Projet ANR ASTER Rapport De Tâche 4 Potentialité De Stocks Géologiques De Terres Rares En Europe Et Au Groenland Rapport Final

Total Page:16

File Type:pdf, Size:1020Kb

Projet ANR ASTER Rapport De Tâche 4 Potentialité De Stocks Géologiques De Terres Rares En Europe Et Au Groenland Rapport Final Projet ANR ASTER Rapport de Tâche 4 Potentialité de stocks géologiques de terres rares en Europe et au Groenland Rapport final BRGM/RP-64910-FR Juillet 2015 Projet ANR ASTER Rapport de Tâche 4 Potentialité de stocks géologiques de terres rares en Europe et au Groenland Rapport final BRGM/RP-64910-FR Juillet 2015 Étude réalisée dans le cadre du projet ANR-11- ECOT-002 J. Tuduri, N. Charles, D. Guyonnet, J. Melleton, O. Pourret, A. Rollat Le système de management de la qualité et de l’environnement est certifié par AFNOR selon les normes ISO 9001 et ISO 14001. Mots-clés : Terres Rares, Lithosphère, Europe continentale, Groenland, Stocks géologiques, Exploration minière. En bibliographie, ce rapport sera cité de la façon suivante : Tuduri J., Charles N., Guyonnet D., Melleton J., Pourret O., Rollat A.. (2015) – Projet ANR ASTER. Rapport de Tâche 4. Potentialité de stocks géologiques de terres rares en Europe et au Groenland. Rapport final. BRGM/RP-64910-FR, 119 p., 12 fig., 3 tabl., 4 ann. © BRGM, 2015, ce document ne peut être reproduit en totalité ou en partie sans l’autorisation expresse du BRGM. ASTER – Rapport de Tâche 4 – Potentialité de stocks géologiques de terres rares en Europe et au Groenland Synthèse e projet ASTER se place dans un contexte de risques de sécurité d’approvisionnement L de certaines terres rares, essentielles pour des écotechnologies énergétiques comme les lampes basse-consommation, les éoliennes, les batteries pour véhicules hybrides et électriques, etc. Il s’agît dans ASTER de réaliser une analyse des flux de matière (MFA) pour dresser une cartographie des flux et stocks de ces terres rares dans l’UE des 28. Parmi les caractères novateurs du projet on citera en particulier : - la prise en compte de stocks lithosphériques ; c’est-à-dire de potentialités géologiques, où le champ d’investigation a été élargi à l’Europe continentale afin d’inclure la totalité du bouclier scandinave, l’Ukraine et la Turquie, ainsi que le Groenland. Deux des principaux objectifs du projet sont : i. le développement de diagrammes dits « Sankey », qui permettent de visualiser graphiquement les flux / stocks des terres rares sélectionnées dans l’UE-28 et notamment de mieux identifier la provenance des flux de matière première amonts issus de la production minière ainsi que les potentialités de recyclage. Tandis que les tâches 3 et 6 ont été dédiées à la collecte des informations et à la réalisation de cette méthodologie ; ii. la tâche 4, objet du présent rapport, identifie les domaines géologiques à fort potentiel en gîtes de terres rares et apporte une évaluation des ressources en terres rares contenues dans le sous-sol européen. Les résultats sont présentés sous la forme de cartes gîtologiques et de graphiques permettant notamment : - d’identifier les domaines géologiques les plus fertiles ; - d’identifier le potentiel géologique en terres rares de l’EU-28 ; - d’évaluer les ressources en terres rares du sous-sol européen. L’objectif final du projet ASTER est d’avoir une vision plus réaliste de la « criticité » de certaines terres rares, et notamment les terres rares lourdes, pour l’UE-28. BRGM/RP-64910-FR – Rapport final 3 ASTER – Rapport de Tâche 4 – Potentialité de stocks géologiques de terres rares en Europe et au Groenland Sommaire 1. Introduction ...................................................................................................................... 9 1.1. DÉFINITIONS ............................................................................................................. 9 1.2. LES TERRES RARES .............................................................................................. 10 2. Méthodologie .................................................................................................................. 15 2.1. LIMITES DU SYSTÈME ÉTUDIÉ .............................................................................. 15 2.2. SOURCE DES DONNÉES ........................................................................................ 15 2.3. DIFFICULTÉS RENCONTRÉES ............................................................................... 15 2.4. LIVRABLES .............................................................................................................. 16 3. Typologie des gisements de terres rares ..................................................................... 17 3.1. MINÉRALOGIE DES TERRES RARES .................................................................... 17 3.2. GÎTOLOGIE DES TERRES RARES ......................................................................... 19 3.2.1. Les gîtes primaires ou endogènes ................................................................... 20 3.2.2. Les gîtes secondaires ou exogènes ................................................................. 21 4. Caractérisation du potentiel géologique en terres rares de l’Europe et du Groenland ......................................................................................... 23 4.1. LES GÎTES DE TERRES RARES EN EUROPE ....................................................... 24 4.1.1. Les gîtes primaires ........................................................................................... 24 4.1.2. Les gîtes secondaires ...................................................................................... 29 4.2. LES GISEMENTS DE TERRES RARES AU GROENLAND ...................................... 30 4.2.1. Les gîtes primaires ........................................................................................... 30 4.2.2. Les gîtes secondaires ...................................................................................... 30 5. Compréhension des processus de minéralisation ...................................................... 31 5.1. GÉOCHIMIE DES TERRES RARES DANS LES EAUX DE SURFACE FRANÇAISE : UN APERÇU DU CYCLE EXTERNE À TRAVERS L’UTILISATION DES DONNÉES FOREGS ........................................................................................ 31 5.2. GENÈSE DES CONCENTRATIONS AUTHIGÉNIQUES À MONAZITES GRISES RICHES EN EUROPIUM DU MASSIF ARMORICAIN ............................................... 32 5.3. ORIGINE DES CONCENTRATIONS EN TERRES RARES DES BOUES OCÉANIQUES DU PACIFIQUE. ............................................................................... 33 5.4. LE GISEMENT DE TERRES RARES DE MOUNT WELD (AUSTRALIE OCCIDENTALE) : UN EXEMPLE DE GITE ISSU DE L’ALTÉRATION SUPERGÉNE D’UNE CARBONATITE ..................................................................... 33 BRGM/RP-64910-FR – Rapport final 5 ASTER – Rapport de Tâche 4 – Potentialité de stocks géologiques de terres rares en Europe et au Groenland 6. Conclusion - Évaluation du potentiel en terres rares du continent européen et du Groenland ............................................................................................................. 35 6.1. SYNTHÈSES ÉCONOMIQUES ................................................................................ 35 6.2. SYNTHÈSE GÉOLOGIQUE ...................................................................................... 37 7. Bibliographie .................................................................................................................. 39 Liste des illustrations Figure 1 - Les différentes terres rares replacées dans la classification périodique des éléments. ....10 Figure 2 - Économie des terres rares. (a) importations de terres rares dans UE-28 depuis la Chine entre 2001 et 2012 (données EUROSTAT). (b) Quotas d'exportation chinois d’oxydes de terres rares entre 2003 et 2013. En 2010, les exportations chinoises de terres rares ont été limitées à 30 259 tonnes d'oxydes de terres rares. Prix (fob) des (c) terres rares légères (La, Ce, Pr, Nd) et (d) de certaines terres rares lourdes (Eu, Tb, Dy, Y) entre Janvier 2000 and décembre 2014 (données metal-pages). ..............................................12 Figure 3 - Abondance naturelle des terres rares et d’autres éléments dans la croûte terrestre (ppm, d’après Rudnick et Gao, 2003). ...............................................................................13 Figure 4 - (a) Nombre de minéraux comportant un élément specifique, dont les terres rares, dans sa formule strucutrale (Higgins et Smith, 2010) (b) Profils de terres rares d’une sélection des principaux minéraux exploités ainsi que de l’eudialyte qui pourrait dans un futur proche devenir un nouveau minerai de terres rares. Ces données sont comparées à l’abondance moyenne des REE dans la croûte continentale supérieure (Castor, 2008 ; Wall et al., 2008 ; Schilling et al., 2011 ; Henderson, 1984 ; Chi et Tian, 2008 ; McDonough et Sun, 1995). (Pour le chimisme des phases, se reporter au Tableau 2) ................................................17 Figure 5 - Classification des gîtes et gisements de terres rares. Pour chacun des modèles distingués, un exemple de gîte ou gisement européen a été proposé. .............................20 Figure 6 - Caractéristiques des principaux modèles de gisements. En bleu, les gîtes de classe mondiale localisés en Europe ou au Groenland.T : tonnage, * la valeur de 8 % correspond au gisement de Mount Weld, le rapport HREO/LREO correspondant est de 0,3. ..........................................................................................................................20 Figure 7 - Distribution des différentes occurrences primaires (endogènes) et secondaires (exogènes) de terres rares en Europe et au Groenland. ...................................................24 Figure 8 - Distribution
Recommended publications
  • Lapin Irtokullan Alkuperästä
    Lapin irtokullan alkuperästä Lapissa on kaivettu kultaa jo 150 vuoden ajan. Kullan alkuperää, emä- kalliota, ei ole onnistuttu löytämään pitkästä uurastuksesta huolimatta. Uusin tutkimustieto antaa kuitenkin toivoa, että Lapin kullan mysteeri saadaan vielä joskus ratkaistua. PEKKA TUISKU ja ANTTI PERONIUS uori-insinööri Johan Konrad Lihrin räisin ja millaiset prosessit ovat johtaneet sen retkikunta löysi ensimmäiset mer- nykyiseen esiintymiseen maaperässä. Yritäm- kit irtokullasta Ivalojoen Nulkka- me kirjoituksessa selventää tätä sekä käytän- V mukasta syyskuussa 1868. Tämä nön kokemuksen että tutkimustiedon perus- johti lähes välittömästi Lapin ensimmäiseen teella ja toivomme kirjoituksen innostavan sekä suureen kultaryntäykseen, josta lähtien kultaa harrastajia että ammattilaisia Lapin kullan on etsitty vaihtelevalla menestyksellä aluksi mysteerin selvittämiseen. Siksi olemme yrit- Ivalojoella ja myöhemmin muilta Lapin kul- täneet laatia tekstimme sellaiseksi, että sen lu- lanhuuhdonta-alueilla (Partanen 1999). Kul- keminen onnistuu ilman syvällistä geologista taryntäyksen vuoksi silloinen Kaivoshallitus tietämystä. joutuikin keskittämään voimavaransa Inarin Kullan alkuperän selvittämiseksi on tar- ja Utsjoen pitäjiin, minkä tuloksena A.-E. Jern- kasteltava sen maantieteellistä esiintymistapaa ström laati vuonna 1874 maamme ensimmäi- ja jakautumista, materiaalia, jossa kulta esiin- nen kelvollisen kallioperäkartan kuntien län- tyy, irtokultaa liikuttaneita ilmiöitä, rapautu- siosista (Stigzelius 1987, Kauranne et al. 2010). mista sekä
    [Show full text]
  • Palaeozoic Alkaline Magmatism
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Birkbeck Institutional Research Online Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review Hilary Downes1, Elena Balaganskaya2, Andrew Beard1, Ruslan Liferovich2, Daniel Demaiffe3 1School of Earth Sciences, Birkbeck, University of London, Malet Street, London, UK 2Geological Institute, Kola Science Centre RAS, Fersman Street, 14, Apatity, Murmansk oblast, 184200 RUSSIA 3Laboratoire de Geochimie Isotopique (CP 160/02), Université Libre de Bruxelles, Ave. F Roosevelt, B-1050 Bruxelles, Belgium [Revised version accepted for publication in Lithos – June 2004] Abstract Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica- undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO/Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth.
    [Show full text]
  • Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
    Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events.
    [Show full text]
  • European from Fennoscandia: Archaean to Tertiary
    Tecronoph~slcs, 195 (1991) 151-207 151 Elsevrer Scrence Publishers B.V , Amsterdam Catalogue of palaeomagnetic directions and poles european from Fennoscandia: Archaean to Tertiary L.J. Pesonen ‘, G. Bylund b, T.H. Torsvik ‘. *, S.-A. Elming ’ and S. Mertanen a ” L.ahorato~for Palaeomagnetwn, Geologrcal Survey of Fmland, SF-O-7150 Espoo. Fmlund geotravetse h Department of Geology, Unrversrty of Lund. S-223 62 Lund, Sweden ’ Department of Earth Scrences. Umversrty of Oxford. Oxford OXI 3PR UK ’ Depurtment of Applred Geoph.wcs. Lulei Umverslty of Technolog), S-9.51 87 LuleB, Sweden (Received Apt11 9. 1990: revised verston accepted July 11, 1990) ABSTRACT Pesonen, L.J., Bylund. G., Torsvrk. T.H.. Elming, S.A. and Mertanen. S.. 1991. Catalogue of palaeomagnetrc dnections and poles from Fennoscandia: Archaean to Tertiary. In: R. Freeman. M. Huch and St. Mueller (Editors). The European Geotraverse. Part 7. Tecfonophyssrcs. 195: 151-207. Palaeomagnetic data from Fennoscandta ranging from the Archaean to the Tertiary have been comprled mto a catalogue The data are presented in table format, ltsting Precambrian data accordmg to tectonomagmatrc blocks and Late Precambrian-Phanerozorc data according to geological periods. Each pole is graded with the modtfted Bncen-Duff classtfrcation scheme. The catalogue (complete to the end of 1988) contains 350 entnes from 31 tectonomagmattc blocks and/or geologrcal periods. Normal and reversed polanty data are listed separately to allow polanty asymmetries to be studied. Each entry also has an Indexed abstract summanzing relevant informatron. such as the age of the rock, the age of the natural remanent magnetizatron and the basis for the assigned reliability grade All the data are stored m the palaeomagnetic data bank, which will be updated annually wrth new data.
    [Show full text]
  • Lund, Sweden, January 8–10 2014
    31st Nordic Geological Winter Meeting. Lund, Sweden. January 8-10, 2014 31st Nordic Sponsors Hosted by the Geological Society of Sweden Lund, Sweden, January 8–10 2014 Abiskojokk canyon, Abisko Sweden Photo: Mark Johnson, 2012 Main sponsors Table of Contents Welcome ______________________________________________________ 2 Organizing committee __________________________________________ 3 Scientific program committee ___________________________________ 3 Program Overview _____________________________________________ 4 Social Program ________________________________________________ 5 Scientific Program______________________________________________ 6 - Oral presentations __________________________________________ 7 - Posters ___________________________________________________ 22 Abstracts1 ________________________________________________ 34 - Plenary talks ________________________________________________ 35 - HYD-ENV Hydrogeology/Environmental Geology _______________ 37 - ENG-GEO Engineering Geology ______________________________ 46 - ECON-OIL Economic and Petroleum Geology __________________ 50 - LUNDPAL Lundadagarna i Historisk Geologi och Paleontologi ____________________________________________ 64 - PET Petrology ______________________________________________ 77 - STR-TEC Structural Geology/Tectonics ________________________ 104 - MOR-GLA Geomorphology and Glacial Geology ______________ 126 - QUAT Quaternary Geology _________________________________ 148 - GEOBIO Geobiology and Astrobiology _______________________ 156 - GEOP Geophysics
    [Show full text]
  • Thermochronology and Exhumation History of The
    Thermochronology and Exhumation History of the Northeastern Fennoscandian Shield Since 1.9 Ga: Evidence From 40 Ar/ 39 Ar and Apatite Fission Track Data From the Kola Peninsula Item Type Article Authors Veselovskiy, Roman V.; Thomson, Stuart N.; Arzamastsev, Andrey A.; Botsyun, Svetlana; Travin, Aleksey V.; Yudin, Denis S.; Samsonov, Alexander V.; Stepanova, Alexandra V. Citation Veselovskiy, R. V., Thomson, S. N., Arzamastsev, A. A., Botsyun, S., Travin, A. V., Yudin, D. S., et al. (2019). Thermochronology and exhumation history of the northeastern Fennoscandian Shield since 1.9 Ga:evidence from 40Ar/39Ar and apatite fission track data from the Kola Peninsula. Tectonics, 38, 2317–2337.https:// doi.org/10.1029/2018TC005250 DOI 10.1029/2018tc005250 Publisher AMER GEOPHYSICAL UNION Journal TECTONICS Rights Copyright © 2019. American Geophysical Union. All Rights Reserved. Download date 01/10/2021 04:51:21 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/634481 RESEARCH ARTICLE Thermochronology and Exhumation History of the 10.1029/2018TC005250 Northeastern Fennoscandian Shield Since 1.9 Ga: Key Points: 40 39 • Since 1.9 Ga, the NE Fennoscandia Evidence From Ar/ Ar and Apatite Fission was characterized by a slow exhumation (1‐2 m/Myr) Track Data From the Kola Peninsula • Total denudation of the NE Roman V. Veselovskiy1,2 , Stuart N. Thomson3 , Andrey A. Arzamastsev4,5 , Fennoscandia since 1.9 Ga did not 6 7,8 7,8 9 exceed ~3‐5km Svetlana Botsyun , Aleksey V. Travin , Denis S. Yudin , Alexander V. Samsonov , • The Kola part of Fennoscandia and Alexandra V.
    [Show full text]
  • Kartkatalog Fås Gratis Ved Henvendelse NGU
    1 GEOLOGI FOR SAMFUNNET Geology for society VIRKSOMHETSIDÈ Norges geologiske undersøkelse (NGU) - er den sentrale nasjonale institusjonen for kunnskap om fastlands-norges geologi og kontinentalsokkelens øvre lag. - er en nøytral og uavhengig organisasjon. - har ansvaret for utbygging og vedlikehold av en nasjonal, geologisk databank. Databanken skal omfatte all aktuell informasjon om Norges berggrunn, løsmasser og grunnvann. - skal sørge for at denne kunnskapen blir gjort tilgjengelig for løsning av nasjonale og internasjonale oppgaver. KORT OM NGU NGU er en statlig etat, organisert under Nærings- og handelsdepartementet (NHD). Som forskningsbasert forvaltningsorgan, er NGU også de andre departementenes faginstans i geofaglige spørsmål. NGU har 220 ansatte og en budsjettert omsetning i 1997 på ca. 122 mill. kr. BRUK AV GEOLOGISKE DATA NGUs virksomhet er samfunns- og brukerorientert. Vår databank og kunnskap om berggrunn, løsmasser og grunnvann brukes i mange sammenhenger og av forskjellige brukere. THE PURPOSE OF THE ORGANISATION The Geological Survey of Norway - is the central, national institution for knowledge about the geology of mainland Norway and the upper beds on the continental shelf. - is neutral and independent. - is responsible for building up and maintaining a national geological data bank containing all relevant information on the bedrock, superficial deposits and groundwater of the country - must ensure that this knowledge is made available for solving national and international requirements. NGU IN BRIEF The Geological Survey of Norway (NGU) is a Government service institution, responsible to the Ministry of Trade and Industry. NGU is also a research based institution holding the databank for all geoscientific information in Norway and acts in an advisory capasity for other ministries.
    [Show full text]
  • Finnish Lithosphere Meeting
    INSTITUTE OF SEISMOLOGY UNIVERSITY OF HELSINKI REPORT S-65 LITHOSPHERE 2016 NINTH SYMPOSIUM ON THE STRUCTURE, COMPOSITION AND EVOLUTION OF THE LITHOSPHERE IN FENNOSCANDIA Geological Survey of Finland, Espoo, November 9-11, 2016 PROGRAMME AND EXTENDED ABSTRACTS edited by Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen, Markku Poutanen, Eija Tanskanen and Timo Tiira Helsinki 2016 INSTITUTE OF SEISMOLOGY UNIVERSITY OF HELSINKI REPORT S-65 LITHOSPHERE 2016 NINTH SYMPOSIUM ON STRUCTURE, COMPOSITION AND EVOLUTION OF THE LITHOSPHERE IN FENNOSCANDIA PROGRAMME AND EXTENDED ABSTRACTS Edited by Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen, Markku Poutanen, Eija Tanskanen and Timo Tiira Geological Survey of Finland, Espoo, November 9-11, 2016 Helsinki 2016 Series Editor-in-Chief: Annakaisa Korja Guest Editors: Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen, Markku Poutanen, Eija Tanskanen and Timo Tiira Publisher: Institute of Seismology P.O. Box 68 FI-00014 University of Helsinki Finland Phone: +358-294-1911 (switchboard) http://www.helsinki.fi/geo/seismo/ ISSN 0357-3060 ISBN 978-952-10-5081-7 (Paperback) Helsinki University Print Helsinki 2016 ISBN 978-952-10-9282-5 (PDF) i LITHOSPHERE 2016 NINTH SYMPOSIUM
    [Show full text]
  • A Four-Phase Model for the Sveconorwegian Orogeny, SW Scandinavia 43
    NORWEGIAN JOURNAL OF GEOLOGY A four-phase model for the Sveconorwegian orogeny, SW Scandinavia 43 A four-phase model for the Sveconorwegian orogeny, SW Scandinavia Bernard Bingen, Øystein Nordgulen & Giulio Viola Bingen, B., Nordgulen, Ø. & Viola, G.; A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology vol. 88, pp 43-72. Trondheim 2008. ISSN 029-196X. The Sveconorwegian orogenic belt resulted from collision between Fennoscandia and another major plate, possibly Amazonia, at the end of the Mesoproterozoic. The belt divides, from east to west, into a Paleoproterozoic Eastern Segment, and four mainly Mesoproterozoic terranes trans- ported relative to Fennsocandia. These are the Idefjorden, Kongsberg, Bamble and Telemarkia Terranes. The Eastern Segment is lithologically rela- ted to the Transcandinavian Igneous Belt (TIB), in the Fennoscandian foreland of the belt. The terranes are possibly endemic to Fennoscandia, though an exotic origin for the Telemarkia Terrane is possible. A review of existing geological and geochronological data supports a four-phase Sveconorwegian assembly of these lithotectonic units. (1) At 1140-1080 Ma, the Arendal phase represents the collision between the Idefjorden and Telemarkia Terranes, which produced the Bamble and Kongsberg tectonic wedges. This phase involved closure of an oceanic basin, possibly mar- ginal to Fennoscandia, accretion of a volcanic arc, high-grade metamorphism and deformation in the Bamble and Kongsberg Terranes peaking in granulite-facies conditions at 1140-1125 Ma, and thrusting of the Bamble Terrane onto the Telemarkia Terrane probably at c. 1090-1080 Ma. (2) At 1050-980 Ma, the Agder phase corresponds to the main Sveconorwegian oblique (?) continent-continent collision.
    [Show full text]
  • The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), As Revealed from He and Ar Isotope Evidence
    minerals Article The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence Valentin Nivin Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman St., 184209 Apatity, Russia; [email protected]; Tel.: +7-815-55-79-580 Received: 15 August 2020; Accepted: 16 September 2020; Published: 21 September 2020 Abstract: The occurrence of hydrocarbon gases (HCG) in unusually high concentrations for magmatic complexes, in the Lovozero and some other alkaline massifs, is of both geochemical and practical interest. The nature of these gases, despite the long history of research, remains the subject of debate. As an approach to solving this problem, we studied the coupled distribution of occluded HCG and the recognized tracers of various geological processes, such as helium and argon isotopes. The extraction of the gas components trapped in fluid micro-inclusions was carried out by the mechanical crushing 3 4 of rock and mineral samples. A positive correlation was found between the He/ He and CH4/C2H6 ratios, whereas a negative correlation of the latter was found with the 36Ar concentration, which in turn was directly related, in varying degrees, to the content of HCG and most strongly with pentanes. Conjugacy of the processes of the heavier gaseous hydrocarbons, a loss of the deep component of the fluid phase and dilution of it with the atmogenic component was established. In the absence of a 3 3 correlation between CH4 and He, the value of the CH4/ He ratio in the Lovozero gas substantially exceeded the estimates of it in gases of a mantle origin, and mainly corresponded to the crustal values.
    [Show full text]
  • Earth Sciences and Sustainable Environment
    Nordic International Geological Congress in 2008 Earth Sciences and Sustainable Environment Oslo 5-14 August 2008 Interim bidding document prepared by the Nordic countries for the IGC steering committee 08 OSLO Florence, October 3-5th 2002 Nordic International Geological Congress in 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY . 5 INTRODUCTION . 6 Nordic Natural Science Legacy . 6 Nordic Earth Sciences Today . 6 The Geology of the Nordic Realm . 9 THE CONGRESS . 10 Invitation. 10 Organisation and timing of the congress. 10 Congress structure and scientific program . 11 Symposia. 11 General Symposia. 11 Special Symposia . 11 Topical Symposia . 12 Example of Symposia Themes . 12 Arctic Environment, Resources and Global Climate. 12 Physics of Geological Processes. 13 How Earth sustains life – Integrating Ecology, Biology and Geoscience . 14 Medical Geosciences . 15 Earth processes in Space and Time . 15 Onshore and Offshore virtual reality . 15 Educational opportunities . 16 FIELD TRIPS . 17 Excursion 1: Isua, West Greenland – the oldest rocks on Planet Earth . 18 Excursion 2: Ice core drilling site, Greenland Ice Sheet. 19 Excursion 3: The Skaergaard Layered Intrusion, East Greenland . 19 Excursion 4: Jameson Land, East Greenland, as the petroleum geology analogues Excursion 4 for the Norwegian continental shelf . 20 Excursion 5: Tectonics and active rift-volcanism in South and Southwest Iceland. 21 Excursion 6: Subglacial volcanic activity in Southwest and West Iceland, Excursion 6: terrestrial processes as an excursion to Mars . 22 Excursion 7: A diverging plate boundary. One-day excursion to the Excursion 7: Reykjanes Peninsula in Southwest Iceland. 22 Excursion 8: The Tertiary formation of Iceland-plateau basalts and Excursion 6:central volcanoes, with Krafla as a modern analogue.
    [Show full text]
  • The Protogine Zone. Geology and Mobility During the Last 1.5 Ga ^ O
    The Protogine Zone. Geology and mobility during the last 1.5 Ga Per-Gunnar Andréasson, Agnes Rodhe September 1992 ^ _ O, ^ 2 THE PROTOGINE ZONE. GEOLOGY AND MOBILITY DURING THE LAST 1.5 Ga Per-Gunnar Andréasson, Agnes Rodhe September 1992 < This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978-(TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01) 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33) 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46) and 1991 (TR 91-64) is available through SKB. T 1- I The Protogine Zone. Geology and mobility during the last 1.5 Ga Per-Gunnar Andréasson and Agnes Rodhe Lund, September 1992 t- CONTENTS ABSTRACT ui SUMMARY iv ACKNOWLEDGEMENTS v vi INDEX MAP OF GEOGRAPHICAL NAMES 1 INTRODUCTION 2 GEOLOGY OF THE PROTOGINE ZONE (PZ) 2.1 DEFINITIONS 22 THE PZ AS A GEOLOGICAL UNE OR BOUNDARY 22.1 The aligned intrusions 5 222 The aligned hydrotherrnal mineralizations 5 22.3 The metamorphic break 5 2.3 GEOPHYSICAL ANOMALIES 2.3.1 Moho 9 2.3.2 Bouger anomaly patterns 9 2.3.3 Aeromagnetic patterns 11 2.3.4 Palaeomagneiism 11 2.3.5 Seismkity 11 2.4 THE ZONE AS A MORPHOTECTON1C FEATURE 2.4.1 The aligned palaeo-depressions 11 2.4.2 Ongoing subsidence 15 2.4.3 The break in regional rock block patterns along the PZ IS 2.4.4 Tilted and broken peneplains 15 2.4.5 Features of the
    [Show full text]