderson,H.;Astakhov, Negrel, Philippe; Casanova, Joël; Blomqvist, Runar; Kaija, V.;Clarke, G. K. C.;Henriksen, M.;Hjort,C.;Krinner, G.; Juha; Frape, Shaun 2003. Strontium isotopic characterization of Lunkka, J. P.;Möller, P.;Murray,A.;Nikolskaya, O.;Saarnisto, the Palmottu hydrosystem (Finland) : water-rock interaction and M.;Svendsen, J. I. 2004. Ice-dammed lakes and rerouting of geochemistry of groundwaters. Geofluids 3(3), 161–175. thedrainageofnorthernEurasiaduringthelast glaciation. Nenonen, Jari; Peronius, Antti 2003. PlacerPlacer gold-digginggold-digging andand In:Thiede, J.(ed.) Quaternaryenvironments oftheEurasian its impact on soil erosion in Finnish Lapland. In: Raukas, A. & North(QUEEN). QuaternaryScience Reviews23 (11–13), Kukk, H. (eds.) International symposiumom onnHumanImpact and 1313–1332. Geological Heritage, 12–17 May 2003, Tallinn, Estonia : excur- Manninen,Tuomo 2003.Pokka.Suomengeologinenkartrttta sion guide and abstracts. Tallinn: Institute of Geology at Tallinn 1:100 000 :kallioperäkartta=Geological map of Finland Technical University, 98–99. 1:100 000 :pre-Quaternaryrocks lehti=sheet2744+3722. Nenonen,Jari2004.Till stratigraphyandproblemswith Mänttäri, Irmeli;Kohonen, Jarmo;Kujala,Hannu; Pihlaja, concrete-like till in the Haukipudas area, North of Oulu city. In: Pekka2004.Arevised agefortheSääksjärvimeteoriteimpact, Zelcs, V. & Seglins, V. (eds.) International field symposium on south-westernFinland:theconnexion withaCaledonianfore- Quaternary geology and modern terrestrial processes, western landbasin.In:32ndInternationalGeologicalCongress,Florence, Latvia, September 12–17, 2004 : abstracts of papers and posters. Italy,August 20–28,2004:abstracts. Part 2,1434. Riga: University of Latvia, 44. Marmo, J.;Vareikiene, O. 2004. Deveelopmenlopmentooffststaandardndard Nenonen,Keijo2003.PyhäsalmenjaRuotasenalueenmaaperä. proceduresformultidisciplinaryapproachusingphysical, In: Tulkku, J. (ed.) Ruotasen savut : kylä ja kaivos. Ruotanen: chemicalandmineralogicalmethodsforexplanation ofgeo- Ruotasen Maamiesseura, 19–26. chemicalanomaliesinsoil,Lithuania[Electronicresource]. Nenonen, Keijo 2004. Kvartäärikausi ja jääkausiaika. In: Koi- In:EGUGeneralAssembly2004,Nice, France,25–30April visto, M. (ed.) Jääkaudet. Helsinki: WSOY, 42–44. 2004. Geophysical Research Abstracts6,2p. Optical disc Nenonen, Keijo 2004. Maapallo jäähtyy. In: Koivisto, M. (ed.) (CD-ROM). Jääkaudet. Helsinki: WSOY, 40–41. Marmo,Jukka2004.Kolinalueenkallioperäntutkimukset. In: Nenonen, Keijo 2004. Maapallon ikivanhat jäätiköitymiset. In: Lovén, L. (ed.)Tuuttkittttuujjaattuuntemaematon KoliKoli :K:Kolinolinkansallispkansallispuis-is- Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 16–18. ton tutkimusseminaari24.–25.2.2002.Metsäntutkimuslaitoksen Nenonen, Keijo 2004. Mikä on jääkausi. In: Koivisto, M. (ed.) tiedonantoja915,15–18. Jääkaudet. Helsinki: WSOY, 14–15. Middleton, M.;Hyvönen, E.;Arkimaa, H.;Helminen, T.; Nenonen, Keijo; Eriksson, Brita 2004. Muinaiset jääkaudet Laitinen, J.;Kuosmanen,V.;Räisänen, M. L.;Timonen, M.; ja interglasiaalit Suomessa. In: Koivisto, M. (ed.) Jääkaudet. Sutinen,R.2003.AnalysisofhyperspectralairborneHyMap Helsinki: WSOY, 45–52. dataforvegetation mappingaroundLahnaslampitalcmine, Nenonen, Keijo; Eriksson, Brita 2004. Veiksel-jääkausi. In: Finland.In:Habermeyer,M.,M�ller,A.&Holzwarth,S.(eds.) Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 53–57. 3rdEARSeLWorkshopon ImagingSpectroscopy,Herrsching, Nenonen, Keijo; Hotakainen, Markus 2004. Jäätiköitymisten Germany,13–16May2003 :proceedings. PParis:aris:EARSRSeL,eL, syyt ja ilmastonmuutokset. In: Koivisto, M. (ed.) Jääkaudet. 349–356. Helsinki: WSOY, 32–39. Moisanen,Markku2004.Vegetation developmentinthe Nenonen, Keijo; Määttä, Matti; Lovén, Lasse; Flander, Jukka- Teuravuomamirecomplexandits environmentasrevealed by Pekka2004.Saimaaaa-PielliinenLakeSystemasanexampleofmajor apollendiagram.In:Lappalainen,E.(ed.) Vitalityandpeace glaciations and earth’s crust development. In: 32nd International ofmindfrom GreatTeuravuomaaapamire:post congress Geological Congress, Florence, Italy, August 20–28, 2004 : ab- excursion toLapland, 11–16June, 2004, 42–49. stracts. Part 1, 141. Moore, Tim;Blodau,Christian;Turunen, Jukka 2004. Pat - Nevalainen, Raimo; Hyvönen, Eija; Lerssi, Jouni; Liwata, ternsofNandSaccumulationandretention inbogs,eastern Pauliina;Middleton,Maarit;Palmu,Jukka-Pekka;Virkki,Hanna; Canada.In:7thINTECOL InternationalWetlandsConference, Väänänen, Tapio 2002. Maaperän yleiskartoitus paikkatietoai-

92 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004 neistojen ja -analyysien avulla – uuden alueellisesti kattavan redistribution in the oxidized Main Sulfide Zone of the Great tietovaraston kerääminen. In: Pietola, L. & Esala, M. (eds.) Maa, Dyke,andalluvialplatinum-groupminerals.MineraliumDeposita josta elämme : II Maaperätieteiden päivien laajennetut abstraktit. 38 (3), 344–355. Pro Terra 15, 116–119. Öhman, T.; Pesonen, L. J.; Elo, S.; Uutela, A.; Tuisku, P.; Rai- Nevalainen, Raimo 2004. Geologiset tiedot verkossa – Geo- tala, J. 2003. Theoriginanded evolution of theSaarijärviii impact karttapaikka ja muut verkkopalvelut. Ajankohtaista ympäristöstä structure. In: 66th Annual Meteoritical Society Meeting, July 28 Pohjois-Savossa 9 (1), 36–38. – August 1, 2003, M�nster, Germany : abstracts. Meteoritics & Niiranen,Tero;Eilu,Pasi2003.IIronronoxide-copperide-copper--goldgoldddeposieposittss Planetary Science supplement 38 (7), A52. in northern Finland. In: Eliopoulos, D. G...... [et al.] (eds.) Mineral Ojala, Antti; Tiljander, Mia; Alenius, Teija 2003. Sedimenttien exploration and sustainable development : proceedings of the paleomagneettinenajoittaminen:esimerkkinäMikkelinOrijärven Seventh Biennial SGAMeeting, Athens, Greece, 24–28 August rautakautisen asuinpaikan siitepölystratigrafinen tutkimus. Sum-m- 2003. Vol. 2. Rotterdam: Millpress, 1091–1094. mary: Paleomagnetic dating of sediments. Geologi 55 (9–10), Niiranen, Tero; Hanski, Eero; Eilu, Pasi 2003. GGeneraleneral ggeol-eol- 241–245. ogy, alteration, and iron deposits in the Palaeoproterozoic Misi Ojala, Antti E. K.; Saarnisto, Matti; Snowball, Ian F. 2003. region, northern Finland. Bulletin of the Geological Society of Climate and environmental reconstructions from Scandinavian Finland 75 (1–2), 69–92. varved lake sediments. PAGES Newsletter 11 (2–3), 10–12. Nikkarinen,Maria;Lestinen,Pekka2003.SSullphphurriinsnsoiloilverertticalical Ojala, Antti E. K.; Tiljander, Mia 2003. Testing the fidelity of profiles in Pirkanmaa region, southern Finland. In:In: Räisänen,Räisänen, M.M. sediment chronology : comparison of varve and paleomagnetic L. & Nikkarinen, M. (eds.) Complexity offgglacial dispersal and results from Holocene lake sediments from central Finland. Qua- hydromorphic processes in till geochemistry. Geological Survey ternary Science Reviews 22 (15–17), 1787–1803 . of Finland. SpecialPaper 34,5–20. Ojala, Antti E. K. 2004. Applicpplicaatioionn of X-ray radioradiographgraphy Nikkarinen,Maria;Hartikainen,Aimo;Kousa,Anne;Mertanen, and densitometry in varve analysis. In: Francus, P. (ed.) Image Enni 2004. Trace element composition of potatoes anded eddible analysis, sediments and paleoenvironments. Developments in mushrooms according to the geographical origin. In: Törrönen, Paleoenvironmental Research 7, 187–202. R. & Gylling, H. (eds.) The 20th Anniversary Symposium of the Ojala, V. Juhani 2004. Gold metallogeny of the Fennoscandian Department of Clinical Nutrition, March 18–19, 2004, Kuopio, Shield. In:Iljina,M. &Sullivan,J.(. (eds.) Fennoscandian seminar, Finland : abstracts. Kuopio University Publications D. Medical March5,2004,[Toronto]:agenda ,abstracts andbiographies,1p. Sciences 325, 52. Oja la, V. Juhani; Kuivamäki, Aimo; Vuorela, Paavo 2004. Nikkarinen, Maria; Mertanen, Enni 2004. IImpacmpact ooff ggeologicaleological Postglacial deformation of bedrock in Finland. Geologian tut- originontraceelementcompositi onofediblemushrooms.Journal kimuskeskus.Ydinjätteidensijoit ustutkimukset. Tiedonanto of Food Composition and Analysis 17 (3–4), 301–310. YST-120. 23 p. Nironen, Mikko; Kuosmanen, Eira; Wasenius, Pekka 2002. Ollila, Kaija; Lindqvist, Kristian 2003. Air-oxidation tests Keski-Suomen granitoidikompleksi = Central Finland Granitoid with Gd-doped UO2 : preliminary dissolution experiments with Complex : kallioperäkartta = bedrock map 1:400 000. Espoo:Espoo: pre-oxidized Gd-doped UO2+x. Tiivistelmä: Gd-UO2:n hapetus- Geologian tutkimuskeskus. kokeita ilmassa : alustavat liukenemiskokeet ennalta hapetetulla Nironen, Mikko 2003. Keski-Suomen granitoidikompleksi : Gd-UO2+x:lla. Posiva-raportti 2003–08. 51 p. karttaselitys. Summary:CentralFinlandGranitoid Complex–ex- Pääkkönen, Kari 2003. Stone research in Finland. Roc Maquina planation to a map. Geologian tutkimuskeskus. Tutkimusraportti (51), 18. 157. 45 p. + 1 app. map. Paama, Lilli; Rönkkömäki, Hannu; Parvinen, Pekka; Kuokka- Nironen, Mikko; Mänttäri, Irmeli 2003. Strtructtuurralal evoolluuttiionon nen, Toivo 2004. Determination oflead incontaminated soils by of the Vuotso area, Finnish Lapland. Bulletin of the Geological graphitefurnaceatomicabsorptionspectrometryforenvironmental Society of Finland 75 (1–2), 93–101. riskassessment.Proceedingsoft heEstonianAcademyofSciences. Nurmi, Pekka; Kuivamäki, Aimo; Lampio, Eero; Airo, Meri- Chemistry 53 (4), 201–209. Liisa; Wennerström, Marit 2004. Anneew IInnteernernet babasedsed iinforma-nforma- Paananen, Markku; Ruskeeniemi, Timo 2003. PPermafrosermafrostt at tion system for land use planning in the Helsinki capital region, Lupin : interpretation of SAMPO electromagnetic soundings at Finland. In: 32nd International Geological Congress, Florence, Lupin.Tiivistelmä:Lupininikiikirouta:Lupininsähkömagneettisten Italy, August 20–28, 2004 : abstracts. Part 1, 233. SAMPO-luotaustentulkinta.Geologiantutkimuskeskus.Ydinjät- Nyström,Annika;Selonen,Olavi2004.Rapakivienrapautumis- teiden sijoitustutkimukset. Tiedonanto YST-117. 22 p. + 4 app. prosessissa liukenevat aineet. Geologi 56 (9–10), 208–212. Paananen, M.; Lehtimäki, J.; Ruskeeniemi, T.; Degnan, P.; O’Brien, H. E.; Lehtonen, M. L. 2004. KKarelareliianan ccraraton 250 kkmm Frape, S.; Lehto, K.; Moren, L. 2004. EEleclectrtromagneomagnetiicc sosounndindinggss thick lithospheric mantle, eastern Finland. In: Mansfeld, J. (ed.) in deep permafrost, Lupin Mine, northern Canada [Electronic The 26th Nordic Geological Winter Meeting, January 6th – 9th resource]. In: EGU GeneralAssembly 2004, Nice, France, 25–30 2004, Uppsala, Sweden : abstract volume. GFF 126 (1), 13. April 2004. Geophysical Research Abstracts 6, 2 p. Optical disc Oberthür, Thomas; Weiser, Thorolf W.; Kojonen, Kari 2002. (CD-ROM). Local variatons and regional trends in PGE geochemistry and Paavola,Jorma2003.Vieremänkartta-alueenkallioperä. mineralogyintheMainSulfideZoneoftheGreatDyke,Zimbabwe. Summary: Pre-Quaternary rocks of the Vieremä map-sheet area. In: Boudreau, A. (ed.) 9th International Platinum Symposium, Suomengeologinenkartta1:100000:kallioperäkarttojenselitykset 21–25 July, 2002, Billings, Montana, USA: extended abstracts. lehti 3342. 40 p. + 2app. maps. Billings, MT: Duke University, 337–340. Pajunen, Hannu 2002. Ylikiimingissä tutkitut suot ja niiden Oberthür, Thomas; Weiser, Thorolf W.; Gast, Lothar; Kojonen, turvevarat. Osa 8. Abstract: The mires and peattr reserves of Kari 2003. Geochemistry and mineralogy of platinum-group Ylikiiminki, central Finland. Part 8. Geologian tutkimuskeskus. elements at Hartley Platinum Mine, Zimbabwe. Part 1 : Primary Turvetutkimusraportti 340. 46 p. + 3 app. distribution patterns in pristine ores of the Main Sulfide Zone of Pajunen, Hannu; Mäkinen, Jari 2003. IIron,ron, pphosphorhosphorussa anndd the Great Dyke. Mineralium Deposita 38 (3), 327–343. nitrogen in Finnish lake sediments : their store and long-term Oberthür, Thomas; Weiser, Thorolf W.; Gast, Lothar; Kojonen, accumulation. In: Autio, S. (ed.) Geological Survey of Finland, Kari 2003. Geochemistry and mineralogy of platinum-group ele- Current Research 2001–2002. Geological Survey of Finland. ments at Hartley Platinum Mine, Zimbabwe. Part 2 : Supergene Special Paper 36, 35–44.

93 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004

Pajunen,H.2004.Lakesedimentsasasinkofcarbon–long-term Penttinen,Sari;Hänninen,Pekka;Sutinen,Raimo2003.EEleclecttrri-i- accumulation data from Finland. In: SIL XXIX Congress, Lahti, cal conductivity measurements for cultivated soils. In: Lindén, Finland, 8–14 August 2004 : book of abstracts. Lahti: Societas B. & Olesen, S. E. (eds.) Implementation of precision farming Internationalis Limnologiae (SIL), 293. in practical agriculture : proceedings of seminar no 336, Nordic Pajunen, Hannu 2004. Järvisedimentit kuiva-aineen ja hiilen Association of Agricultural Scientists, June 10–12, 2002 Skara, varastona. Summary: Lake sediments as a ststoreofdrymatter Sweden. DIAS report. Plant production 100, 136–138. and carbon. GeologianGeologian tutkikimmuskeskskeskus. Tutkimusraportti1i 160. Penttinen, Sari; Alakukku, Laura; Hänninen, Pekka; Jaakkola, 308 p. + 1 app. Antti; Ristolainen, Antti 2004. SSoiloil eeleclectrtricicaall ccondonductivittyy aandnd Pajunen, Hannu 2004. Ylikiimingissä tutkitut suot ja niiden fertilization.In:32ndInternationalGeologicalCongress,Florence, turvevarat. Osa 9. Abstract: The mires and peattr reserves of Italy, August 20–28, 2004 : abstracts. Part 1, 36. Ylikiiminki, central Finland. Part 9. Geologian tutkimuskeskus. Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Mannerkoski, Turvetutkimusraportti 356. 51 p. + 3 app. Hannu; Koivusalo, Harri; Kokkonen, Teemu; Laurén,Ari; Neno- Pankka,Heikki;Vanhanen,Erkki2004.Au-Bi-i-Se-TSe-Teemmineineraralslsinin nen, Keijo 2004. Monitoring of behavior offf forest soils. In: 32nd the Fe-Co-Au-U deposits in the Kuusamo Paleoproterozoic schist InternationalGeologicalCongress,Florence,Italy,August20–28, belt,northernFinland.In:32ndInternationalGeologicalCongress, 2004 : abstracts. Part 1, 35–36. Florence, Italy, August 20–28, 2004 : abstracts. Part 1, 274. Perttilä, M. (ed.); Albrecht, H.; Carman, R.; Jensen, A.; Jons- Partridge, Tim C.; Lowe, John J.; Barker, Philip; Hoelzmann, son, P.; Kankaanpää, H.; Larsen, B.; Leivuori, M.; Niemistö, L.; Philipp; Magri, Donatella; Saarnisto, Matti; Vandenberghe, Jef; Uscinowicz, S.;Winterhalter, B. 2003. Contaminanaminanttssi in thhee Baalltiicc Street-Perrott, F. Alayne; Gasse, Françoise 2004. Climate vari- Sea sediments : results of the 1993 ICES/HELCOM Sediment ability in Europe and Africa : a PAGES-PEPIII time stream II Baseline Study. Meri. Report series of the Finnish Institute of synthesis. In: Battarbee, R. W., Gasse, F. & Stickley, C. E. (eds.) Marine Research 50. 69 p. PastclimatevariabilitythroughEuropeandAfrica.Developments Perttilä, Matti; Jonsson, Per; Larsen, Birger; Niemistö, Lauri; in Paleoenvironmental Research 6, 583–603. Winterhalter, Boris;Axelsson,Walter 2003.The 1993 HELCOM/ Pekkala, Yrjö; Seppänen, Hannu 2002. PerspecPerspectiveses ofof thehe ICES Baltic Sea Sediment Baseline Study – conduct of the study Finnish industrial minerals industry. In: Scott, P. W. & Bristow, and conclusions. In: Perttilä, M.(. (ed.) Contaminants in theBaltic C. M. (eds.) Industrial minerals and extractive industry geology Sea sediments : results of the 1993 ICES/HELCOM Sediment : based on papers presented at the combined 36th Forum on the Baseline Study. Meri. Report series of the Finnish Institute of Geology of Industrial Minerals and 11th Extractive Industry Ge- Marine Research 50, 9–20. ology Conference, Bath, England, 7th–12th May, 2000. London: Perttunen,Vesa2003.Koivu.Suomomengeologinenkartta The Geological Society, 129–132. 1:100 000 :kallioperäkartta=Ge ological map of Finland Peltonen, P.; Kontinen, A. 2004. TThehe JJormormuaaOOphioliphiolite:e : aammaa-- 1:100 000 : pre-Quaternary rocks lehti = sheet 2633. fic-ultramaficcomplexfromanancientocean-continenttransition Perttunen, Vesa; Hanski, Eero 2003. Törmäsjärven ja Koivun zone. In: Kusky, T. M. (ed.)Precambrian ophiolites and related kartta-alueiden kallioperä. Summary: Pre-Quaternary rocks of rocks. Developments in Precambrian geology 13, 35–71. the Törmäsjärvi and Koivu map-sheet areas. Suomen geolo- Peltonen,P.;Kukkonen,I.T.;Kinnunen,K.A.;Huhma,H.2004. ginen kartta 1:100 000 : kallioperäkarttojen selitykset lehdet Composition and structure of the 250-km-thick Fennoscandian 2631+2633. 88 p. cratonic root. In: Mansfeld, J. (ed.) The 26th Nordic Geological Pesonen, L. J.; Elming, S.-Å.; Mertanen, S.; Pisarevsky, S.; Winter Meeting, January 6th – 9th 2004, Uppsala, Sweden : D’Agrella-Filho,M.S.;Meert,J.G.;Schmidt,P. W.;Abrahamsen, abstract volume. GFF 126 (1), 13. N.; Bylund, G. 2003. PalaeomagnePalaeomagnetic configuraration of contiinennents Peltonen, Petri; Mänttäri, Irmeli; Huhma, Hannu; Kontinen, during the Proterozoic. In: Sircombe, K. N. & McElhinny, M. W. Asko2002.Archeanzirconsfromthemantle:theJormuaophiolite (eds.) Orogenic belts, regional and global tectonics : a memorial revisited. Geologyy331(1 (7), 645–648. volume to Chris McAulay Powell. Tectonophysics 375 (1–4), Peltonen,Petri2003. Geokemistit vastaan seismologit. Geologi 289–324. 55 (8), 219. Pesonen, Lauri J.; Mader, Dieter; Gurov, Eugene P.; Koeberl, Peltonen, Petri; Mänttäri, Irmeli 2004. ZZircoirconnss ffromrom thehe mmanantle Christian; Kinnunen, Kari A.; Donadini, Fabio; Handler, Robert : timing the mantle veining and metasomatism in the passive 2004. Paleomagnetism and Ar-40/Ar-39 age determinations of margin – type Jormua Ophiolite (Finland). In: 32nd International impactites from the Ilyinets structure, Ukraine. In: Dypvik, H., Geological Congress, Florence, Italy, August 20–28, 2004 : ab- Burchell, M. & Claeys, P. (eds.) Cratering in marine environments stracts. Part 1, 596. and on ice. Berlin: Spprringer,251–280. Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Laurén, Ari Peuraniemi, Vesa Juhani; Roman, Seija; Lahermo, Pertti 2004. 2002.Puustoparametrienarvioiminensähkönjohtavuudenavulla. Groundwater ponds acidified by natural weathering processes in In: Pietola, L. & Esala, M. (eds.) Maa, josta elämme : II Maaperä- the northern Ostrobothnia, northern Finland. In: 32nd Interna- tieteiden päivien laajennetut abstraktit. Pro Terra 15, 93–95. tional Geological Congress, Florence, Italy, August 20–28, 2004 Penttinen, Sari; Finér, Leena; Hänninen, Pekka 2003. ElecElecttrricaical : abstracts. Part 1, 358. conductivity and dielectric coefficient – a useful tool to estimate Pihlaja, Jouni 2004. MappingofQuaternarygeologyinFinland nutrient status of forest. In: Decision support for multiple purpose at 1:20,000 and 1:50,000. In: Zelcs,V. & Seglins,V. (eds.) Interna- forestry : a transdisciplinary conference on the development and tional field symposium on Quaternary geology and modern terres- application of decision support tools for forest management, trial processes, western Latvia, September 12–17, 2004 : abstracts Vienna, April 23–25, 2003 : book of abstracts, 62. of papers and posters. Riga: University of Latvia, 46–47 . Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Mannerkoski, Pirttijärvi, M.; Kozlovskaya, E.; Elo, S.; Hjelt, S.-E.; Ylinie- Hannu; Kauppi, Susanne; Koivusalo, Harri; Kokkonen, Teemu; mi, J. 2004. 3-Dpotential field modeling using aba blocklock model Kujala, Kauko; Laurén, Ari; Nenonen, Keijo 2003. Maaperän [Electronic resource]. In: EGU General Assembly 2004, Nice, kosteuden ja sähkönjohtavuuden mittaukset Kangasvaaran ja France, 25–30 April 2004. Geophysical Research Abstracts 6, 1 Korsukorvenvaluma-alueella.In:Finér,L.,Laurén,A.&Karvinen, p.. Optical disc (CD-ROM). L. (eds.) Ajankohtaista metsätalouden ympäristökuormituksesta Plant, J. A.; Reeder, S.; Salminen, R.; Smith, D. B.; Tarvainen, – tutkimustietoa ja työkaluja – seminaari Kolin Luontokeskus T.;DeVivo,B.;Petterson,M.G.2003.Thedistributionofuranium Ukko 23.9.2002.Metsäntutkimuslaitoksen tiedonantoja 886, over Europe : geological and environmental significance.Applied 107–112. Earth Science 112 (3), B221–B238.

94 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

Pomiès, C.; Hamelin, B.; Lancelot, J.; Blomqvist, R. 2004. Räisänen, Marja Liisa 2004. After-care plans of theoldLuikon- Pb-207/Pb-206 and U-238/Th-230 dating of uranium migration lahtiCu-Zn-Comineandtailingsfacilitypreviouslyused inatalc in carbonate fractures from the Palmottu uranium ore (southern operation,easternFinland.In:SPILM2004:theinternational Finland). Applied Geochemistry 19 (3), 273–288. conference Sustainable Post-Industrial Land Management,4–6 Puura, Väino; Konsa, Mare; Flodén, Tom; Henkel, Herbert; November,2004,Kraków,Poland:conference proceedings,28. Kärki, Aulis; Pihlaja, Pekka; Suuroja, Kalle 2002. Strtructtuurralal Räisänen,MarjaLiisa2004.Kosteikotkaivosympäristönvesien settings of estolites in meteorite craters. In: Dalwigk, I. von (ed.) puhdistajana. Geologi 56(2), 44–49. 8th workshop of the European Science Foundation program IM- Räisänen, Marja Liisa;Juntunen, Petri 2004. Decommecommissioniissioningng PACT: impact tectonism, Mora, Sweden, May 31 – June 3, 2002 oftheoldpyritictailingsfacilitypreviouslyusedinatalcoperation, : program, abstracts & guide to Siljan and Uppland, 52. easternFinland.In:Jarvis,A.P.,Dudgeon,B.A.&Younger,P.L. Puura, Väino; Kärki, Aulis; Konsa, Mare; Juvonen, Riitta; (eds.)Minewater2004:process,policyandprogress:proceedings Karhu, Juha; Kirs, Juho; Kleesment,Anne; Flodén, Tom; Pihlaja, ofthesymposium,Newcastleupon Tyne, UK,19–23 September Pekka; Suuroja, Kalle 2002. Extxtrremelemelyhhigh,igh, moderamoderateae andnd lolow 2004.Vol.1.Newcastleupon Tyne: UniversityofNewcastle temperature mineral phases in estolites – products of a cooling upon Tyne, 91–99. impact plume. In: 9th ESF-IMPACTWorkshop ”Impacts : a geo- Räisänen,Mika2004.Fromoutcrops todust –mapping,testing, logical and astronomical perspective”, Prague (Czech Republic), andqualityassessmentofaggregates. Publicationsofthedepart- October 12–16, 2002 : abstract book, 65–68. mentofgeologyD1.80p. Puura,Väino; Hints, Rutt; Huhma, Hannu; Klein,Vello; Konsa, Rämö, O. T.;Karinen, T.;Iljina, M.;Lauri, L. S. 2004. NNddandand Mare; Kuldkepp, Reedik; Mänttäri, Irmeli; Soesoo, Alvar 2004. Sr isotope composition and origin of a2.44 Ga layered mafic intru - Svecofennian metamorphic zones in the basement of Estonia. sion inKoillismaa,Finland.In:Abstractsofthe14thAnnualV. In: Soesoo, A. (ed.) Special issue on the Precambrian basement M.GoldschmidtConference, Copenhagen,Denmark,June5–11, of Estonia. Proceedings of the Estonian Academy of Sciences. 2004. Geochimica etCosmochimica Acta68(11S), A593. Geology 53 (3), 190–209. Rämö, O.T.;Upton, B.G.J.;Kohonen,J.;Mänttäri, I.;Vaasjoki, Raiche, Art; Sugeng, Fred; Soininen, Heikki 2003. Using the M.;Sviridenko, L. P. 2004. OriginOriginooffMesoproMesoproteroerozoicoicCFB-tytypepe Loki 3D edge-finite-element program to model EM dipole-dipole magmatisminsoutheasternFennoscandianShield[Electronic drill-hole data [Electronic resource]. In: ASEG 16th Geophysi- resource].In:IAVCEI GeneralAssembly2004,Pucón,Chile: cal Conference & Exhibition, Adelaide, South Australia, 16–19 abstractvolume, 1p. Opticaldis c(CD-ROM). February, 2003 : extended abstracts. Adelaide:Australian Society Räsänen,Johanna;Kauppila,Tommi;Salonen,Veli-Pekka2004. of Exploration Geophysicists, 4 p. Optical disc (CD-ROM). Paleolimnologisetmenetelmätvesipuitedirektiivintoimeenpanon Raiche, Art; Sugeng, Fred; Soininen, Heikki 2003. Using the valmistelussa–esimerkkinäluont aisestirehevätjärvet.Summary: Loki 3D edge-finite-element program to model EM dipole-dipole Useofpaleolimnologicalmethodsinpreparingforimplementation drill-hole data. In:ASEG 16th Geophysical Conference & Exhibi- oftheEUWaterFrameworkDirective–theexampleofnaturally tion,Adelaide,SouthAustralia, 16–19February,2003:conference eutrophic lakes. GeologiGeologi556(8), 188–193. handbook. Preview 102, 84–85. Räsänen, Jorma;Iljina, Markku; Karinen,Tuomo;Lauri, Laura; Rainio, Heikki 2003. Rakennusgeologisia muisteluja. Geologi Salmirinne, Heikki;Vuollo, Jouni 2004. GeologicGeologicmapmapofofthehe 55 (4–5), 121–123. Koillismaa area,northeasternFin land, 1:200 000.Rovaniemi: Rainio, Heikki; Lahermo, Pertti 2003.Terveisiä Kiitehenjärven GeologicalSurveyofFinland. rannoilta. Karjalan heimo 88 (1–2), 6–10. Rasilainen, Kalevi;Gaál,Gabor 2003.NNuPulselse::ananonon-des-destrtruc-c- Rainio, Heikki 2004. J. W. Snellman geologian asiamiehenä. tivepulseneutron multipledetectortoolforenvironmentallog - Snellmanien tiedotuslehti Domus Nostra 2004, 9–12. gingandmonitoring.In:3rdSENSPOL workshop:monitoring Rainio, Heikki 2004. Mahtavat Salpausselät. In: Koivisto, M. inpolluted environments forintegrated water-soil management, (ed.) Jääkaudet. Helsinki: WSOY, 87–105. Kraków,Poland, 3–6June, 2003,1p. Rainio, Heikki 2004. Uskomattoman suurenmoisia ajatuksia Rasilainen, Kalevi;Gaál, Gabor;Baker,James;Buckup, Klaus; Suomen maaperän synnystä. In: Koivisto, M. (ed.) Jääkaudet. Meijer, Robertde;Maucec, Marko;Marwick, David;Williamson, Helsinki: WSOY, 19–31. Mark;Sideris, George;Sotiropoul os, Pavlos 2003.Anon-destruc - Rainio, Heikki; Johansson, Peter 2004. Jäätikkö sulaa. In: tivepulseneutron multipledetectortoolforuseinenvironmental, Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 69–86. hydrocarbon andmineralexploration work.In:Eliopoulos,D.G. Räisänen, Marja L. 2003. Rehabilitation options fortr tailings ... [etal.](eds.) Mineralexploration andsustainabledevelopment: impoundments – case studies of ”wet” cover and wetland treat- proceedingsoftheSeventhBiennialSGAMeeting,Athens,Greece, ment. In:Hebestreit,C.,Kudelko,J. &Kulczycka,J.(. (eds.) Mine 24–28August 2003.Vol.2.Rotterdam:Millpress,1013–1014. waste management : best available techniques. Kraków: Mineral Rasilainen, Kalevi;Puustjärvi, Heikki;Kousa, Jukka;Luukas, and Energy Economy Research Institute, 141–150. Jouni;Mäki,Timo2003.TThheePPalaleeoopproroteerrozoicoicPyhääsasallmimivoollccananiicc Räisänen, Marja Liisa 2003. Rehabilitation options fortr tailings complex,centralFinland–bimodalvolcanismandassociatedVMS impoundments – case studies of ’wet’ cover and wetland treat- deposits. In:Eliopoulos,D.G.... [etal.](eds.) Mineralexploration ment. In: International conference ”Mine waste management andsustainabledevelopment:proceedingsoftheSeventhBien- – BATproject application”, 2–3 June, 2003, Wroclaw, Poland : nialSGAMeeting,Athens,Greece, 24–28August 2003.Vol.2. proceedings, 42–47. Rotterdam:Millpress,1095–1098. Räisänen, Marja Liisa; Carlson, Liisa 2003. SelecSelectiveee extxtrrac-ac- Rasilainen, Kari;Suksi, Juhani;Ruskeeniemi, Timo;Pitkänen, tion methods applied for secondary precipitates in the mining Petteri;Poteri, Antti2003.RReleaseeleaseooffurranianiummffrromom rockrockmamattrriix environment. Nordiska föreningen för lerforskning. Meddelande –arecordofglacialmeltwaterintrusions? JournalofContaminant (14), 6–7. Hydrology61(1–4), 235–246. Räisänen, Marja Liisa; Nikkarinen, Maria; Lehto, Olli; Aatos, Rasilainen, Kari;Suksi, Juhani;Ruskeeniemi, Timo;Pitkänen, Soile 2003. Liukoisuustesteistä riskienhallintaan kaivosympäris- Petteri2004.ThefeasibilityofUSDmethodintrackingpast tössä. Vesitalous 44 (1), 39–43. hydrogeochemical changes in the Fennoscandian Shield. In: Räisänen, Marja Liisa (ed.); Nikkarinen, Maria (ed.) 2003. Oversby,V.M.&Werme, L. O. (eds.) Scientific Basis for Nu - Complexity of glacial dispersal and hydromorphic processes in clear WasteManagementXXVII. Symposiumheld June 15–19, till geochemistry. Geological Survey of Finland. Special Paper 2003,Kalmar,Sweden.MaterialsResearchSocietysymposium 34. 69 p. + 1 app. proceedings 807, 565–570.

95 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004

Rask, Markku 2003. Graniittia vai valkobetonia Carrara-mar- Ruotoistenmäki, Tapio 2004. Geophysical and tectonic charac- morin tilalle? Suomalainen kivi (4), 20–21. teristic of ore potential : Outokumpu area in South-East Finland. Rask, Markku 2004. Sapokan rakennuskivipuisto on valmis. In:32ndInternationalGeologicalCongress,Florence,Italy,August Suomalainen kivi (3), 20–21. 20–28, 2004 : abstracts. Part 1, 479–480. Ravat, D.; Ghidella, M.; Korhonen, J.; Maus, S.; McLean, S.; Rusanen, Kaisa; Finér, Leena;Antikainen, Merja; Korkka-Nie- Reeves, C. 2003. Toward the World Digital Magnetic Anomaly mi, Kirsti; Backman, Birgitta; Britschgi, Ritva 2004. TheThe efefffecect Map (WDMAM). In: AGU 2003 Fall Meeting, 8–12 December of forest cutting on the quality of groundwater in large aquifers 2003, San Francisco, California. Eos, Transactions, American in Finland. Boreal Environment Research 9 (3), 253–261. Geophysical Union. Supplement 84 (46), F538–539. Ruskeeniemi, T.; Ahonen, L.; Paananen, M.; Blomqvist, R.; Read, David; Hellmuth, Karl-Heinz; Kaija, Juha; Ahonen, Degnan, P.; Frape, S. K.; Jensen, M.; Lehto, K.; Wikström, L.; Lasse 2002. Natural uranium fluxes and their use in repository Morén, L.; Puigdomenech, I.; Snellman, M. 2003. Groundwater safety assessment. In: Merkel, B. J., Planer-Friedrich, B. & under deep permafrost conditions. In: Haeberli, W. & Brandová, Wolkersdorfer, C. (eds.) Uranium in the aquatic environment : D. (eds.) 8th International Conference on Permafrost, Zurich, proceedings of the International Conference Uranium Mining and Switzerland, 20–25 July 2003 : extended abstracts reporting cur- Hydrogeology III and the International Mine Water Association rent reserch and new information. Zurich: University of Zurich, Symposium, Freiberg, Germany, 15–21 September 2002. Berlin: 141–142. Springer, 115–127. Ruskeeniemi,Timo;Ahonen,Lasse;Paananen,Markku;Frape, Read, David; Siitari-Kauppi, Marja; Kelokaski, Maarit; Black, Shaun; Stotler, Randy; Hobbs, Monique; Kaija, Juha; Degnan, Stuart; Buckby, Tracy; Marcos, Nuria; Kaija, Juha; Hellmuth, Paul; Blomqvist, Runar; Jensen, Mark; Lehto, Kimmo; Morén, Karl-Heinz2004. Natural geochemical fluxes in Finland as Lena; Puigdomenech, Ignasi; Snellman, Margit 2004. Permafrost indicators of nuclear repository safety. Teknillinenkorkeakoulu. at Lupin : report of phase 2. Tiivistelmä:Lupinin ikiikirouta: raportti Kalliotekniikan laboratorio. A. Tutkimusraportti 34. 58 p. 2 tutkimusvaiheesta. Geologian tutkimuskeskus. Ydinjätteiden Reimann, Clemens; Koller, Friedrich; Frengstad, Bjørn; Kas- sijoitustutkimukset. Tiedonanto YST-119. 89 p. hulina, Galina; Niskavaara, Heikki; Englmaier, Peter 2003. TTootaall Saarnisto,Matti2003.Karjalangeologia:Karjalanluonnonmai- sulphur in leaves of several plant species from nine catchments seman synty. In: Saarnisto,M.(. (ed.) Viipurinlääninhistoria. Osa within a 1 500 000 km² area in northern Europe : local vs. regional 1: Karjalan synty. Lappeenranta: Karjalan kirjapaino, 21–80. variability. Geochemistry : exploration, environment, analysis 3 Saarnisto, Matti 2003. Tutkimusretki Hiitolan Kilpolansaa- (2), 205–215. relle 1992 ja Valamoon 1996. IIn:n: SSaarnisaarnistto,,MM.(. (eded.).) VViiiippurrinin Reimann, Clemens; Siewers, Ulrich; Tarvainen, Timo; Bi - läänin historia. Osa 1: Karjalan synty. Lappeenranta: Karjalan tyukova, Liidia; Eriksson, Jan; Gilucis, Aivars; Gregorauskiene, kirjapaino, 67–69. Virgilija; Lukashev, Valentin K.; Matinian, Natalia N.; Pasieczna, Saarnisto, Matti (ed.) 2003. Viipurin läänin historia. Osa 1: Anna 2003. Agricultural soils innn noorthernEuropee:: ageochemical Karjalan synty. Lappeenranta: Karjalan kirjapaino. 560 p. + atlas. Geologisches Jahrbuch. Sonderhefte. Reihe D SD 5. 279 app. map. p. + CD-ROM Saarnisto, Matti 2004. Karjalan maanviljelyn pitkä esihistoria : Rissanen, Kristina; Kostiainen, Eila; Ylipieti, Jarkko; Salmi- siitepöly ja siemenet paljastavat maanviljelyn salat. Joulukannel. nen, Reijo; Chekushin, Victor 2002. The firstChernobylfl falloallout Ajankohtaista karjalaista asiaa (4), 15–17. plume still visible in humus in the Arctic and subarctic regions Saarnisto, Matti 2004. Muinainen Kymijoki. In: Uino,P.(. (ed.) of north-eastern Europe. In: The Second AMAPInternational AmmoinAnkkapurhassa:Kymenlaaksossakivikaudella.Helsinki: SymposiumonEnvironmentalPollutionoftheArctic,Rovaniemi, Museovirasto, 38–41. Finland, October 1–4, 2002 : extended abstracts. AMAPReport Saarnisto, Matti; Karhu, Juha 2004. TThehe llasastt mammomammothshs ––p paal-l- 2002:2, 3 p. aeoenvironment of the Holocene mammoth on Wrangel Island. Ristolainen, Antti; Jaakkola, Antti; Hänninen, Pekka; Alakuk - Quaternary Perspectives 14 (1), 126–129. ku, Laura 2002. Maaperäfysiikka ja sato (MaSa)-viljelymaan Saarnisto, Matti; Lunkka, Juha P. 2004. Climate variability dur - fysikaalisten ja kemiallisten ominaisuuksien hallinta maaperä- ja ing the last interglacial-glacialcyclein NWEurasia. In:Battarbee, satokarttojen avulla. In: Pietola, L. & Esala, M. (eds.) Maa, josta R. W., Gasse, F. & Stickley, C. E. (eds.) Past climate variability elämme : II Maaperätieteiden päivien laajennetut abstraktit. Pro throughEuropeandAfrica. Developments inPaleoenvironmental Terra 15, 100–101. Research 6, 443–464. Roberts, M. D.; Oliver, N. H. S.; Lahtinen, R. 2003. Recon- Saarnisto, Matti; Saksa, Alexander 2004. RRadiocarbonadiocarbon ddaateess structing the architecture of highly deformed and metamorphosed from archaeological excavations in Viipuri – the corner site of Zn-CumassivesulphidedepositsintheVihanti-Pyhäsalmidistrict, former Uudenportinkatu and Etelävalli. Fennoscandiaaaarchaeolo- central Finland. In:Eliopoulos, D. G...... [et al.] (eds.) Mineral gica 21, 37–42. exploration and sustainable development : proceedings of the Saarnisto, Matti; Saksa, Aleksandr 2004. Radiohiiliajoituksia Seventh Biennial SGAMeeting, Athens, Greece, 24–28 August Viipurinarkeologisiltakaivauksilta.In:Korpela,J.(author)Viipu- 2003. Vol. 2. Rotterdam: Millpress, 1099–1102. rinlääninhistoria.Osa2:Viipurinlinnalääninsynty.Lappeenranta: Roberts,MichaelD.;Oliver,NicholasH.S.;Fairclough,Martin Karjalan Kirjapaino, 259–261. C.; Hölttä, Pentti S.; Lahtinen, Raimo 2003. Geochemical and Saksa,Aleksander; Saarnisto, Matti; Taavitsainen, Jussi-Pekka oxygen isotope signature of sea-floor alteration associated with 2003. 1200-luvun lopun radiohiiliajoitus Viipurista. SKAS (3), apolydeformed and highlymetamorphosed massivesulfide 15–20. deposit, Ruostesuo, central Finland. Economic Geology 98 (3), Salminen, R. 2003. Geochemical atlas of Europe – do the new 535–556. maps reveal risky areas. In: Angelelli, A., Barchiesi, P. & Forni, Roberts, Michael D.; Oliver, Nicholas H. S.; Lahtinen, Raimo S. (eds.) 4th European Congress on Regional Geoscientific Car- 2004. Geology, lithogeochemistryand paleotectonic settingof the tography and Information Systems : geoscientific information host sequence to the Kangasjärvi Zn-Cu deposit, central Finland for spatial planning, Bologna, Italy, June 17th – 20th 2003 : : implications for volcanogenic massive sulphide exploration in proceedings. Vol. 2. Bologna: Servizio geologico, sismico e dei the Vihanti-Pyhäsalmi district. Bulletin of the Geological Society suoli, 635–636. of Finland 76 (1–2), 31–62. Salminen, R.; Bogatyrev, I.; Chekushin, V.; Glavatskikh, S. P.; Ruotoistenmäki,Tapio2003.Ruotasengeofysikaalinenhistoria Gregorauskiene, V.; Niskavaara, H.; Selenok, L.; Tenhola, M.; ja nykypäivä. In:Tulkku, J. (ed.) Ruotasen savut : kylä ja kaivos. Tomilina, O. 2003. Barents Ecogeochemistry–alarge geochemi- Ruotanen: Ruotasen Maamiesseura, 12–17. cal baseline study of heavy metals and other elements in surficial

96 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004 deposits, NW-Russia and Finland. In: Autio, S. (ed.) Geological northern Europe – a status report. In: 32nd International Geo- Survey of Finland, Current Research 2001–2002. Geological logical Congress, Florence, Italy,August 20–28, 2004 : abstracts. Survey of Finland. SpeciaSpeciall Paper 36,4, 45–55–52. Part 1, 581. Salminen, R.; Bogatyrev, I.; Chekushin, V.; Glavatskikh, S. P.; Schellschmidt, R.; Popov, Y.; Kukkonen, I.; Nover, G.; Mi- Gregorauskiene, V.; Selenok, L.; Tenhola, M.; Tomilina, O. 2003. lanovsky, S.; Borevsky, L.; Mottaghy, D.; Clauser, C. 2003. Heat Barents Ecogeochemistry projekti – raskasmetallien ja muiden transfer processes in the upper crust – a case study for the region alkuaineiden perustilan kartoitus Luoteis-Venäjällä ja Suomessa. around the Kola superdeep borehole, Russia. In: IUGG 2003 : Summary:BarentsEcogeochemistry–alargegeochemicalbaseline XXIII General Assembly of the International Union of Geodesy study of heavy metals and other elements in surficial deposits, and Geophysics, June 30 – July 11, 2003, Sapporo, Japan : ab- NW-Russia and Finland. Geologi55 (2), 28–33. stracts. Week A. Sapporo : IUGG, 174. Salminen, R.; Bogatyrev, I.; Chekushin, V.; Tomilina, O.; Schmidt-Thomé, P.; Lahti, M.; Gaál, G. 2002. Application of Tenhola, M. 2003. Barents Ecogeochemistry pprroject – a large airborne radiometric surveys in the mapping of areas with high geochemical baseline study in NE Europe. In: Angelelli, A., Bar- natural or anthropogenic ionizing radiation. In: Bølviken, B. chiesi, P. & Forni, S. (eds.) 4th European Congress on Regional (ed.) Natural ionizing radiation and health : proceedings from a GeoscientificCartographyandInformationSystems:geoscientific symposium held at the Norwegian Academy of Science and Let- information for spatial planning, Bologna, Italy, June 17th – 20th ters, Oslo 6–7 June 2001. Oslo: Norwegian Academy of Science 2003 : proceedings. Vol. 2. Bologna: Servizio geologico, sismico and Letters, 25–31. e dei suoli, 653–654. Schmidt-Thomé, Philipp; Greiving, Stefan; Kallio, Hilkka; Salminen, R.;Chekushin, V.;Tenhola, M.;Bogatyrev ,I.; Fleischhauer, Mark; Jarva, Jaana 2004. Natural hazard and risk Glavatskikh, S. P.; Fedotova, E.; Gregorauskiene, V.; Kashuli- maps for European regions. In: 32nd International Geological na, G.; Niskavaara, H.; Polischuok, A.; Rissanen, K.; Selenok, Congress, Florence, Italy, August 20–28, 2004 : abstracts. Part L.; Tomilina, O.; Zhdanova, L. 2004. GGeochemicaleochemical atllasas ooff thhee 1, 589. eastern Barents region. Journal of Geochemical Exploration 83 Schmidt-Thomé,Philipp;Kallio,Hilkka;Staudt,Michael (1–3), 1–530. Gerhard 2004. Developing tools for planners concerning spatial Salminen, R.;Chekushin, V.;Tenhola, M.;Bogatyrev,I.; impacts of sea level rise in the Baltic Sea Region. In: 32nd In- Glavatskikh, S. P.; Fedotova, E.; Gregorauskiene, V.; Kashulina, ternational Geological Congress, Florence, Italy, August 20–28, G.; Niskavaara, H.; Polischuok, A.; Rissanen, K.; Selenok, L.; 2004 : abstracts. Part 1, 351–352. Tomilina,O.;Zhdanova,L.2004.GeochemicalGeochemicalatlaslasofoftheheeeasastteernrn Schultz, Eija; Joutti, Anneli; Räisänen, Marja Liisa; Lintinen, Barents region. Amsterdam: Elsevier. 548 p. Petri;Martikainen,Esko;Lehto,Olli2004.Exxttrracactababiliilittyyofofmemetalsals Salminen, Reijo; Bogatyrev, Igor; Chekushin, Victor; Glavat - and ecotoxicity of soils from two old wood impregnation sites in skikh, Sergey P.; Gregorauskiene, Virgilija; Niskavaara, Heikki; Finland. Science of the Total Environment 326 (1–3), 71–84. Selenok, Lubov; Tenhola, Markku; Tomilina, Olga 2004. Geo- Selonen,Olavi2003.GraniittejaSuomenkeskeltä.Suomalainen chemical baselines of nickel and chromium in various surficial kivi (3), 36–40. materials in the Barents Region, NWRussia and Finland. Geo- Selonen, Olavi 2003. Kaakkois-Suomen graniittien tie vie standards and Geoanalytical Research 28 (2), 333–341. ulkomaille. Suomalainen kivi (2), 34–37. Salminen, Reijo; Gilucis, Aivars; Gregorauskiene, Virgilija; Selonen, Olavi 2003. Lounais-Suomesta globaaleja kivibran- Petersell,Valter;Tomilina,Olga2004.Influenceofhumanactivities deja. Suomalainen kivi (1), 34–36. in the geochemical baselines in the Baltic countries, Finland and Selonen, Olavi 2003. Requisites for natural ststone. In:Selonen, NW-Russia.In:32ndInternationalGeologicalCongress,Florence, O. & Suominen, V. (eds.) Nordic ssttone. Paris:UNESCO:IAEG, Italy, August 20–28, 2004 : abstracts. Part 2, 850. 11–12. Salmirinne, H.; Iljina, M. 2004. 3-Dgragravityty modelingmodeling ofof un-n- Selonen, Olavi; Heldal, Tom 2003. Technologies. IIn:n: SSelonen,elonen, exposed feeder intrusion connecting western and eastern part of O. & Suominen, V. (eds.) Nordic ssttone. Paris:UNESCO:IAEG, the Koillismaa Layered Igneous Complex, Finland [Electronic re- 42–50. source].In:St.Catharines2004.GeologicalAssociationofCanada Selonen, Olavi; Härmä, Paavo 2003. Stononee rresoesourcrceess aandnd ddis-is- & Mineralogical Association of Canada joint annual meeting, tribution : Finland. In: Selonen,O. &Suominen,V.(. (eds.) Nordic St. Catharines, Ontario, Canada, May 12–14, 2004. GAC-MAC stone. Paris: UNESCO : IAEG, 19–29. program with abstracts 29, 258. Optical disc (CD-ROM). Selonen, Olavi; Luodes, Hannu; Ehlers, Carl 2003. NaNatuturaral Saltikoff, Boris (comp.); Tontti, Mikko (comp.); Puustinen, stone in Finland – production and development. Vuoriteollisuus Kauko (comp.) 2002. Metallogenicmap ofFinland1:1000 000. 61 (3), 39–43. Espoo: Geological Survey of Finland. Selonen, Olavi (ed.); Suominen, Veli (ed.) 2003. NNordicordic stonone.e. Sarala, Pertti 2003. Ribbed-moreenit – jäätikön liikesuunnan Paris: UNESCO : IAEG. 64 p. poikittaiset indikaattorit. Summary:Ribbed moraines – trtrans- Selonen, Olavi 2004. GTK kartoittaa laajasti Suomen kallio- verse indicators of the ice flow direction. GGeologieologi 55 ((9–19–10)),, perää. Suomalainen kivi (3), 28–29. 250–253. Selonen,Olavi2004.Kivialaesimerkkikestävästäkehityksestä. Sarala, Pertti 2004. Deglaciation pattern and glacial dynamics Suomalainen kivi (4), 30–31. of the southern Finnish Lapland. In: Mansfeld, J. (ed.) The 26th Selonen, Olavi 2004. Liuskekiviä käytetään verhouksissa ja Nordic Geological Winter Meeting, January 6th – 9th 2004, ympäristörakentamisessa. Suomalainen kivi (1), 22–24. Uppsala, Sweden : abstract volume. GFF 126 (1), 124. Selonen,Olavi;Ehlers,Carl2004.NNaattuurstrsteennssindindustrtriinniiFFiinlandnland Sarala, Pertti 2004. Glasiaalimorfologia ja moreenistratigrafia – en bransch i uppsving. Geologiskt forum 11 (42), 18–25. glasiaalidynamiikanilmentäjinä.In:Kaakinen,A.(ed.)Geologian Selonen,Olavi; Johansson, Kurt 2004.HållbaHållbarrutvecklinginom 3. tutkijapäivät, 10.–11.3.2004, Helsinki. Helsinki: Helsingin stenbranschen. STEN 66 (4), 37. yliopisto, geologian laitos, 56–58. Skyttä,Pietari2004.Rakennegeologisiatutkimuksiaeteläisessä Sarapää, Olli; Ahtola, Timo; Reinikainen, Jukka; Seppänen, Suomessa Inkoon-Kiskon alueella. Summary: Structuralgeology Hannu 2003. Industrial mineral potentialliin Finland. In:Autio,S. investigations in the Inkoo-Kisko area, southern Finland. Geologi (ed.)GeologicalSurveyofFinland,CurrentResearch2001–2002. 56 (3), 68–72. Geological Survey of Finland. Special Paper 36, 5–12. Sorjonen-Ward, Peter 2002. Geological setting of the Nun- Satkunas, Jonas; Ransed, Gunnel; Suominen,Veli;Taht, Krista; nanlahti soapstone deposits. In:Niemelä,M.(. (ed.) Talc-magnesite Raudsep, Rein; Mikulenas, Vidas; Vdovets, Marina; Makarikhin, deposits in Finland, September 10–15, 2002, Finland : third field Vladimir; Cleal, Chris; Erikstad, Lars 2004. Geosites listings for correlation, 34–37.

97 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004

Sorjonen-Ward, P.; Systra, Y. J. 2002. Tectonics and deep I.; Dowdeswell, J. A.; Funder, S.; Gataullin, V.; Henriksen, M.; structure of the southeastern Fennoscandian Shield and its mar- Hjort, C.; Houmark-Nielsen, M.; Hubberten, H. W.; Ingólfs- ginal zone. In: Sahrov, N. V. ... [et al.] (eds.) Glubinnoe stroenie son, Ó.; Jakobsson, M.; Kjær, K. H.; Larsen, E.; Lokrantz, H.; i geodinamika Fennoskandii, okrainnyh i vnutriplatformennyh Lunkka, J. P.; Lyså, A.; Mangerud, J.; Matiouchkov, A.; Murray, tranzitnyh zon : materialy vos’moj mezdunarodnoj konferencii, A.; Möller, P.; Niessen, F.; Nikolskaya, O.; Polyak, L.; Saarnisto, 16–20 sentjabrja 2002 g., Petrozavodsk. Petrozavodsk: Karel’skij M.; Siegert, C.; Siegert, M. J.; Spielhagen, R. F.; Stein, R. 2004. naucnyj centr RAN, 277–278. Late Quaternary ice sheet history of northern Eurasia. In: Thiede, Sorjonen-Ward, P.; Ojala, V. J.; Airo, M.-L. 2003. Structural J.(ed.)QuaternaryenvironmentsoftheEurasianNorth(QUEEN). modelling and magnetic expression of hydrothermal alteration Quaternary Science Reviews 23 (11–13), 1229–1271. in the Paleoproterozoic Lapland greenstone belt, northern Fen- Svetov, S. A.; Huhma, H.; Svetova, A. I.; Nazarova, T. N. noscandian Shield. In:Eliopoulos, D. G...... [et al.] (eds.) Mineral 2004. Theoldest adakites of theFennnnooscandian Shield. Doklady exploration and sustainable development : proceedings of the Earth Sciences 397A(6), 878–882. Taavitsainen, Jussi-Pekka; Seventh Biennial SGAMeeting, Athens, Greece, 24–28 August Sepänmaa, Timo; Miettinen, Mirja; Storå, Jan; Saarnisto, Matti 2003. Vol. 2. Rotterdam: Millpress, 1107–1110. 2004. Hietamäki in Jämsä –amulti-perioddddwelllliing siteincentral Starr, Michael; Lindroos, Antti-Jussi; Ukonmaanaho, Liisa; Finland. Fennoscandiaaaarchaeologica21,3–21. Tarvainen, Timo; Tanskanen, Heikki 2003. WWeeatheringhering releaserelease Taipale, Kalle 2003. Maa kivimiesten näkemänä : Geologian of heavy metals from soil in comparison to deposition, litterfall tutkimuskeskuksen arkistot kertovat. Raito 21 (1), 22–25. and leaching fluxes in a remote, boreal coniferous forest.Applied Taipale, Kalle 2003.Särkyvää! Suomen Luonto62 (4), Geochemistry 18 (4), 607–613. 22–27. Stotler,RandyL.;Frape,ShaunK.;Ruskeeniemi,Timo;Ahonen, Talkkari, Ari;Nevalainen, Raimo2003.GGeoreferencedeoreferenced Lasse; Blomqvist, Runar; Degnan, Paul; Jensen, Mark; Lehto, 1:250 000 soil database for Finland – an approach based on mul- Kimmo; Morén, Lena; Snellman, Margit 2003. Hydrogeochem- tisource geological and soil data. In:Angelelli,A., Barchiesi, P. & istry of crystalline bedrock under deep permafrost conditions. In: Forni, S. (eds.) 4th European Congress on Regional Geoscientific Geoscience horizons, Seattle 2003 : GSAAnnual Meeting and Cartography and Information Systems : geoscientific informa- Exposition,November 2–5,2003.GeologicalSocietyofAmerica. tion for spatial planning, Bologna, Italy, June 17th – 20th 2003 : Abstracts with Programs 35 (6 ), 573. proceedings. Vol. 1. Bologna: Servizio geologico, sismico e dei Suksi, Urho J.; Rasilainen, Kari; Ruskeeniemi, Timo; Marcos, suoli, 276–278. Nuria; Hellmuth, Karl-Heinz 2002. NaNattuurralal UoU occurrrencesrences asas a Tanskanen, Heikki; Lahermo, Pertti; Loukola-Ruskeeniemi, palaeo-hydrogeologicalindicator –observationsfromthePalmottu Kirsti 2004. Arseeni Kittilän pohjavesissä Keski-Lapissa.Sum- natural analogue site, Finland. In: Merkel, B. J., Planer-Friedrich, mary: Arsenic in groundwater in Kittilä, Finnish Lapland. In: B. &Wolkersdorfer, C. (eds.) Uranium in the aquatic environment Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Arseeni Suomen :proceedingsoftheInternationa lConferenceUraniumMiningand luonnossa,ympäristövaikutuksetj ariskit. Espoo:Geologian Hydrogeology III and the International Mine Water Association tutkimuskeskus, 123–134. Symposium, Freiberg, Germany, 15–21 September 2002. Berlin: Tarvainen, Timo 2002. Heavy metal accumulation in soils and Springer, 231–240. mobility. Indicator development using the FOREGS and Baltic Suomi, Timo; Korhonen, Riitta 2004. Karviassa tutkitut suot ja Soil Survey databases. In: Expert meeting on indicators for soil niiden turvevarat.Osa2.Abstract:Thepeatlands andpeatreserves contamination, Sevilla, Spain, 27–29 May 2002. Copenhagen: of Karvia. Part 2. Geologian tutkimuskeskus. Turvetutkimusra- European Environment Agency, 2–4. portti 357. 42 p. + 4 app. Tarvainen, Timo; Backman, Birgitta; Hellmuth, Karl-Heinz; Suominen, Meeri; Kontas, Esko; Niskavaara, Heikki 2004. Hatakka, Tarja; Savolainen, Heimo 2003. IAEACoordinaoordinated Comparison of silver and gold inquarting in the fire assay determi- Research Project (CRP) ”The use of selected safety indicators nation of palladium, platinum and rhodium in geological samples. (concentrations, fluxes) in the assessment of radioactive waste In: Kane, J. S. ... [et al.] (eds.) Geoanalysis 2003. Geostandards disposal”.Report5:ChemicalweatheringratesontheBalticShield and Geoanalytical Research 28 (1), 131–136. of Finland for use as indicators of nuclear waste repository safety. Suominen, Veli 2002. Ballastproduktionen i Finland. Norden- Geologiantutkimuskeskus.Ydinjätteidensijoitustutkimukset. skiöld-samfundets tidskrift (62), 111–124. Tiedonanto YST-113. 51 p. Suppala,I.;Vanhala,H.;Lintinen,P. 2003. Comomparisonparisonbbeettwweeeenn Tarvainen, Timo; Schmidt-Thomé, Philipp 2003. Heavy metal ground and airborne EM data in mapping acid sulphate soils and enrichment factors for different analytical methods. In: Autio, S. sulphide bearing clays in the river Kyrönjoki valley, western (ed.)GeologicalSurveyofFinland,CurrentResearch2001–2002. Finland. In: Mares, S. & Pospísil, L. (eds.) 9th Meeting of Envi- Geological Survey of Finland. SpecialSpecial Paper 36,61–65. ronmental and Engineering Geophysics, Prague, Czech Republic, Tarvainen, Timo 2004. Arseeni maaperässä.Summary:Arsenic August 31st – September 4th 2003 : proceedings. Prague: Czech in soils. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Ar- Association of the Applied Geophysicists, 4 p. seeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo: Suppala, I.; Hongisto, H.; Oksama, M. 2004. EEffffecect ooff thhee ccon-on- Geologian tutkimuskeskus, 45–49. ducting aircraft to fixed-wing airborne electromagnetic measure- Tarvainen, Timo; Mannio, Jaakko 2004. Arseeni pintavesissä ments [Electronic resource]. In: Sharing the Earth : EAGE 66th ja purosedimenteissä. Summary:Arsenic in surface waters and Conference&Exhibition,Paris,France,7–10June2004:extended stream sediments. In: Loukola-Ruskeeniemi, K. & Lahermo, P. abstracts. Houten: EAGE, 4 p. Optical disc (CD-ROM). (eds.) Arseeni Suomen luonnossa, ympäristövaikutukset ja riskit. Sutinen, R.; Teirilä, A.; Pänttäjä, M.; Sutinen, M.-L. 2002. Espoo: Geologian tutkimuskeskus, 97–101. Distribution and diversity of tree species with respect to soil Tenhola, Markku; Lahermo, Pertti; Väänänen, Pauli; Lehto, electrical characteristics in Finnish Lapland. Canadian Journal Olli 2004. Alueellisessa geokemiallisessa purovesikartoituksessa of Forest Research 32 (7), 1158–1170. todettujen fysikaalisten ominaisuuksien ja alkuainepitoisuuksien Sutinen, R.; Teirilä, A.; Pänttäjä, M.; Sutinen, M.-L. 2002. vertailu Suomessa vuosina 1990, 1995 ja 2000. Summary: Com- Survival of artificially regenerated Scots pine on till soils with parison of physical properties and element concentrations in the respecttovaryingdielectricproperties.CanadianJournalofForest regional geochemical mapping of stream water in Finland during Research 32 (7), 1151–1157. 1990, 1995, and 2000. Geologian tutkikimuskeskus. Tutkimusra- Svendsen, J. I.; Alexanderson, H.; Astakhov, V. I.; Demidov, portti 159. 35 p.

98 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003–2004

Tervo,Tapani2003. Vuolukiven synty. In:Vuorjoki,K. (author) Väisänen, Ulpu 2004. Groundwater and factors affecting its Kivimatka. Helsinki: Sarmala, 16–17. quality:examplesfromtheRovaniemidistrictofnorthernFinland Tiljander, Mia; Saarnisto, Matti; Ojala, Antti E. K.; Saarinen, and western Nicaragua. Geological Survey of Finland. Bulletin Timo 2003. A3000-yearpr palaeoenvironmental record from an- 400. 145 p. + 5 app. nually laminated sediment of Lake Korttajärvi, central Finland. Väisänen, Ulpu Mirja 2004. Groundwater and factors affecting Boreas 32 (4), 566–577. its quality : examples from northern Finland and Nicaragua. In: Toivonen, Tapio 2003. Honkajoella tutkitut suot ja niiden 32nd International Geological Congress, Florence, Italy, August turvevarat. Abstract:The mires and peatrt reserves of Honkajoki. 20–28, 2004 : abstracts. Part 1, 638. Geologian tutkimuskeskus. Turvetutkimusraportti 347. 40 p. + Valjus, T.; Breilin, O.; Vanhala, H.; Lehtimäki, J. 2004. Dee-- 4 app. tailed geophysical study of glaciofluvial aquifer at Kempele, Toivonen, Tapio 2004. Multialla tutkitut suot ja niiden käyttö- western Finland. In: Near surface 2004 : 10th European Meeting kelpoisuus. Osa 2.Abstract: The mires of Multiaaa and their useful- of Environmental and Engineering Geophysics, Utrecht, The ness. Part 2. Geologian tutkimuskeskus.s. Turvetutkimusraportti Netherlands, 6–9 September 2004 : extended abstracts book. 352. 65 p. + 4 app. Houten: EAGE, 4 p. Toivonen, Tapio 2004. Pernajassa tutkitut suot ja niiden turve- Valli,Tuire;Jokinen,Tarmo;Lehtimäki,Jukka;Vanhala,Heikki varat. Abstract:The mires and peatrt reserves of Pernaja. Geologian 2003. Sampo –f– frequencydomainwide-bandEM systemfor tutkimuskeskus. Turvetutkimusraportti 353. 26 p. + 4 app. deep hydrogeological and environmental studies. In: Mares, S. & Tukiainen, Tapani; Krebs, Johan Ditlev; Kuosmanen, Viljo; Pospísil, L. (eds.) 9th Meeting of Environmental and Engineering Laitinen, Jukka; Schäffer, Uwe 2003. Field and laboratory reflect - Geophysics, Prague, Czech Republic, August 31st – September ance spectra of kimberlitic rocks, 0.35–2.5 µm, West Greenland. 4th 2003 : proceedings. Prague: CzechAssociation of theApplied DanmarksogGrønlandsGeologiskeUndersøgelse.Rapport Geophysicists, 4 p. 2003/43. 25 p. Vallius, Henry; Leivuori, Mirja 2003. Classification of heavy Turunen, Jukka 2003. Past and prpresent carbon accumulation metal contaminated sediments of the Gulf of Finland. Baltica in undisturbed boreal and subarctic mires : a review. Tiivistelmä: 16, 3–12. Luonnontilaistensoidenpitkänajan-janykykertymätboreaalisella Vanhala, H.; Räisänen, M. L.; Huotari, T.; Valjus, T.; Lehtimä- ja subarktisella kasvillisuusvyöhykkeellä : katsaus. Suo 54 (1), ki, J.; Suppala, I. 2004. Characharacterierizingng tailingsailings impoimpoundmenndment at 15–28. the closed Hammaslahti Cu-Zn mine, Finland. In: Near surface Turunen, Pertti 2004. On the use of the VLF method innmmineral 2004 : 10th European Meeting of Environmental and Engineer- exploration – experiences from the northern Finland. In: VLF ing Geophysics, Utrecht, The Netherlands, 6–9 September 2004 Workshop 2004, Sodankylä Geophysical Observatory, 27th Sep- : extended abstracts book. Houten: EAGE, 4 p. tember – 1st October 2004 : abstracts. Sodankylä Geophysical Vanhala, H.; Suppala, I.; Lintinen, P.; Lehtimäki, J. 2003. Observatory publications 96, 25. Mapping buried glaciofluvial aquifer by airborne EM measure- Tyni, Matti; Puustinen, Kauko; Karhu, Juha; Vaasjoki, Matti ments – a case from Kyrönjoki valley in southern Finland. In: 2003. The Petäiskoski carbonateveins at Juuka,e, eastern Finland. Mares, S. & Pospísil, L. (eds.) 9th Meeting of Environmental and In: Autio, S. (ed.) Geological Survey of Finland, Current Re- Engineering Geophysics, Prague, Czech Republic, August 31st search 2001–2002. Geological Survey of Finland. SpecialPaper – September 4th 2003 : proceedings. Prague: Czech Association 36, 13–16. of the Applied Geophysicists, 4 p. Uski, Marja; Hyvönen,Tellervo; Korja,Annakaisa;Airo, Meri- Vanhala, H.; Suppala, I.; Lintinen, P. 2004. InIntegraegrated geo-geo- Liisa 2003. Focal mechanisms of three earthquakes in Finland physical study of acid sulphate soil area near Seinäjoki, southern and their relation to surface faults. Tectonophysics 363 (1–2), Finland [Electronic resource]. In: Sharing the Earth : EAGE 66th 141–157. Conference&Exhibition,Paris,France,7–10June2004:extended Väänänen, Jukka 2004. Sieppijärven ja Pasmajärven kartta- abstracts. Houten: EAGE, 4 p.. Optical disc (CD-ROM). alueidenkallioperä.Summary:Pre-Quaternaryrocksofthe Vareikiene,O.;Lindqvist,K.;Marmo,J.2003.SSelecelectededeelemenlementsts Sieppijärvi and Pasmajärvi map-sheet areas.Suomen geologinen and their mineral carriers in the fine fraction of the Ahorizon in kartta 1:100 000 : kallioperäkarttojen selitykset lehdet 2624 ja soil of Asmena Highlands, Lithuania. Nordiska föreningen för 2642. 55 p. +1a+ 1 app.,pp., 2app.app. maps.maps. lerforskning. Meddelande (14),8–12. Väänänen,Tapio;Kokkonen,Jyrki2003. GEOKGEOKARTTAInInterneernet Vareikiene, Olga; Marmo, Jukka; Kadunas, Valentinas; Lind- map service – a new perspective of delivering maps on Internet qvist, Kristian 2003. Mineralmode of occurrence of selected by Geological Survey of Finland. In:Angelelli,A., Barchiesi, P. & elements in the fine fraction of soil (horizon A1) of Asmena Forni, S. (eds.) 4th European Congress on Regional Geoscientific Highlands, Lithuania. Geologija (42), 9–18. Cartography and Information Systems : geoscientific informa- Vareikiene, Olga; Lehtonen, Marja 2004. HHeaeavy mmineralsinerals iinn tion for spatial planning, Bologna, Italy, June 17th – 20th 2003 : the study of soil : techniques, their limitations and advantages. proceedings. Vol. 2. Bologna: Servizio geologico, sismico e dei Geologija (46), 1–7. suoli, 428–429. Veski, Siim; Seppä, Heikki; Ojala,Antti E. K. 2004. Coldold evenent Vaarma,Markus;Pipping,Fredrik2003.KKyyjjärärvi–Pi–Peerhorhokkararttttaa-- at 8200 yr B.P. recorded in annually laminated lake sediments in alueenkallioperä.Summmmary:Pre-QuaternaryrocksoftheKyyjärvi eastern Europe. Geologyy3322(8), 681–684. and Perho map-sheet areas. Suomen geologinen kartta1:100 000 Vesterbacka, P.; Mäkeläinen, I.; Tarvainen, T.; Hatakka, T.; : kallioperäkarttojen selitykset lehdet 2331 ja 2332. 54 p. Arvela,H.2004.Kaivovedenluonnollinenradioaktiivisuus–otan- Vaasjoki, Matti 2003. Aktualismi, paradigmat ja talonpoikais- tatutkimus2001.Abstract:Naturalradioactivityinprivatewellllsin järki. Geologi 55 (6 ), 144–146. Finland – a representative survey 2001 . STUK-A 199. 51 p. Vaasjoki, Matti; Huhma, Hannu; Lahtinen, Raimo; Vestin, Viana, R. R.; Mänttäri, I.; Kunst, H.; Jordt-Evangelista, H. Jessica 2003. Sources ofSvecofenniangranitoids in thelight 2003. Age of pegmatites from easternBrazil and implications of of ion probe U-Pb measurements on their zircons. Precambrian mica intergrowths on cooling rates and age calculations. Journal Research 121 (3–4), 251–262. of South American Earth Sciences 16 (6), 493–501. Väisänen, Markku; Mänttäri, Irmeli 2002. 11.9.90––1.1.88 GGaa aarcrc Virtanen, Kimmo; Herranen, Teuvo 2003. Piippolassa tutkitut and back-arc basin in the Orijärvi area, SWFinland. Bulletin of suot ja niiden turvevarat. Osa 2. Abstract: The mires and peat the Geological Society of Finland 74 (1–2), 185–214. reserves in the municipality of Piippola, central Finland. Part

99 Geological Survey of Finland, Special Paper 38 Papers publishedbyGeologicalsurveyofFinlandstaff in2003-2004

2. Geologian tutkimuskeskus. Turvetutkimusraportti 344. 78 p. 2003. Structural evolution of the Björkdal gold deposit, Skellefte + 4 app. district, northern Sweden : implications for early Proterozoic me- Virtanen, Kimmo; Hänninen, Pekka; Kallinen, Riitta-Liisa; sothermal gold in the late stage of the Svecokarelian orogen. In: Vartiainen, Sirkka;Herranen, Teuvo;Jokisaari, Ritva2003. Sundblad, K. & Cook, N. J. (eds.) Agroup of papers devoted to Suomen turvevarat 2000. Summary: The peat reserves of Finland the metallogeny of gold in the Fennoscandian Shield. Economic in 2000. GeologianGeologian tutkikimmuskeskskeskus. Tutkimusraportti1i 1556.1. 101 Geology 98 (7), 1291–1309. p. + 7 app. Weihed, Pär; Eilu, Pasi 2003. Gold, Fe oxide-Cu-Au and VMS Virtanen, Kimmo;Kallinen, Riitta-Liisa;Herranen, Teuvo metallogeny of the Fennoscandian Shield. In:Eliopoulos, D. G...... 2003. Alavieskassa tutkitut suot ja niiden turvevarat. Abstract: [et al.] (eds.) Mineral exploration and sustainable development : The mires and peat reserves in the municipality of Alavieska, proceedingsoftheSeventhBiennialSGAMeeting,Athens,Greece, western Finland. Geologian tutkimuskeskus. Turvetutkimusra- 24–28 August 2003. Vol. 2. Rotterdam: Millpress, 1123–1126. portti 345. 47 p. + 4 app. Weihed, Pär (ed.); Eilu, Pasi (ed.) 2003. FeOFeOx-Cu-Au,,VVMS,MS, Virtanen, Kimmo 2004. Arseeni Pohjois-Pohjanmaan soiden and orogenic gold deposits in light of the tectonic evolution of turvekerrostumissa.Summmmary:ArsrsenicinpeatintheOstrstrobothnian the Fennoscandian Shield. In: Eliopoulos, D. G...... [et al.] (eds.) area, northern Finland. In:Loukola-Ruskeeniemi, K. & Lahermo, Mineral exploration and sustainable development : proceedings P. (eds.) Arseeni Suomen luonnossa, ympäristövaikutukset ja of the Seventh Biennial SGAMeeting, Athens, Greece, 24–28 riskit. Espoo: Geologian tutkimuskeskus, 51–58. August 2003. Vol. 2. Rotterdam: Millpress, 1055–1130. Virtanen, Kimmo 2004. Peat geological surveys and peat re- Werme, Lars; King, Fraser;Ahonen, Lasse; Taxén, Claes; Vuo - sources in Finland. Peatlands International (2), 40–41. rinen, Ulla 2004. KBS-TR-90 twenty-five years on – progress in Virtanen,Kimmo;Lerssi,Jouni2004.Airbornegammaradiation the understanding of the long-term corrosion behaviour of copper data : use of peat thickness estimation. In:Lappalainen, E..( (ed.) canisters. In: Oversby, V. M. & Werme, L. O. (eds.) Scientific Vitality and peace of mind from Great Teuravuoma aapa mire : Basis for Nuclear Waste Management XXVII. Symposium held post congress excursion to Lapland, 11–16 June, 2004, 50–51. June 15–19, 2003, Kalmar, Sweden. Materials Research Society Virtasalo,Joonas;Kotilainen,Aarno2004.TTrraackckiinngpgposostt-gla-glacialcial symposium proceedings 807, 417–422. environmentalchangein theArchipelagoSeausingbiogenic sedi- Werner, S. C.; Plado, J.; Pesonen, L. J.; Janle, P.; Elo, S. 2002. ment structures. In: Puura, I., Tuuling, I. & Hang, T. (eds.) The Potential fields and subsurface models of Suvasvesi North impact Baltic : the Eighth Marine Geological Conference, September structure, Finland. In: Aubourg, C. ... [et al.] (eds.) Rock magnet- 23–28, 2004, Tartu, Estonia : abstracts, excursion guide. Tartu: ism and its applications. Physics and Chemistry of the Earth 27 University of Tartu, Institute of Geology, 59. (25–31), 1237–1245. Vuollo, J. I.; Huhma, H.; Stepanov, V.; Fedotov, G. 2002. Yakhnin,E.Ya.;Tomilina,O.V.; Chekushin,V. A.;Salminen,R. Geochemistry and Sm-Nd isotope studies of a 2.45 Ga dyke 2003. Sravnitel’nyj analiz dannyh o sostave atmosfernyh osadkov swarm : hints at parental magma composition and PGE potential i sneznogo pokrova na territorii Leningradskoj oblasti i Ûgo-vos- to Fennoscandian layered intrusions. In: Boudreau, A. (ed.) 9th tocnoj Finlândii i utocnenie parametrov atmosfernogo vypadeniâ International Platinum Symposium, 21–25 July, 2002, Billings, tâzelyh metallov. Ekologiceskaâ himiâ 12 (1), 1–12. Montana, USA: extended abstracts. Billings, MT: Duke Univer- Yli-Halla, Markku; Talkkari, Ari; Nyholm, Rainer; Nevalai- sity, 469–470. nen, Raimo; Lerssi, Jouni; Väänänen, Tapio; Tamminen, Pekka; Vuori, Saku K. 2004. Petrogenesis of theJurassicgabbroic in- Starr, Michael 2003. Numeerinen Suomen maannostietokanta trusions ofVestfjella, Dronning Maud Land,Antarctica. Helsinki: mittakaavassa 1:250 000 – pilottihanke. Abstract: Georeferenced University of Helsinki. 102 p. soil database of Finland at scale 1:250,000 – pilot project. MTT:n Weihed, Pär; Bergman Weihed, Jeanette; Sorjonen-Ward, Peter selvityksiä 44. 52 p. + 1 app.

100 selkä 7,5 mm

Geological Survey of Finland, Special Paper 38 Geolo gical Sur ve y of Finland, Geological Survey of Finland Current Research 2003-2004 Curr Edited by Sini Autio ent Resear ch 2003 – 2004

Tätä julkaisua myy Denna publikation säljes av This publication can be obtained from

GEOLOGIAN GEOLOGISKA GEOLOGICAL SURVEY TUTKIMUSKESKUS (GTK) FORSKNINGSCENTRALEN (GTK) OF FINLAND (GTK) Julkaisumyynti Publikationsförsäljning Publication sales PL 96 PB 96 P. O. Box 96 02151 Espoo 02151 Esbo FI-02151 Espoo, Finland ( 020 550 11 ( 020 550 11 ( +358 20 550 11 Telekopio: 020 550 12 Telefax: 020 550 12 Telefax: +358 20 550 12

GTK, Kuopion yksikkö GTK, Kuopio enhet GTK, Kuopio Unit Kirjasto Biblioteket Library PL 1237 PB 1237 P. O. Box 1237 70211 Kuopio 70211 Kuopio FI-70211 Kuopio, Finland ( 020 550 11 ( 020 550 11 ( +358 20 550 11 Telekopio: 020 550 13 Telefax: 020 550 13 Telefax: +358 20 550 13

GTK, Rovaniemen yksikkö GTK, Rovaniemi enhet GTK, Rovaniemi Unit Sini Kirjasto Biblioteket Library

PL 77 PB 77 P. O. Box 77 Au 96101 Rovaniemi 96101 Rovaniemi FI-96101 Rovaniemi, Finland tio (ed.) ( 020 550 11 ( 0 20 550 11 ( +358 20 550 11 Telekopio: 020 550 14 Telefax: 020 550 14 Telefax: +358 20 550 14

E-mail: info@gtk.fi ISBN 951-690-916-7 WWW-address: www.gtk.fi ISSN 0782-8535 Geological Survey of Finland 9789516 909168 Espoo 2005