<<

1293

The Canadian M ine ralo g is t Vol. 35, pp. 1,293-1310(1997)

COMPOSITIONALVARIATION OF PEROVSKITE.GROUPMINERALS FROM THE CARBONATITECOMPLEXES OF THE KOLA ALKALINE PROVINCE, RUSSIA

ANTON R. C}IAKHMOURADIAN 1

Department ofMineralogy, St. Petersburg State University, T/9 University Emb., St, Petersburg, 199034, Russia

ROGER H. MITCTIELL2 Depanmcntof Geolngy,Iakchea'd Universiry, Thunder Bay, Onnrio P7B581

ABSTRACT

Perovskite-group minqals from the complexes of the Kola Alkaline hovince, Russia, are in most instances members of the perovskite - lueshite - toparite-(Ce) - latrappile solid-solution series. From eaxly ultramafic rocks tolate calcite carbonatite, the composition of primary perovskite evolves by enrichment in Na, Nb and Fe, and represents a combination of evolutionary trends tbward luesnite and latrappite. These trends culrninate with the appearance of lueshite and cerian lueshite in late-stagl dolomite carbonatite, ana M-Fl-ricn perovskite in some examples of calcite carbonatite. The enrichment of perovskidil the lueshite aad latrappite compon"nir results in an increase in the unit-cell parameter andtilt angle of the primary perovskite tfLf"NU)Ou *tunedra Secondary perovstite and toparite occur as a replacement ard overgrowth mantle on in ultramafic rocks, foidolite and carbonatite. These compositions define a loparite evolutionary trend, represented by increases in Na and LREE, that is commonly accompanied by an increase in Nb and Th contents. The crystallization of secondary cerian perovskite and loparite results from either deuteric or metasomatic processes, and involves the interaction of prirnary perovskite vrith fluids derived from a cognate alkaline or carbonatitic source.

Keryords: perovskite, lueshite, loparite, latrappite, carbonatite complexes, , Russia.

Soltfir4ans

Les min6raur du groupe de la p6rovskite des complexes d dominance carbonatitique de la province alcaline de Kol4 en - - Russie, sont dans la plupart des cas membres de la solution solide p6rovskite - lueshite loparite-(Ce) latrappite. Des membres ultramafiques pr6"o""r arD(venues carbonatitiques i calcite urdives, la composition de la p6rovskite primahe montre un enrichissement en Na, Nb et ne, et reprdsente une combinaison de lign6es 6volutives vers les p6les lueshite et latraPpite. Ces vecteurs d'enrichissement menent I la iormation de lueshite et de lueshite cdrique dans les venues de carbonatite l dolomite tardives, et de perovskite riche en Nb-Fe dans certains exemples de carbonatite ) calcite. liaugmentation de la teneur en lueshite et latrappite de la p6rovskite mbne d un agrandissement de la maille 6l6mentaire et de I'angle d'inclinaison des octaBdres qfi,ne-,irrU;Ou. La pdrovskite secondaire tt la loparite se presentent comme surcroissance ou remplacement de la d6finissent une lign6e -6volutivep6rovskite primaire dans les roches ultramafiques, les foidolites et les . Ces compositions vers la loparite, que repr6sente des augmentations dans le niveau des terres rares et du sodirm, et dons plusieurs cas aussi en 1116et en fi. I-" grirtutti*ation de p6rovskile c€rique et de loparite secondaires rdsulterait soit de processu-sdeut6riques et m6tasomatiques, et impliquerait l'interaction de p6rovskite primaire avec une phase fluide issue d'un assemblage alcalin ou bien carbonatitique' (rraduit par ra R6daction)

Mots-cldsi p€rovskite, lueshite, loparite, latrappite, complexes carbonatitiques, peninsule de KoIa, Russie.

INTRoDUcI'IoN The complexescomprise an extendedseries of rocks, rangingfrom early alkaline ultramafic membersto late The carbonatite complexes of the Kola 61ftaline carbonatitesand phonolites (Kukharenko et al- 1965' Province, Russiq are of tremendous scientific impor- 1971,Kogarko et al. 1995).The compositionof ttre tance, as they represent the products ofcrystallization parentalalkaline ulramafic magmasapproached that of of highly differentiated alkaline ultramafic magmas. olivine melanephelinite,and was enrichedin Ca"Ti'

I Prcsentaddress: Deparhent of ,Iakehead Universiry Thunder Bay, Onerio P7B 5E1. E-mail addres s'.agfuakhme @ gale.lakeheadu.ca 2 E-mail address:[email protected]

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 1294 TIIE CANADIAN MINERALOGIST

andFe, anddepleted in SiO2(Kukharenko et al. 1965, 1984) or to intrusion of different parentalmagmas Bulakh & Ivanikov 1996). Hence, perovskite and (Zaitsev& Bell 1995). titaniferousmagnetite are rmong tle most common The earliestintrusive series consists ofultramafic accessoryminerals in the major rock-seriesthroughout rocks that usually occupy the central parts of the the complexes. complexesor occur as xenoliths in the later-emplaced Owing to the toleranceof the perovskitestructure to rock-types.This seriesincludes olivinite, clinopyro- cation substitutions,perovskite-group minq4ls flsp xenite and modally transitional olivine--clinopyroxene alkalinscopplexes exhibit a widerange of composition, rock (wehrlite). Melilite olivinite has beenfound only andthus rnay serve as sensitive indicaton ofevolutionary in the Afrikanda complex (Kukharenko et al. 1965, trends (Mirchell 1996).An inirial detailed study of 1971). We use the term "olivinite", not dunite, to perovskite compositions from rocks of the Kola emFhasizethe presenceof titaniferous magnetiteplus carbonatitecomplexes was undertakenby Kukharenko perovskite,not chromite,as the major opaquephases in & Bagdasarov (1961). Subsequently, Frank- this rock. At the contact with alkaline rocks and Kamenetskiy& Vesel'skiy (l96la, b) utitized the carbonatites,the ultramafic rocks are commonly compositionaldata of Knkharenko & Bagdasarov transformed into a variety of mica-o apatite- and (1961),in conjunctionwitl measurementof rrnit-cell amphibole-bearingrocks, e.9., phlogopite-bearing parameters,to createa modified schemeof isomorphic pyroxenite s1 amphibole-bearingolivinite. Modally substitutionsin perovskite.However, the compositional diversemelilitic plutonic rocks (uncompahgrite,melili- data used in these initial studies were determinedby tolite, turjaite, okaite) and foidolite (melteigite-urtite) bulk wet-chemicalmethods, and may be in error owing normally form the peripheralparts of the complexes.In to ttrepresence of mineral inclusionsin many samples. this paper,melilitolite is usedto refer to a plutonic rock Recentstudies of perovskitefrom the Kola Peninsula with more rhan9t0 modal Vomelifite (or productsof its that are basedon electron-microprobedata are limited alteration)rather than as a generaldescriptive term fl-e to a study of the distribution of rare-earthelements Maitre 1989).The old names(e.9., turjaite) are applied (REE) in perovskite from the Afrikanda complex to otler melilitic plutonic rocks, as thesecannot be @agdasarov1980) and a shortreview of M-bearing precisely defined using the existing classification phasesin metasomaticrocks of the Vuor{arvi complex basedon modal abundancesof melilite, olivine and (Subbotinaet al. l99l). clinopyroxene(Le Maitre 1989).Age relationships The current study was undertaken to establish between the melilitic rocks and foidolites are not evolutionarytrends in the compositionof perovskitein alwaysunequivocal. Kukharenko et al. (1965, l97L) the carbonatite complexes of the Kola Alkaline interpreted the former as a product of the interaction Province,and to detenninethe relationshipbetween betweenthe early ultr.mafic rocks and an alkaline isomorphic substitution and crystal chemistry in melt. Egorov (1984) suggestedthat the melilitic rocks perovskite.A third objective was to compareour data were formed prior to the foidolites. On the exampleof with thosefor perovskite-groupminerals from ottrer the Turiy Mys complex, Bulakh & lvanikov (1984, carbonatite complexes. Some of the samples of 1996) proposedthat foidolite was emplacedin two perovskite-bearingrocks examinedin this study were stages, separatedby the crystallization of melilitic collected by the authors.Ottrers were supplied by rocks. Suchcontradictory observations may indicate our colleaguesfrom St. PetersburgState University, that melilitic rocks in the carbonatiteintrusions at Kola Moscow State University and the Kola Scientific originatedby more than one pselsnism, Thesemay Centerat Apatity, Russia. includethe metasomaticscheme proposed by Le Bas (L977) tor the Kisingiri melilitolites,the one-lineage GeoLoGrcALSgrrnrc evolutionaryscheme (Onuma & Yagi 1967), or the two-lineagescheme suggested by Nielsen(1994) for The KolaAlkaline Provinceincludes 14 carbonatite the Gardiner complex. Further discussionof this complexeswhich, with the exception of the Early problem is beyondthe scopeof this work. ProterozoicTiksheozero pluton, were emplacedduring Carbonatitesare developedas plugs,pipes, dikes the middle to late Devonianre-activation of ancient and stockworks within the complexes or in the deep-seatedfaults (rift systems)developed within the fenitized country-rocks.In the most evolved com- Baltic @ennoscandinayiaa)Shield (Kogarko et al. plexes, there were several cycles of carbonatite 1995,Kramm et al. L993,Orlova 1993).The paleozoic magmatic activity, each starting with the formation carbonatite plutons are concentric, differentiated of silicate-rich rocks (phoscoriteor camajflorite),then bodiesranging in areafrom I to 55 km2at the current carbonatite,41d srrlmin4tingwith explosive events level oferosion. The concentricsfuchrre ofthe plutons producingcarbonatite breccia (Balaganskay a 1994). is a result of successiveemplacement of separate The earliest and most abundant rock-types are magma-batches.These may correspond to distinct calcite carbonatitesand tleir precursor phoscorites. stagesin the evolution of a parentalalkaline ulhamaEc Calcite-dolomite, dolomite and ankerite carbonatites melt (Kukharenkoet aI. 1965, Bulakh & Ivanikov are less common.As shown by field observations,

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE.GROUP MINERAI-S, KOLA CARBONATTIES r295

petrological, mineralogical and isotopic data, the intersticesbetween euhedral crystals of the silicate formationof carbonatitesin the KolaAlkaline Province minerals.The perovskitegrains range in size from involved both primary magmatic and late-stage 0.05-{.2 mm in fine-grainedultramafic rocks to >5 hydrothermal metasomaticphenomena (Bulakh & mm in the coarse-grained(pegmatitic) clinopyroxenite. Ivanikov 1996,Kapustin 1984,Zau.tsev & Bell 1995). In some ultramafic rocksoa secondgeneration of In particular, the metasomaticinteraction of intrusive perovskite forms a thin rim (less than 100 pm) carbonatiteswith previously emplacedalkaline rocks enveloping titaniferous magnetite.Perovskite and producedmodally diverserocks composedofcalcite, titaniferous magnetite are two major minerals in hastingsite,vssgvianite, monticellite and calcic so-calledore scblierendeveloped within the ulnamafic (Kukharenkoet aI. 1965,Bulakh & Ivanikov 1996).In rocks.Here, the ore mineralsoccur as a fine-grained Russiangeological literature, these assemblages are a1gregate,herecalled a granulopolyhedraltexture. This refened to as "autoskarns".The calcite - amphibole- texturemorphologically resembles that exhibitedby diopsiderocks developed as veins in clinopyroxeniteof styrofoam and results from the face-sharing of the Afrikanda complex are enigmatic in origin. subhedral or euhedral crystals of perovskite and Kukharenkoet al. (1965) have proposedthat these titaniferousmagnetite. The schlierenare believedto rocks were formed by deuteric("autometasomatic") havecrystallized from an extremelyCa-Ti-Fe-enriched alterationof the host ultramafic rocks by CO2-rich liquid fractionatedfrom the ultramafic magmaand residualfluids prior to the formation of the foidolite squeezedinto fractures (Kukharenko et al. 1965). series.However, the modal compositionof theserocks Perovskitefrom the olivinite and melilite olivinite of and the occulTencein them of such minerals as theAftikanda complex encloses ovoid melt inclusions pyrochlore, zirconolite, calzirtite and baddeleyite of silicate and silico-carbonatecomposition. Inclusions indicate their close atrinity with carbonatites.The of similar morphologyhave been found in perovskite youngestintrusive rocks encounteredin the carbonatite from olivinite from the Mata da Corda Formation, complexesof the KolaAlkaline Provinceare nepheline Brazil (F.E.Lloyd, pers.commun.), and jacupirangite and cancrinite ;these are found mostly as thin from Iron Hill, Colorado(this work). Textural features dikes intruding the alkaline ulffamafic series and involving perovskiteand rock-forming silicates,and carbonatites(Kukharenko et aI. 1965). the intimate association of these minerals with Experimentalstudies ((arsgaard & Hamilton 1988, titaniferousmagnetite and melt inclusions,indicate that Platt& Edgar1972,Onuma&Yagi 1967, Wilkinson & most of the primary perovskitein the ultramafic rocks Stolz 1983) and petrological modeling (Bulakh & crystallized after olivine and clinopyroxenefrom a Ivanikov 1996,LeBas 1977,Nielsen 1994) suggest residualmelt enrichedin Ca"Ti andFe. that all rock types found in carbonatitecomplexes, Back-scatteredelectron imagery revealslate-stage including the carbonatitesand small volumes of corrosionand overgrowthson primary perovskitefrom feldspathoidsyenites, were derived from the same someulfamafic rocks.These overgrowths are developed parental magma by a combination of crystal mostly on marginsof crystalsand along fractures,and fractionationand liquid immiscibiliry. Dependingon rangefrom 10 to 60 pm in thickness.The composition the compositionand depthof formation of the parental of the overgrowthsranges from perovskite (hereafter melt, the carbonatiteplutons may include some or all termedsecondary perovskite) to loparite(see below). membersof the differentiationpath. Missing members Both minerals occur with titanite and diverseCa-REE (e.g., melilitic rocksocarbonatites or feldspathoid silicat€s.In typical carbonatitecomplexes, loparite was syenites)may not have been producedin sufficient first found by Subbotinaet aI. (I99L) at Vuorijarvi, quantities or may have been removed by erosion Kola Peninsula.Platt (1994) describedloparite from (Kukharenkoet aI. 1965, 1971). Isotopic studies melnoite[ultramafic lamprophyre: Mitchell (1994)]of (7,art"sev& Bell 1995)demonstrate that at leastin some the SchryburtLake carbonatitecomplex, Ontario. In complexesothe formation of carbonatitescannot be these occurrencesoloparite forms an overgrowth, explainedby closed-systemdifferentiation of a single possibly a corrosion-relatedmantle, on primary parentalmagrna. perovskite.These authors attributed the loparite tothe interactionbetween the primary perovskiteand aREE- DIsTRBUTToNoF PERovSKITE enriched fluid that probably fractionated from a carbonatiticsource @latt 1994,Subbotina et al. l99l). In the carbonatite complexes of the Kola Alkaline In the current study,we characteizethe loparite in the Province, perovskite occurs in most intrusive and ore scblierenof the Aftikanda and Sebljavrcomplexes, metasomatic mineral assemblages.The highest concen- and presentthe data in conjunction with data on trations o1 6e mineral are found in ultramafic rocks, secondary perovskite and loparite from melilite where it may comprise up to 30 vol.Vo of the rock olivinite of the Afrikanda complex obtained by (Kukharenko et aI. 1965).In olivinite, melilite olivinite Mitchel (1996). and clinopyroxenite, perovskite and titaniferous Amongthe foidolitesoperovskite is found principaly magnetite are the latest phases to form" and they fill the in ijolite pegmatitein "comb"-structuredveins of

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 t296 TTIE CANADIAN MINERALOGIST

variable thicknessemplaced in the ultramafic suite. In andin the sameparagenesis. Thus, their agerelationships theserocks, perovskiteforms pseudo-octahedralto are not clear. pseudocubiccrystals located primarily at the selvages Secondaryperovskite and loparite mantles on primary of the veins.Associated minerals are diopside, altered perovskite are corlmon in calcite - amphibole - nepheline,magnetite, schorlomite, titanite and calcite. diopside rock of the Afrikanda complex and in calcite At Afrikandaoperovskite also occurs in so-called carbonatite of the Vuorijarvi complex. In both "hybrid" alkaline pegmatites,which may result from occumences,the mantlesare morphologically similal 6 small-volume injections of alkatine melt into the those described above for perovskite from the ultramafic rocks @agdasarov1959). In ttreserocks, ultramafic rocks and foidolites. perovskitemay be a relict phaseassimilated from the Late dolomite--calcite,dolomite and ankerite wall-rock ultramafic rocks. carbonatites have not been reported to contain Secondaryperovskite and loparite morphologically peravskite.Instead, lueshite (NaNbO3) is a common analogousto thosedescribed above in the ultramafic accessoryconstituent of these rocks ,.hybrid,, @imskaya- rocks were found in ijolite pegmafiteand Korsakovaet al. 1963,Orlova et aI. 1963,Kirillov & pegmatite from the Afrikanda complex. In both Burova 1967). In some complexes (Sebljaw and occurences,these minerals are associated with calcite, SallanlaM), lueshitealso occursin calcite carbonatites thomsoniteand other late-stageproducts of nepheline (Subbotin& Men'shikov1987, Subbotina & Subbotin alteration. 1990).In this study we examinedsamples of lueshite In themelilitic rocks,perovskite commonly occurs from dolomite carbonatiteof the Kovdor and Lesnaya as euhedralor anhedralcrystals ranging in size from y*uga gsmplexes.An X-ray-diffraction study showed 100-200 1tmto 2-3 cm (in pegmafiticvarieties). In that in both cases,the mineral is orthorhombic,and 5e6s instanc€sof melilitolite and melilite - pyroxene- thus is lueshitesensu stricto. nepheline rockso termed pyroxene turjaite, early Perovskiteis a very rare phasein the country-rock perovskiteis accomp"niedby a secondgeneration of fenites becausethe associationof perovskite with the mineral,forming a rhin (

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE-GROUP MINERALS. KOIrq. CARBONATTIES 1297

TABLE I. REPRESENTATIVE COMPOSMONS OF PEROVSKTTEAND LOPARITE FROM ULTRAMAFIC ROCKS

WLo/o I ll

CaO 39.94 39.69 38.85 3t.92 2;6.15 5.55 3E.52 38.92 3521 36.9E 3E.17 40.M SIo n.d 031 0.35 029 0.15 0.09 Q.42 0.44 0.38 033 0.55 0.30 NarO 0.18 0.1I n.d 0.05 2.94 7.76 0.31 039 0.60 0.65 0.65 026 laro3 n.d 0.08 237 1.62 235 8.M 0.51 n.g l.5z 125 0.57 n.d CerOr 129 t34 1.96 1.52 t.7l 2t3E 1.55 0.96 2.40 2.5'1 2.85 0.87 Prrq n.d nd n.d n.d 0.87 1.73 n.d n.d 1.09 n.d 021 n.d N4O, n.d 0.50 035 0.54 2.85 4.67 025 o.lE 0.68 0.6 025 026 ThO, n.d 0.16 0.06 0.02 2.07 2.12 n.d n.d 027 02't 02t 026 Tio, 55.55 55.88 5428 54.78 50.17 41.65 5532 55.89 54.72 5331 5320 55.50 FqO, l.l2 l.9l t.to I.t9 0.EE 026 l.l0 t2l l.3l 1.78 1.54 l.l2 NhOr n.d 0.45 0.72 032 2.41 1.ss 1.09 1.07 t.q 1.67 2.0t 0.39 Ta"Qt n.d 0.05 0.13 0.06 n.d 033 037 0.33 022 027 0.03 0.05

Totaf 9.08 100.48lm.l1 9.31 99.55 l0t.l3 9.M 9p39 99.60 99.74 14024 9.05

Smrdral formulae calculaed on the basis of 3 atoms of oxlgetr Cs 0.99 0.98 0.97 0.98 0.71 0.17 0.96 0.96 0.E9 0.93 0.96 r.00 Sr 0.01 0.01 0.01 Na 0.01 0.14 0.43 0.01 o.m 0.03 0.03 0.03 0.01 Ia 0.02 0.01 0.02 0.0E 0.01 0.01 Ce 0.01 0.01 0.4 n:t 0.08 022 0.01 0.01 0.o2 0.v2 0.v2 ofl Pr 0.0t 0.02 0.01 Nd :: 0.03 0.05 0.01 0.01 Th 0.01 0.01 Ti 0.98 0.96 0.96 0.95 0.95 0.89 o.gl o.st o-.g7 0.94 0.94 o.g7 Fe 0.02 0.m 0.v2 0.v2 0.m 0.01 0.v2 0.02 0.92 0.03 0.03 0.v2 Nb 0.01 0.03 0.10 0.0r 0.01 0.01 o.v2 0.v2 Ta

Mol.7oemd-membsr3 C€TiO3 9839 98.s1 9.48 9.13 7027 20.77 95.59 96.69 93.52 9332 92.99 9731 SrTiQ - 0.42 0.49 0.40 022 020 0.57 0.59 0.55 0.46 0.77 0.41 CaThq - 0.08 o.ql 0.01 120 1.83 - 0.15 0.15 0.12 0.14 Irparite l.5l 0.99 - 0.46 27.52 65.81 2.83 1.93 5.78 6.08 6.12 l.v2 NaNbOr 0.79 6.6 0.79 022 CorTirO" - 4.73

Compositim: I olivinito, Le€namVmks,2olivhite,Afiikmd4 3 &4 mmd rimof acystal,melilite olivinite, Afrikmda, 5 & 6 wdry pmvsl'ite md lopcite, molilib olivinic, Afriknd4 7 & 8 cm md rim of a systal clinopyroxsaito, Afrikmda,9 pblogo'pitizd olivinir€, Kwdn, l0 phlogopite rek, Ibvdu, I I & 12 core and rim of a med crystal clinopyrcxernitE, Tuiy. nd = not dsttrt€d-

Back-scatteredelectron (BSE) imagery revealed X-ray diffraction QRD) powder patterns that many s4mplesexhibit complex compositional (CuKc radiation)were obtainedusing a DRON-2.O zonation.Samples were analyzedat severalpoints to diffractometer located at the Department of determinethe compositionalnmge wirhin and between Crystallography, St. Petersburg University. The zones.Grains with no obviousBSE zonationalso were diffractometerwas operatedat 35 kV and 20 mA in the analyzedat severalpoints to test for possiblezoning at scalning mode at a goniometer rate of 0.5olmin. constantaverage atomic number. Metallic gennaniumwas usedas an internal standard. Mitchell (1996)demonstrated that the compositions Unit-cell parzureters were calculated from the of naturally occurring perovskite-groupmingrals gan difFractionpatterns using the least-squaresmethod. be expressedin terms of the following end-member compositions: caTio, (perovskite), NanEETi2o6 Couposmon*VamerroN (loparite), NaNbO3 Queshite),SrTiO3 (tausonite), PbTiO3 (macedonite), Ca2Fer*MOu (latrappite), Ultramafic rocks CarM2Or,REE;lizO1, CaThO3, CahO3, KMO3 and BaTlOr. Compositionaldata obtained in this work were Primaryperovskite from olivinite containsvery low recalculatedinto theseend-members using an APL levelsof REE(0.3-5.2,rtt.Vo REE2O),Fe (0.5-2.3 wt.Vo prognm for PC following methods suggestedby FerOr),Nb (G{).7 wLToM2O5),Na(0-0.4wt.7o Na2O) Mitchell (1996). and otherminor components.In comparison,pinary

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 1298 TIIE CANADIAN MINERALOGIST

Tffi 2. RPRBBNffi @MrcSINONS OF PROSKE AND LOPNTE 4mountsof Fe, Mo Th and other minor components ROMT'LMCR@K (Table 3, Fig.2). Perovskiteof similar composition occurs in rocks of the foidolite series of other

m 4t.62 3797 35.92, 7A1 36.85 35.$ 35.74 rc.n 36.A1 37.5t 36.44 carbonatite complexes: Nizhnesayanskiy (Lower so o.l3 0.q o.49 0.71 0J8 030 039 o,tr 036 036 0.42 Nap o-d O29 0.70 8.70 058 0.74 0.6 5.65 0.61 O.6t 0.{ Sayan), East Sayan Alkaline Province, Siberia hA nJ f.fl 0.6 7.01 120 2.61 2.97 636 1.80 t2t t.56 (Chernyshevaet aI. l99l), Magnet Cove, Arkansas Cqq 0.43 138 267 17.47 ZK 3.65 3.n 17.74 3.O7 Lg4 2.Al ^Ianzawa k,o' Ld rd 055 0.17 D.d 0.6{) 0.9 l.q 0g 0.ll Ld (Flohr & Ross1989), and OldoinyoLengai, N4q Ld O24 O.94 3.S 0.70 0.$ t.m 4.t3 0.69 0.9 O.z9 ftO, n.d 0.13 0.05 3.93 0.09 n-d 0.13 2.0E n.d O.Ot 033 (Dawson et aI. 1995). Perovskite from ijolite of TOr 57-44 y.16 53.43 40.11 54.75 53 53.63 4.96 54.4t g.ll 53.10 Fqq 0.80 090 lri o.tr I2 I2O l.& 05t t24 1.54 t.08 the Oka complexoQuebec, is considerablyenriched in Nbror rd 0.85 l.O 10.71 I38 l5l 152 3.75 127 t.45 1.76 TqO' Ld 0.6 0.4a 02 OA2 Ld d 032 il OZ O2O Na, Fe and Nb (Treiman& Essene1985), i.e., in the

Tobl [email protected] .11 98.9 9.9E lmz l(n.71 t01.4 'p.13 [email protected] lm.?9 g.4r lueshiteand latrappitecomponents.

Stu@l formul& [email protected] m rhe Mof3 6@ of lry Secondaryperovskite and loparite found as a manfle G l.0l 0.96 0.91 o2 0.y2 0.91 o.x) 032 0.9 0.94 0.8 prinary perovskite pegmatite ST - 0.0t 0.01 0.01 0.0t - 0.01 0.01 0.0I on in the ijolite vein are Na - 0.01 0.03 0.47 0.()3 0.03 0.(B 036 o.os o.o, 0.9 essentiallymembers of the perovskite-lopariteseries, b - 0.01 001 0.07 0.0r 0.@ 0.m 0.(' 0.02 0.01 0.01 G - 0.01 0.e 0.18 0.@ 0.m 0.03 0.t8 0.8 0.(D o.m i.e., ceian perovskiteand calcian loparite sporadically Pr - 0.01 - 0.01 Nd 0.0t 0.m 0.01 0.01 0.01 0.04 o.o, o.or o.ot enrichedin Nb (up to 4.7 wt.VoMzOr) andTh (up to fr - 0.m - 0.01 T 0.98 0.97 0.95 0.s 0.96 0.95 0.95 0.94 o.tu o.N o.L 4.6 wt.VoThOz; Table 3,Fig.2b). Most of the loparite Fe 0.0f o.a 0.92 - 0.e 0.02 0.02 0.01 0.t2 0.t2 o.e M - 0.01 0.o2 0.14 0.0t 0.02 0.m 0.05 0.0f o.e o.c2 from the "hybrid" pegmatiteis niobian calcianloparite with high Ta contents(up to 1.9 wt.VoTa2O).Tbis MoLYodd-d@bsE ffio,937 96.A 92.6 20.&] B.& 9259 93.t5 3129 '3.85 93# n.61 differencein compositionsuggests that therewere at sfo, 0.53 o.6t 0.69 t2 0.S 0.42 055 0.76 0J0 0.50 0.o least two processesresponsible for the formation of eftq - 0.07 0.03 zs 0.05 - O.O7 134 - 0.0s O.IE LoFib - 2.68 6.& 6.n 53s 6.9 62 5lJS 5.65 5.6 Es5 loparite in the alkaline pegmatitesof NNtO,-14.19-s.tr the Afrikanda complex. Cotwfttu I [email protected] rto m qri{ilq cltuI'reirq tuV, 2 & 3 m d tu of a aEd pdoffi qrel@di@AfiikddaabFtb'md@AAllEdqS DIldptoEktu qrei,ro@tddhryudn4A&lkada5& 7 md tu of6d @ffiqy@t,@ d@ SUM, 8 loFttq SSljM, 9 muFd pduffi Fy@t p.d6id Melilitic roclcs cliroprcxonq SebUM, l0 & II €F d rin of a ar€d Fffi dr@! sFdb d h Fi6Tila cth(Wi4 Afril@d& nj - @ d€EcEd. Perovskitefrom different melilitic 16sksslamined in this study (melilitolite, pegmatitic melilitolite, tudaite,melilite - diopside- nephelinerock) is similar in compositionto the primary perovskite from the perovskitefrom clinopyroxeniteand ore schlierenis ultramafic rocks and foidolites of the Kola carbonatite somewhatenriched in REE (up to 8.5 wt.VoKEE2O), complexes(compare Figs . L,2 and3). It hasrelatively M (up to 2.4 wt.VoMzOs) and Na (up to 1.0 wt.7o low contentsof REE (up to 8.1 wt.Vo&EE2O),Na Na2O)(Iables 1-2, Figs. |a, b). With few exceptionso (up to 1.0 vrt.VoNa2O), Fe (up to 1..9wt.Vo Fe2O3) and primary perovskite doesnot exhibit any intragranular l{b (up to 2.6 wt.VoMzOr) (Iable 4). Largeeuhedral compositionalzonation. Where zoned, it may compo- crystals of perovskite are typically zoned.Relative to sitionally evolve by enrichmentin Na, REE and Nb the core of the crystals,the rim is depletedin Na, REE (ore schlieren,Afrikanda and Sebljaw complexes)or andM. The rim compositionsare similar to reaction by depletionin theseelements (clinopyroxenite, Tirriy rims of perovskite on magnetite(Table 4). Na-, REE- gemplex)toward the rim. Compositionsof primary and M-poor perovskite occurs in okaite of the perovskitefrom the ultramaJicrocks are similar to frfizhngsayanskiy carbonatite complex, Siberia thoseof perovskitefrom olivinite andjacupirangite in (Chernyshevaet al. L99L)@ig. 3b). At OkA perovskite other alkaline provinces (Fig. ld: Chemyshevaet al. from okaiteis enrichedin REE (8.1-9.6 wT-VoREE*O), 1991,Dawson et aI. 1995,Treiman & Essene1985, Fe (5.2-5.7 wt.VoFe2O) and M (10.2-1L.3 tut.Vo this work). MOr), i.e., inthe lopariteand latrappite components Secondaryperovskite and loparite occurringas a (this worD. mantle on primary perovskiteare essentiallymembers of the perovskite-loparite solid-solution series Carbonatitesand kindred roclcs (Fig. 1c). In some instances,loparite mantles are enrichedin Nb (up n lO.7 wt.VoMrOr) and Th (up to Perovskitefrom phoscoriteof the Kovdor complex 3.9 *.Vo ThOz;Tables 1-2). is unzonedand compositienally corresponds to cerian perovskitewith low N4 Fe and Nb contents(fable 5). Foidolites At Kugda, Siberia (Maimecha-Kotuy alkaline province),and Gardiner,Greenland, phoscorite also Compared to primary perovskite from the contains perovskite or cerian perovskite (or both) ultramafic rocks, that from the foidolites is generally witl variable Na (0.9-1.4 and 0.24.7 wt.7oNa2O), richer in REE (2.9-9.2 wt.Vo &EE2O) and Na Fe(1.4-2.Land 1.0-1.5 vt.VoFe2O), andM (2.24.0 (0.4-l.2wt.Vo Na2O) and contains comparable and0.5{).9 wt.7oM2O5, respectively (Frg.4).

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE-GROIJP MINERAIS. KOLA CARBONATTTES L299

PEROtTtKIIE PE8(n/SKm / Pmoa(m conE Bu -s -s 1a A dQ * 20 a rc'".S ro F2 3x C*2 -tr-,ru 40 / \ ^rl 8av LuEsHm /F, UJESHIIE \ !v -?, 4'&. {z 'oa \ \\

\ LOPARM

t!{F CONEffT. Bil GINE NT, RM coRE& Rtil @bbd znE zIIIG @

A lav vv lo. vv bv zclt oa 2o a soo ** 3a A + 1o TI dnFn}trxnr{Arulil orl 50 -----1+ 0 00

Flc. l. Composition (mol.7o) of perovskite and loparite from ultamafic rocks: (a) 1 olivinite, LesnayaVarak4 2 olivinite, Aftikand4 3 melilite olivinite, Afrikanda 4 phlogopitizedolivinite, Kovdor, 5 clinopyroxenite,Afrikanda 6 ore schlieren, Afrikand4 7 ore schlieren,Sebljaw; @) I clinopyroxenite,Tidy (a euhedralcrystals, b rims on mapetite), 2 pegoatitic clinopymxenite,Sebljavr, 3 pegmatiticclinopyroxenite, Afrikanda,4 apatitenest in micaceousclinopyroxenite, Aftikand4 5 phlogopite rock, Kovdor; (c) I melilite olivinite, Afrikan dL 2 ore schlieren,Afrikanda 3 ore schlierenoSebljaw; (d) t oUvinite, Mata da Korda, Brasil, 2-6 jacupirangite: 2 Jacupirang4 Btazil, 3 Oldoinyo Lengai, Tanzania Qawson et aI. 1995),4 Nizhnesayanskiy,Siberia (Chernyshevaet at. l99l),5 Oka, Quebec(Treiman & Essene1985), 6 Iron HiIl' Colorado (a euhedralcrystals, b rims on magnetite).

Thetwo morphologicalvarieties of primaryperovskite the crystals,the rim is enrichedin Na andNb, 1.e.,in from calcite - amphibole- diopside rock (Afrikanda) the lueshitecomponent (Fig. 5).The compositional differ in composition.Pseudocubo-octahedral crystals evolution occursat an essentiallyconstant latrappite are richer in Na (1.3-1.8 wt.Vo Na2O) and REE end-membercontent, and may be accompaniedby (7.6-13.L 'xt.VoREE2O), compared to thosehaving a changesinREE and Th contents.In perovskitefrom hexahedralhabit (O.7-1.2and 5.8-8.0 wt.Vo,respec- the Kovdor calcite carbonatite,two evolutionary tively) (Table5). Both varietiesbecame enriched in trends were established: toward cerian niobian loparite. This trend culminatesin secondarycerian perovskite(Fig. 5: trend A) and toward niobian cerian perovskite and calcian loparite as a nturow mantle on perovskite(trend B). The latter reflects core-to-rim the primaryperovskite (Frg. ). zonationin crystals,whereas the former is pronounced In most cases,the prinary perovskite from calcite only in small "patches" bordering apatite and calcite carbonatiteis enrichedin Na (up to 4.3 wtTa NazO),Fe inclusions.Trend A may be a result of intragranular (up to 4.3 wt.%oFe2O),Nb (up to 14.2wt.7o Nb2O5) re-equilibrationbetween perovskite and the inclusions. andTh (up to 3.0 vtt.VoT:bO)(Tables 6-7). With few A trendof stronglyincreasing Na M andREE contents, exceptions,the crystalsare complexly zoned.Separate sulminatins in the appearanceof calcian niobian zonesmay be parallel to eachother, reflecting relatively loparite, is characteristicof perovskite from the stablegrowth-conditions (e.9., Sebljaw complex),or be Vuorijarvi carbonatite(Fig. ). inegularly embayedsq/ing to repeateddissolution and Perovskite of similal composition occurs in growth (e.g., Kovdor complex).Relative to the core of calcite carbonatitesof the MagnetCove (Arkansas),

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 1300 TTIE CANADIAN MINERALOGIST

PBOIiSKIIE

ta lpTr /^ -*, \3020t0 € PEnO'SKm &-nE- + trEt%LlJESHm- """-- COnE @ttd t; mdr 10. 3+20r ,, 4+ b+ 0* 7f 8^ , *ry1"* b Ftc. 2. Composition(mol.7o) of perovskireand loparite from foidolires: (a) and (b) 1 ijolite pegmatite,Afrikarda, 2"hybid" pegmarite,Afrikandq 3 urtire, Afrikand4 4 ijolire, Kovdor, 5 meheigite,Nizhnesayanskiy, Siberia (Chernyshevaet al. 1991),6-A ijolite: 6 Oka, Quebec(Tleiman & Essene1985),7 Magnet Cove, Arkansas @obr & Ross 1989),8 OldoinyoLengai, Tanzania (Dawson, et al. L995).

PMOVSKIE PBO\'BKIIE CONGNT. RIM zol{E ..S oa le" e* 33

?. tr% \4^ conE IM. Ru ATG 18 ott '*\ b o 2 oa 3 A 4 0

OOFE.II}SIilZDMNON -----.'l- \ LOPARITE

FIc. 3. Composition (mol.7o)of perovskite from melilitic rocks: (a) 1 melilitolire, Ttriy (a euhedralcrystals, b rims on maEnetite),2 pegmatitic melilitolite, Turiy, 3 turjaite, Tiriy, 4 turjaite, Kovdor; (b) 1 melilite - pyroxene - nepheline rock, Kovdor (a euhedral crystals, b rims on magnetite), 2-3 okaite: 2 Oka, euebec, 3 \fizhngs2yanskiy,Siberia (Chernysheva et al. l99L).

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE-GROIJP MINERAI.S. KOLA CARBONATTIES 1301

TABLE 3. REPRESENTATTVECOMPOSMONS OF PEROVSKITE Lueshitefrom dolomitecarbonatite of the Kovdor AND LOPARNE FROM FOIDOLITES andLesnaya Varaka complexes contains considerable amonntsof Ca (up to 2.8 wt.VoCaO), Ti (up to 6.8 WLo/o | 2 vrt.VoTtO)and REE (up to 6.3 wt.VoREE2O3: Table 8). 1[s mineral is CaO 36.59 1.69 36.97 35.49 36.4 25.68 5.t2 34.U In the LesnayaVaraka carbonatite, slo 0.31 0.64 0.47 0.39 033 0.46 0.80 0.50 distinctly zonedfiom cerian lueshitein the core to NarO 0.50 9.56 0.70 0.96 0.81 324 7.4t 0.77 lueshiteseasz strfuto tn.the rim (Fig. 6).Enrichmentin lA"Ot 1.46 1020 1.06 tz'l 0.54 3.n t022 2.t0 CqOr 233 19.68 2.63 3.72 2.8t 6.70 20.55 4.77 Na andNb is accompaniedby an increasein Th content Prros n.d 2.49 rd 0.42 0.10 0.61 l.16 0.72 (up to 3.2 wt.VoThO). Our data and thosefrom the N4O, 0.55 4.t5 034 t.42 1.40 2.98 4.43 l3l literature (Bagdasarovet al. 1962, Subbotin & ThO, n.d 0.77 029 0.14 0.14 1.9 t20 0.45 Tio, 55.t9 3824 55.t7 52.4 5420 50.s2 42.9 52.03 \{e1'shikev 1987,Subbotina & Subbotin1990) show FerO, 136 0.01 l.l8 1.53 1.60 l.l8 0.06 236 that lueshitefrom calcite carbonatitesis richer in Ca Nbro! l.l4 10.19 t.4t r.96 t;13 1.79 439 1.58 '1.94 and Ti than that in dolomite or dolomite-calcite TqOr O22 0.54 0.52 0.83 o.il 0.45 020 carbonatites(Fig. 6). Lueshitedescribed by Lapin & Totsl 99.65 99.s6 100.76 100.,+6101.04 99.07 98.78 100.83 Kazakova(1966), from an aegirine-zeoliterock at Ca,Ti andTh 6). Strocml fqmulas qlculod o tbe basisof 3 atoru of oxygo Kovdor,is stronglyenriched in @g. Ca 0.92 0.05 0.v2 0.90 0.91 0.69 0.16 0.87 High Mg, K andAl contentsreported in this mineralby Sr - 0.01 0.01 0.01 0.01 0.01 0.01 theseauthors most likely result from analytical errors. Na 0.u2 0.54 0.03 0.04 0.04 0.16 0.42 0.04 lA 0.01 0.1I 0.01 0.01 0.03 0.1I 0.o2 Ce 0.02 02t 0.92 0.03 0.v2 0.08 022 0.M Evolutiorwry trends Pr - 0.03 0.01 0.01 0.01 Nd - 0.04 - 0.01 0.01 0.03 0.05 0.01 Th - 0.01 0.01 0.01 Data from this study show that perovskite in Ti 0.97 0.E4 0.95 0.94 0.95 0.95 0.94 0.94 carbonatitecomplexes of the Kola al(aline province Fe 0.02 - 0.u2 0.03 0.03 0.t2 - 0.04 evolvesalong three distinct evolutionaryfrends. These Nb 0.01 0.14 0.01 0.o2 0.02 0.v2 0.06 0.o2 Ta - 0.02 0.01 0.01 areas follows (Frg.7, emptyarrows): (I) The lueshitetend. P.nmaryperovskite from Mol.% md-mmbsn foidolites and melilitic rocks is poor CaTiOr 94.87 4.81 92.80 m24 92.00 6820 9.q2 9t.50 ultramafic rocks, SrTiQ 0.44 1.09 0.@ 0.56 0.,+6 0.67 t;17 0.73 in Na, REE, Fe, and Nb, and contains negligible - 0.08 0.0t l.l4 l.M 026 CaThO, 0.51 0.16 '102't amountsof other minor elements(Sr, Th and Ta). In lrpadte 4.69 78.50 6.40 9.t2 7.4 2t32 7.51 Nal.lbO3 - 15.09 t.67 4.03 CqTirQ - Z.tl

Cmpositim: I mned paovekito cryscal,%ybrid"pogmdito' Atik4ds, 2 loprite, "hybrid'popacite, Afikild!, 3 llwed pdovskite qystal, urtite, Afriksnda 4 E 5 w md rim of a percvskite crystal liolito \JLo/o | 2 3 4 S 6 7 I 9 l0 ll prenst'tE Afrikandq 6 & 7 @ndary pqovskite md lopuite, ijolite = C€O 38.19 3728 35.n 36.8X t7S9 40.10 4020 35.75 44.14 4.49 3?.15 pegnde, Afrikmda E |medpqowkitec6ata! iiolitqKwdon nd not $o 0.49 0.2. 025 0.43 0.14 0.15 032 0.4? 035 0.17 0.17 detsted NqO 0.6? 038 0.60 052 0.45 0.07 0.05 oJI trd 0.06 o.7l h'q 0.53 1.03 I5l 0.n l.l5 l.ll 1.06 133 Ed rd t.46 ce,q 1.62 2.4 3.11 2.@ 2.Vi 09 o.n 324 029 037 t.g Pr,q Ed ild 0.97 0.45 0.19 029 038 0 81 nd o.d t.u N4q 0.83 0.R 0.84 0J? 052 rd Ld l.l5 ni Ld 0.E4 Thq 0.03 0.47 o.Ct 028 023 0.@ Ld 0.18 0.19 rd 02t Tiq 5630 53.42 5232 5333 54.t6 56.e, 56,9 5321 51.42 .63 s4.72 Nizhnesayanskiy,Guli andGornoozerskiy complexes Fqq Bg 1.74 l.& 1.6 132 0y) 0.61 I.64 055 0.81t 1.06 (all in Siberia: East Sayan, Maimecha-Kotuy and NbOr 123 1.61 1.14 120 1.63 il 0.03 0.81 Ld d t.75 Ta"O' 033 030 0.46 026 0.'18 0.01' 0.14 0.19 012 o.lE 0.0I Sette-Dabanalkaline provinces,respectively) (Fig. 5: Chernyshevaer aL L991,Mitchell et aL L998,Williams Tool 10l.61 9.64 1@Si 938 [email protected] l@57 9.95 9p31 9411 98.76 [email protected] & Kogarko 1996,this work). M-enrichment alsohas SE@l funulao @l@led @ tib b@i! of 3 alm of o:.'€e Ca 0.93 094 0.91 0.93 0.93 0.98 0.99 0.91 0.99 1.00 0.93 beennoted in perovskitefrom calcite carbonatitein Sr 0.01 0.01 - 0.01 Na 0.03 0.02 0.()3 0.@ 0.02 0.t2 0.03 complexes in the Sette-Dabanand East Sayan Ia - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 o.0l 0.02 0.(B 0.@ 0.(2 0.01 0.01 0.(B 0.01 provinces(Gaidukova & 74ot'1k1962,Pozharitskaya & Pr 0.0t 0.01 0.01 $amoylov L972).Calcite carbonatiteat Kaiserstuhl, Nd o.ot 0.01 0.01 0.01 - 0.01 0.01 Tb Germany,and Oka, Quebec,csatains perovskite-goup Ti 0.q 03s 0.94 095 0.96 09t 0.98 0.96 099 0.98 0.96 F6 0.02 0.03 0.(B 0.03 0.(D 0.@ 0.01 0.03 0.01 0.01 0.02 minerals with a much wider compositionalrange Nb o.or 0.02 0.@ 0.01 0.02 0.01 0.92 (Fig. 5, and referencestherein). The trend is from ferrian niobian perovskiteto niobian ferrian perovskite MoL% @d-E@bq8 CsTrq 8.86 95J9 93.58 943A 9552 9.15 9.ll 9435 9953 9Z .08 in the Kaiserstuhl carbonatite,and to latrappite in the Sr'nq 0.65 031 036 0.60 0.19 02t 0.43 i6j o.47 023 024 CsThq o.Cl ori 035 0.15 0.15 0.01 - 0.10 0.14 Okacarbonatite. Perovskite ofvery unusualcompositioD" tMib 498 354 5.71 4.n 4.14 0.63 0.45 4.88 - 054 655 with high levels of 7r and Fe (up to 3.3 wt.VoZrO2 NaI.lhO' 0.49

and6.LVo Fe2O3, respectively) at very low Nb andNa C@p6itioG | |@!ad stel, Fe@id ffinnbllta, TEiy, 2_5 e!.ssdw m (ft@ @ b rh) dh€dEl 6te! nollltepy@plnlim @k, Kovdd, 5 rin @ @gtr ttb' reliliF contents,occurs in carbonatiteat Polino, Italy (Lupini py|@@h l(ddo!,9 trjsib, Kovdot, l0 & 1l m @d rh of a 6!d 6ysl @niblitq TEV' ' et al.1992). i2 riE @ @gErdb, trlilholiE, TEi, 13 @a!!d 6y@t EJdIb, TEiy. rd M ddeed.

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 t302 THE CANADIAN MINERALCreIST

TABLE 5. REPRSSENTATIVE COMPO$TIONS OF PEROVSKITE AND LOPARITE (3) Theloparite trend Mantlesof Na-REE-enriched FROM PHOSCOR.IIE AND CAICTIE-AMPHIBOLE:DIOPfIIDE R@K secondary perovskite and loparite on primary perovskiteoccur in most rock seriesof the carbonatite complexes.In mostcases, enricbment in Na andREE is CsO 3424 34.45 34.73 23.97 10.56 3t.t5 30.9 19.86 6.63 accompadedby in SrO 035 038 0.it0 02a 0.56 0.56 0.46 O57 o.tl an increase M andTh. Very similar Naro 0.m 0.67 0.76 325 5.94 t.1t l.8l 430 6.73 ffends have been establishedfor perovskite-group farq 225 l.8l 1.05 3.07 7.94 237 257 4.16 8.84 CerOl 4 3.07 3.00 9.43 18.06 524 5.81 1t.84 l8.lE minerals from melnoite of the Schryburt Lake Par03 0.E5 n.d rd rd 336 0.6t 1.00 2.69 s.75 carbonatite complex, Ontario (Platt 1994), and from Nqq 132 t.45 t.79 5.EE 6.02 1.67 22A 4.73 4.9 1!O, Ld 0.40 050 1.08 0.56 0.50 1.06 123 2.46 alkalineultamafic rocks of the I(hibina complex,Kola fiq 5l.lt 53.04 52.96 5028 44.n 51.9a 5L70 46,Ca 42.61 alkalinsplsvince (Chakhmouadian Fqq l.,lt t23 t34 0.79 0.49 0.96 0.99 0.76 024 & Mitchell 1998). Nho' 1.79 1.63 1.69 2.49 I J6 | 36 139 2.t5 221 Tqos 024 0.42 033 020 0.17 0.65 0A2 0.71 0.61 X-Rev DrrmecnoN Tobl 98.89 9895 9r.55 100.62100.09 98.83 10037 99.$ rm.05

Sfttul fodula! @lql@d @ thg basisof 3 @ of oxyga Synthetic CaTiO3is an orthorhombic derivative of Ca 0.r9 0.90 0.E9 0.6s 032 0,92 0.81 0J6 021 thecubic perovskite structure Sr - 0.01 0.0t - 0.01 0.01 0.01 0.0t 0.01 @eranet al. 1996).The Na 0.04 0.03 0.04 0.16 032 0.0t 0.@ o2. 038 latter may be viewed as a framework sl gsrnsilinked I4 o.t2 0.s2 0.01 0.03 0.0r 0.v2 0.m 0.04 0.@ o'cavities" 0.04 0.03 0.03 0.@ 0.19 0.0s 0.05 0.12 0.19 BX6 octahedra, with tle occupied by Pr 0.0r - 0.m 0.01 0.01 0.03 0.06 twelve-coordinatedA-cations. Distortion of the ideal Nd 0.0r 0.0r o.v2 0.05 0.06 0.01 o.u2 0.(X 0.05 Th - 0.01 0.01 0.01 0.02 cubic structureis producedby tilting (rotation) ofthe ll 0.94 0.96 0.% 0.95 0.9s 0.96 0.95 0.93 0.93 TiO6 octahedra about a tetrad Fo 0.03 0.t2 0.@ 0.v2 0.01 o,v2 0.t2 0.m 0.01 axis and a diad axis Nb o.s-2o.y o.y 0.03 o.t2 0.v2 o_r o.:t ofthe cubic cell (N4ray-Szab61943), usually referred la 3:3? to as the tilt angles9 and ro (Megaw L973)or $ and 0 MoL% @d-E@bqs (Zhao et al. 1993). The distortion induced by the Cafiq 90.6E cL75 91.a5 6.M 37.57 &130 El.l2 52.0a 2j.n SrTiOr ojl 0.55 OS7 0A2 1.09 0.81 0.67 0.r2 l.7l independenttilts $ and 0 is describedby a tilt O CoTbO' - 023 028 0.4 0.43 028 0.60 0.7t 2.04 about an appropriatetriad axis (O'Keeffe bpdito 8.El 6.4? 730 3Ltt 5424 16.61 17.6t 4622 65.03 & Hyde NaNbO3 2.12 1977).Nl threetilt anglescan be derivedfrom unit-cell Corno, - 5.4t - 5.2, dimensions of the orthorhombic structure usine C@Fsiti@: I r-@d pqovsldb6jelphMrilq Kovdor,2 &3 mmd rin of hwnedEl pqov8kiE qysl @lciF@phibolediopsido Ek, Afrikdda a & 5 @ddy p€rov!&ib @d lopdib E@tl€ @ hqah€dol paovskib qet oloismphlbolcaiopftlo @k, Afikdda 6 & 7 c@ md riD of @|F.o(nah€dEl TABLB 6. RBPRBSENTATIVECOMPOSITIONS OF PEROVSKITEAND LOPARITE peostie cryol etcttemphibolediopstdo nk' Afrikeda 8 & 9 @dsry FROMCAITITECARBoM-ITIBS porcvskib @d lopdib Edl6 @ qbo@n€dnl pqwskib o:/sl, elcits uphibole-diopsido rck, Atikeda rd = nd d6EEd. wt%

CoO 38.90 4r.05 3t.t7 3453 33.95 333t 3L@ 31 U2. lt.@ Sro 0.lE 0.16 0.09 019 rd 0.19 0.15 039 024 0.82 Nqo 0.t I 0.(X 2.t5 0.65 0.82 t.ol 1.74 0.E9 I.0l 756 r4q 0.75 tr/ 0.71 124 1.05 0.68 121 1.43 t35 4.85 ce'q 2.01 Ed 3.67 3.81 32, 3.74 3.e, 3.t6 3.t0 l3.m such perovskite, ttre total content k01 trd [d 05 0.70 09t tr-d l.0l 020 o.yl 154 of loparite, lueshite N4q 0.06 rd l.&' 1,44 1.47 l.O 159 1.63 lS5 6.92 and other end-membersdoes not exceed l0 mol.Vo Tlq tr.d n.d 0.16 t.tg L98 1.67 0.70 0s4 0.D 0.42 Tio, ss.72 5t.16 5l2l 4f32 4552 45.9t 43.68 4750 4756 40.14 (Tables l-4). Calcite carbonatitecontains primary Fqq 0.98 024 1.00 3.44 3.n 3,82, 3.85 3.45 3.7J 05t perovskite Nqq 055 0.t6 537 4.q fiO 6 9.63 4.98 4.91 | l.q) with up to 16.8 mol.7o NaNbO3, and Tqo! o'd tri Ld ojl 03l) 0.&i D.d 0.6E 0.42 l l8 late-stagecalcite and dolomite carbonatitescontain ToEl 9'25 99.a1 9831 l@20 9.88 98J5 93a 9.s [email protected] l(}021 lueshite. According to Pozharitskaya& Samoylov Sttlr@l foddrs Falrl'rd d rhoh6is of 3 @ of d}!6 (1972) and Chernyshevaet al. (L991), the lueshite Ca 0.y, I.(}0 0.83 0.m 0.90 0.88 0.85 0.89 0.89 034 trend is also typical ofperovskite-groupminerals Sr-0.01-0.01 fi'om Na 0.01 - 0.10 0.03 0.04 0.0s 0.08 0.04 o.ct 0.4t) the carbonatitecomplexes of the EastSayan alkaline h 0.01 - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 C€ 0.@ - 0.03 0.@ 0.(B 0.03 0.03 0.03 0.(B 0.t4 province. At tle Oka and Kaiserstuhl carbonatite Pr - 0.01 0.01 - 0.01 - 0.01 0.02, complexes (Nickel Nd 0.@ 0.0t 0.0t 0.01 0.01 0.0t 0.0t 0.06 1964, Boctor & Yoder 1980, Tb - 0.0r 0.@ 0.0t 0.01 van Wambeke 1980, Treiman & Essene 1985, "rl 097 0.9 0.93 0.88 0.85 0.85 0.81 0.&/ 0.&7 0.84 F€ 0.(}2 - 0.@ 0.06 0.O 0.O7 0.07 0.05 0.07 0.01 Chakhmouradiat1996, Mitchell et aI. 1998),this evo- Nb 0.0t - 0.06 0.05 0.(b 0.07 0.ll 0.05 0.05 0.14 lutionary trend is combinedwith sienificantenricbment Ta--0.010.01-0.01 of perovskitein Fe (seebelow). Itdol.%dmb6s CaTtO' 98;14 9.61 B.n E'32 79.U 7930 n.n 79.C1 7955 41.43 (2) The latrappite trend..Enrichment of Nb and Fe sifiq o23 021 0.13 036 - 024 0.t9 0.48 04 t.d) C€ltO! 0.@ 0'y2 in perovskitedelineates a latrappiteevolutionary trend, C€2F€NItO6 6.17 7.U E.g3 ?9t 6.98 7J0 from perovskitesensa rrpdib l.0l - ilJ4 8.7t 8.16 653 930 a.8s 9 4720 stricto in the early silicate rocks Nallbo, - 0.18 4A7 0.14 l2l L74 524 lr0 t.6t E.89 to ferrian, ferrian niobian and niobian ferrian C€Nb.O, - 330 L95 2.55 3l.2 2.62 1.79 c4.l.i01 - perovskite in calcite carbonatite(up to 9.1 mol.7o 056 Ca2FeMOu).This trend Codpositi@ l-3 @F, hmdi@ @m ed lia of a ed pdovs&iE q,sl, @lcte is more strongly developed qbaei SobUM, a il--qrd lsowtib 6'et €lclE Et@atiE, Tdiy, t7 @ in the carbonatite units of the Oka and Kaiserstuhl iffi€dlaa z@ dd rin of a a6d pqovskiE sy@l @lcit&@nfto @boffi,Ttriy, 8 & I @ ed lin of a pqovEelF 6ret, elche-phlo8oPn6Ebotrstib, Vmdi64 t0 complexes. loFirb |@le d FrdlkJto, @lcttFphlogopftBcaholdtE VuiievL d - d dc@d

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE-GROUP MINERAI-S. KOLA CARBONATTIES 1303

PMO\6KIE PMO\6KIE

/ r-ursrim

l'la-RE- CoR[ RU mlc,lEdtrEdr o ++ h oa o.x 00+ vvY

coRE-r0 - trr, z0MrEt{ --_i+

LOPARM LOPARM

Frc. 4. Composition(mo1.7o) of perovskiteand loparitefrom calcitecarbonatites and kindredrocks: I phoscorite,Kovdor, 2 phoscorite,Gardiner, Greenland, 3 phoscorite,Kugda, Siberia, 4 - 5 calcite- amphibole- diopsiderock, Afrikanda (hexahedraland cubo-octahedralcrystals, respectively), 6 calcite-pblogopite carbonatite,Vuorijarvi.

equationssuggested by Megaw (L973), O'Keeffe & radii. Also shownin Figure 9 aretrends in which the Hyde (1977)andZhao et aI. (1993).Correspondences parametersfor the pseudocubiccell increasealong the between the tilt-angle equations and three space perovskite-loparite(1), perovskite-lueshite(2) and groupssuggested for orthorhombicCaTiO3 by different perovskite-latrappite(3) trends.It is also obviousin investigatorsare given in Table 9. In this study,we this figure that the t'ni1-cell parametersof most of use the standardspzrce-group sett'rng Pnmn favored by the perovskitesnmples lie betweenthe abovetrends, mineralogists(e.g., Hu et al. 1992,Keller & Buseck correspondingwell with the intermediateposition 1994). of the evolutionarytrends in the systemperovskite - Unit-cell dimensions(Pnma, Z = 4) for somesamples lueshite- loparite- latrappite(Fie. 7). of perovskiteexamined in this study,and tilt angles andother parameten of the pseudocubiccell ao(Pm3m, DtscussloN Z = l), aregiven in Table 10.The samplesexamined are primary perovskiteo as sufficient secondary The evolutionary trends followed by perovskite perovskitecould not be extractedfor X-ray studies. compositionsin the carbonatitecomplexes may reflect From Table l0 and Figure 8, it is clear that the largest a generaltendency of incompatibleelements (in par- rrnit-celldimensions and rotation angles are found in ticular, fnEE, Nb and Th) to accumulatein the more perovskitefrom the carbonatites.As notedabove, these evolved fractions of alkaline magmas.The highest samplesare commonly enrichedin NaoNb, Fe and concentrationsof LREE, Sr, Z, Th and M are found REE, comparedto perovskitefrom the comagmatic mostly in complex oxides and carbonatesin these ultramafic aad alkaline rocks. Given the intricate carbonatites(Bell 1989,Heinrich 1966,Kukharenko compositionalzonation of many perovskitesamples, et al. 1965, Tuttle & Gittins 1966). Alternatively, we calculatedmean compositions to determinerela- carbonatiticmagmas enriched in incompatibleelements tionships betweenisomorphic substitutionand crystal may have beenderived directly from a mantle source. chemistry.On the basisof thesedafa, we est'matedthe At presentofts minelalsgical dataare insufficient to ionic radii of cationsat theA and B sites(R.[A] and discriminatebetween these possibilities. R*[B]) using ionic radii given by Shannon(1976); The behaviorof the incompatibleelements is also Figure 9 illustrates tle correspondencebetween controlledby structuralfactors. In early phoscorites parametersof the pseudocubiccell and es.;matedionic and calcite carbonatites,the LREE andSr have a close

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 r3u TIIE CANADIAN MINERALOGIST

PEFOVSKITE

E

x* { t I i}-q'**^

l! x/ E fi "'\'- /t 3 t$ AC J o '%e,ry E z 6 ID t *k: 2 f,"s coBEnr. Bu k x t ailE / m f t 1000 P .$S 20. ttr * att 3AAA {x 4vv ln

$ECSF||trZoilEs 5 trtrtr8r e 4** 7+ B* CORE.II}RSIZIINATIOI 9X --+ 10* 11 * LTJESHITE

Ftc.,5. Conposition (mol.7o)of perovskitefrom calcite carbonatites:I Sebljavr,2 & 3 T:r:y,4 Vuorijarvi, 5 Kovdor, !-Qgrngozerskiy,Siberia, 7 Nizhn$2yanskiy,Siberia (Chernysheva et aI. lggl),8 culi, SiUeria(williams & Kogarko 1996)'9 Kaisentuhl, Germany(Hauser 1908, Knop 1877,Meigen & Hugel 1913,Mirchell er at 1998,van Wambeke1980), l0 Oka Quebec@octor & Yoder1980, Chakhmouradian 1996, Mitchell er aL 199g,Nickel 1964,Tieiman & Essene19g5, this study), 11 Magnet Cove,Arkansas (Mitchell et al. 1998).

affiniry to C4 and are dispersedin calcite and apatite, enrichmentin volatile componentsis commonlyreflected which are much more abundantthan accessoryoxides. in the replacementof early cunulus perovskite-group The large ionic radius ofZr, comparedto that ofTi, mineralsby relatively late pyrochlore-groupphases explainswhy this elementfavors structureswith seven- (Chakhmsurafian L996,Williams & KogarkoI 996). or eight-coordinatedpolyhedra (baddeleyite, calzirtdte, The low Fe contentof primary perovskitefrom the zirconolite), andnot the perovskitestructrue. However, silicaterocks, and Fe-enrichment in primary perovskite Zr is a potential substitutefor Ti in perovskitefrom from the calcite carbonatites (latrappite trend), carbonatitesformed under specific P-T conditions, cannotbe explainedunequivocally. Kimura & Muan e.g., the Polino diatreme,Italy (Lupini et al. 1992). (l97la, b) have shown that perovskite forms an Finally, M and Th are distributed mostly between extensive solid-solution series with the relatively perovskite- (lueshite trend) and pyrochlore-group oxygen-deficientcompound Ca2FeY2O5, and doesnot minerals.According to experimentaldata (Aleksandrov accommodatesubstantial Fe2* at tle A sites.These 1973, Jago& Gittins 1993),the former crystallized dataare in a good agreementwith specfoscopicstudies undervolatile-poor conditions and at highertemperanues of naturalFe-rich provskite, which showthat Fe ent€rs than the latter.Evolution of carbonatiticmagmas by tle structure only as Fer* substituting for Ti at the B

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE-GROUP MINBRAI.S, KOIA CARBONATTTES 1305

TABLE 7. REPRESENIATIVE COMPOSMONS OF PEROVSKIIE AND IOPARITE FROM This processwas probably more important in the CAIXIIE CARBONATITES ulffamafic rocks, where secondaryperovskite and loparite occur in intimate associationwith titanite. ClO 3537 n.n .45 35.40 31.46 The enrichment of primary perovskite in sIo 0.2 0 030 0.50 032 the Na"o 094 t2t 433 135 2l6 componentsNaNbO3 and CarFeNbOuleads to an t&o3 t.6 t.77 l.@ 05t 0.94 increasein unil-ss1 dimensions CglO3 2.n 3.56 s35 l.tt 234 androtation angle O Prr03 031 D.d 0.61 Ld 0J6 of the (Ii,FeJ.[b)O6octahedra. The latter effect reflecs N40' l.fl o.9 1.58 055 0.88 increasing Tho, 027 0.m 225 0.i18 1.04 deviation of the structure from cubic fiot 49.8 48.4 45.t0 48.09 43.20 symmetry in NaNbO3Q = 12.4" (Sakowski-Cowley Fq03 252 3.01 t.t4 29s 2.t2 Nhq 43t 6.75 ll.g 8,49 t4.V2 et aI. 1969),in latrappite,O = ll.7o @Iitchell et aI. Tarq 036 027 0.62 0.48 0.94 1998),and in CaTiOr,O = l0.Lo.Relatively high Na

Total 99.86 100.16l0l.ll [email protected] 101.08 and Nb contentsin some perovskite samplesfrom carbonatitesmay indicatethat the tilting of the octahedra Smtul bmEl86 @[email protected] @ th6 bdris of3 turo of oryg@ in the structureis complicatedby displacementof Na Cs 0.91 0.r/ 0.70 0.m 0.81 and Nb from the centerof the polyhedr4 analogous Sr -, 0.01 to Na 0.M 0.06 021 0.06 0.t2 the cationoffset in syntheticNaNbO3 at roomtemperature b 0.0r o.o2 0.01 0.01 0.01 (Sakowski-Cowleyet al.1969). C€ 0.03 0.m 0.05 0.o2 o.v2 Structuraleffecrs of Pr 0.01 the REE on the perovskitestructure are not certairo"and Nd 0.01 0.01 0.01 _ 0.0r - ln 0.01 - 0.01 firrther X-ray-diffraction studiesof the seriesCaTiO3 fi 030 0.a7 0.84 0.8s 0.?9 NaREETi2O6are required. Fe 0.05 0.05 0.t2 0.05 0.0s Nb 0.05 0.07 0.13 0.09 0.15 Ta 0.01

Mol.% @d-D@b* csriq &}56 7920 69.6 E2.(n T2.n Sr'l'lo" 0n 032 0.43 0.6{) 0.40 CaThO. 127 TABLE t. REPRFSENTATTVECOMPOSITIONS OF CarFoNbO6 494 6.06 5.t2 5,n l'lpqib 7.U EJI l6.tl 3,64 s.95 LUFSHITE FROM DOLOMITE CARBONATITE NoNbO3 LA L79 t2.43 4.96 t0.13 caNb,O? 1.75 3.12 258 4.93 wL%12345

CoEp6iti@: I-5 qffiire 2@ (fr@ @ b C8O 095 l.l8 1.93 221 235 riE) @€d FloEkib qJtsbt €loite SrO 031 0.19 0.19 028 0.19 Ituvdd.!d - ddd@{ NqO 1429 15.88 15.69 15.t9 15.19 IarO. I.8l 128 0.88 1.05 1.09 cqq 3.13 2.13 158 l./t8 l.7l PrrO: 0.57 Ld n.d !.d nd sites (Muir et al. 1984,Mitchell et aI. l99g). Thus we NEO. 0.78 035 022 024 0.51 suggestthat the latrappiteevolutionary Tho, 129 ljl 2.43 0.50 03'1 trend observed fiq 3.46 4.08 529 4.43 5.m in the perovskite-groupminerals of carbonatitecom- Fqq nd a.d nd 0.13 024 plexes from the Kola Peninsula Oka and Kaiserstuhl Nbrq 7428 73.t6 7324 74.70 T2;19 resultsfrom inoeasingFe3-/Fe2* values during magmatic Toral 100.87 99.76 101.45lmgl 9.44 differentiation. The late-stage enrichment Strushrsl fmulae elculded m tils b8is of Na and ZREE of 3 mms of oxygo perovskite (loparite trend) undoubtedly resulted C€ 0.03 0.03 0.06 0.06 0.o7 from two different processes.One of them involved Sr 0.01 Na o,77 0.85 0.82 0.83 0.81 interaction of primary perovskite with a LREE-ich la o.v2 0.01 0.01 0.0r 0.01 fluid probably derived from the carbonatitesource. Co 0.03 0.t2 0.v) o.lo, o.y Wendlandt& (1979) Pr 0.01 Harrison have demonstratedthat Nd 0.01 the IREE tend to fractionatefrom carbonatiticmelt Th 0.01 0.01 o.m into Coz-richfluid. A similarmodel Ti o.0't 0.08 0.tl 0.09 0.10 wassuggested by Fe Platt (1994) for LREE-enichmsalin the assemblaee Nb 0.93 o.92 0.90 0.91 090 perovskite-loparitein melnoite of the ScbryburtLafe complex. Mol.% @d-E@bq8 The other process does not necessariiy Csfiq 232 2.74 4.51 6.56 731 require reaction wfih LREE-enrichedmagmatic fluid, Sr'fiq 0.5t 033 0J3 0,47 033 but with a secondaryfluid ssnraining cuThq O.94 1.V2 1.65 033 025 Na and LREE f4pqite 14.74 821 5.85 5.91 727 leachedfrom primary perovskite. NaNbq 81.42 87.70 87.66 .73 U.U

(Ca1-,Na6r,CeorJTiO,+ (Siot"q + (1-x) CaTiSiO, CmpositiN: l-3 coro, iltdmedide m od rim perovskite dtnnite of a med ay*a[ dolomiE carbooatir, rp"ya Vmk4 4 & 5 m md rim of@ |lmed qystal + 0.5x NaCeTi2Ou dolmits qboncite, Kwdq. Tsal Fe aEr$€d c FqQ; ad - not dcected Ta rc sugbl but loparite not fmd.

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 1306 TI{E CANADIAN MINERALOGIST

PEROWKITE CoNct-usloNs COREINT. RIM ZONE 'I oo. (1) The carbonatitecomplexes of the Kola Alkaline 2 OT Provincecontain perovskite sensu stricto. Perovskite / /;,' 3 0 4a + enrichedin lueshiteand latrappite occurs only in calcite "/-*€i b x carbonatites.Members of the perovskite- loparite "s * solid-solution seriesare found as a thin secondary o *8-*t'^ 7 AA mantleon primary perovskitefrom somevarieties of F CORE-TGRIMZOMIION ultramafic rocks, foidolites and carbonatites. / .i /,---( (2) The composition of perovskite from the i'"HN." carbonatitecomplexes evolves along three distinct *., LUESHM trends,i.e., towardlueshite, latrappite or loparite.The 10: cBtAti lueshite and latrappite contentsare lowest in primary Sr CALCIAN perovskite from ultramafic rocks and highest in primary perovslcitefrom carbonatite.The lueshitetrend iulminates in the appearanceof lueshite in late dolomite carbonatite.The loparitetrend resultsfrom interactionof the prinary perovskitewith late-stage frs6 alkalineand carbonatitic melts. (mol.7o)of lueshitefrom ca$onatitesand fluids derived Frc. 6. Composition of lueshiteand latrappite aegirine-zeoliterock: L dolomite carbonatite,Lesnaya (3) Increasingenrichment Yaraku 2 dolomite carbonatite, Kovdor, 3 calcite in perovskite compoDentsproduces larger unit-cell carbonatite,Sebljaw (Subbotin& Men'shikov 1987),4a parametersand a larger tilt (rotation) angle of the and 4b calcite and dolomite carbonatites,respectively, CIi,Fe,M)Oooctahedra. Sallanlawi (Subbotina & Subbotin 1990), 5 calcite carbonatite,Lueshe, Democratic Republic of Congo, 6 calcite carbonatite, unspecified localiry Siberia (Bas.dasarov rock Kovdor et aI.1962\.7 aesirine-zeolite KOLAPB{INSULA : AIRSOMTIIE COMPIBES f-J ultnrunbs @P loldollbs PERoVSmTE !l rnelllbrwks <= caftondb KilEtMCoMPLil

OIHERAtI(A|lilE PROVINCEE A MIffNIUHLc0,MPI,g I OKACOMH.il tcllENA a scHflYBUFTIAIG COUPIil TRBO S$ PRO/SKIE I PMOAKTE U OKts'KASBI'TIJIT E tE ME{D -\\ E LOPARIrE G t cl ! J + m otuorro I LAKEIRS{D9

LUESHM Frc. 7. Composition(mol,7o) of perovskite-groupminerals fiom the carbonatitecomplexes of the Kola Alkaline Province(this and study) compared.tothat of ierovstite ana ioparitefrom the Khibina complex(Chakhmouradian & Mirchell 1998) & ScbrryburtLake complex @iatt 1994),of perovskite from the Kaiserstuhl complex (Hauser 1908,Ihop 1877,Meigen UugJt tet:, Mirchei et aL 1998,van Wambeke1980), and of perovskiteand latrappite from the Okacomplex @octor & yoaer t9SO,Chakhmouradian 1996, Mirchell et aI. l998,Nickel 1964,Tieiman & Essene1985, this study).

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSKITE-GROUP MINERALS, KOI.A CARBONAITIES t307

TABII 9. CoRRESPoNDENCB BETWEEN sPAcB &,oIJP, UNfrcBxI TdB 10. UNTT.m PARAWTRS AID TLT ANGIB oF I,ERow PARAi,amRs A}.{D TLT ANGLBS FoR cgTto3 Roq a.A b,A c,A a,,A 0," 0," o," SP@G@P pm pbm Oltvhire 5.451Q) 7.65qq fi620 3.825 7.8 10.4 t3.O a,A s.3670(r) s.3796{t' 5.M IMtaV@alq OtyiEne s.4s3(2) 7.66rP) s3a(, 3.p6 8.2 lo.5 13.3 b,A 7.6r'.38{t) 5.4423Q) 7.&36 A{t&@tda ErogQitized 5.475Q) 7.681(6) c,A 5.4439(r) 7.@1(' 5.38t2 5.M14) 3-U4 5.8 9.2 t0.g oliffi Katdor IeNilc Kry & BdBt (195, S&rd d at (l9tn ffiztf Cliiopyrcxeft 5.4W) 7.67(3, 3.t68(D 3.t28 8.0 t0.z 12,9 TLTA@ Afil@da opshlim s.AnQ, 7.6C2(2) fi8/0(q 3.838 7.9 to.6 r3.2 T6rudds cQ = (oa)ib G0=(r'zayc 60=(ADk dtll@tdo Oreechltem 5.4@Q) '1.67242) Dtadds qo=a/c q0=a/b 5.381(5, 3.E35 7.3 tc.O 12.4 m0=cJa SdUM Trladds mO = (€6lbc qO - (rzfitc wtb = hDArett Pes@oid 5.48r(2) 7.6&@) 5.385(t 3,U2 1.8 rO.7 13.- climlyrcx€ltF .a[ri|@tdo Peg@roid 5.463Q) 7.674Q) 5.371(, 3.932 8.2 t0.5 t3.3 dllopyrcredp 0,' SebUM P1logopierck 5.47qD 7.6918) 5.374(4) 3.t39 E.8 1l.l l4.l Kovdor 'HyMd'pesnqdt 5.4'llQ) 7.6nQ) s.374{, 3.836 E.l 10.8 13.5 AfrI@da [otfte p€gEaee s.4738) 7.684Q) 5.378(t 3.&]8 t.2 10.7 t3.4 ,4frn@do -+ Urde s.46sQ) 7.68r(3) 5.3u

R*[A/F [ca] ndByPrril

o ULTMMAFITES a FODOLMS + CARBOMTIIES 0 CaTP3G\NI}IEIC) soutlsolrJTt0NsmEs: o PEROVSKIE.LOPARM @ PEROI/SKIIE-LUESHIIE (D PEROI'SKM.LAIMPPM

a Itr trt +,Fo + tr

3.4 3.86 3.tr/ 3.89 3.83 3.85 3.87 3.89

Frc. 9. Correspondence between nnil-gsll p:rameters a'pof perovskite, calculated on the basis of a pseudocubic cell, and weighted ionic radii of cations at the A and B sites veiszs ionic radii of Ca (R.tAURtCaD and Tf (&tBVRtTil).

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 1308 T}IE CANADIAN MINERALOGIST

ACKNOWLEDGEMENTS LeningradPress, Leningrad, Russia (in Russ.). & (1996): Carbonatitesof the Ttriy This work was supportedby the Natural Sciences - Peninsula, KoIa: role of magmatism and of metasomatism- and EngineeringResearch Council of Canadaand Can. Mturcra\.Y,403409. LakeheadUniversify (RIM, ARC). ARC $atetully acknowledgesactive help and manyuseful comments CnacnrlouneolAN" A.R. (1996): On the development of on the occlurence of perovskite in carbonatite niobium and rare-earth minerals in monticellite--calcite complexesfrom his scientific advisor Prof. Andrei G. carbonatite of the Oka complex, Quebec. Can. Mineral. Bulakh. He andDr. Nataly I. Krasnovaare lfrankedfor M.479484. perovskite Ttriy and Kovdor the samplesof from the & MrrcIBr, R.H. (1998):Compositional variation complexes,respectively. Igor V. Pekovand Dr. Anatoly of perovskite-groupminsnls from the Khibinacomplex' V. Voloshinkindly providedthe authorswith crystalsof Kola Peninsula.Car MineraL 36 (in press). perovskitefrom the Kugda and Gardinercomplexes, and from the Vuorijarvi complex,respectively. We are Crmrwsnevn, Yn.A., Nncnnvusrov, G.N., Kvmco, T.D. & grateful to Alan MacKenzie for his assistancein VEYS,B.T. (1991):Compositional evolution ofperovskite analytical work, and to Ann Hammond and Sam in the alkali rocksof the Lower Sayancarbonatite-complex. 02-108. Spivak, for thin section preparation and drafting Ge o chem. Int. 191(4), 1 Comrnentsmade by G. Garuti, services,respectively. DnwsoN,J.B., Sr"nrH,J.V. & SrneI-E,I.M. (1995):Petrology K. Bell, E.A. Dunworth and an anon5mousreferee and mineral chemistryof plutonic igneousxenoliths from hetpedto improve the initial version of the manuscript. the carbonatitevolcano, Oldoinyo l*ngai'Tanzania. J. Penol.36,797-826. RSFERENcES EcoRov, L.S. (1984): Relative age of melilite rocks in ALEKSANDRoV,I.V. (1973):Models of EnfutgenicTantalam- ijolite-carbonatiteplutons of the Karelia-Kola region. NiobiarnMineralization. Nauka Press, Moscow, Russia DoH. Acad.,Sci.US,SR, Earth Sci.Sect. ?.65,86-88. (in Russ.). From" M.J.K. & Ross,M. (1989):Alkaline igneousrocks of Beconsenov, E.A. (1959): Alkaline pegmatitesof the Magnet Cove, Arkansas:metasomatized ijolite xenoliths Afrikanda massif. 7np. Vses,Mineral. Obshchest.88, from DiamondJo qtarry.Am Mineral,74,ll3-I3L. 261-274(in Russ.). FRANK-KAI\'fiNErsKY,V.A. & VrseL'sKrY,I. (1961a):An - (1980): Microprobe study of rock-forming and ore X-ray studyof isomorphismin perovskites.Geokhimiya mineralsby the exampleof alkaline-ultrabasicmassifs 1961(5),379-389 (in Russ.). in Kola Peninsula. Iz Electron Probe Microanalysis in Mineralogy (Proc. llth GeneralIMA Meeting). Nauka -& -(1961b): On thechemical formulae of Press,Leningrad, Russia (81-90; in Russ.). perovskites.Geokhimiya 196l(ll), 1035-1036(in Russ.).

Beonnsenov, Yu.A.. Geourova V.S., Kuannmovn, N.N. & Genurove, V.S. & ZDoRrK,T.B. (1962):Geological infta- SDoRBNKo,G.A. (1962):A find of lueshitein Siberian structue andf,ineralogical and geochemicalpeculiarities carbonatites.DoH. Akad...iVau& S,SSR 147 , 1168-Ll7| (n of rare-metalcarbonatites. Tfudy IMGRE 17 (in Russ.). Russ.). GliloRso, M.S. & CnnMcH.reL,I.S.E. (1987): Modeling BALAcANSKAvA,Ye.G. (1994): Breccias of the Kovdor magmatic systerrs; petrologic applications./n Modeling phoscorite-carbonatitedeposit of iron ores and their of GeologicalMaterials: Minerals, Fluids and Melts. Rev. geological significance. 7ap. Vses.Mineral Obshchest. MineraL 17,467499. 1:23(2),2l-36 (in Russ.). HAUSBR,O. (1908): Uber den sogenanntenDysanalyt von BB-l-,K., ed. (1989):Carbonatites. Unwin Hyman,London, Vogtsburgim Kaiserstuhl.Z Anorg, Chem.60,237-Ul- U.K. HEDrRrcH,E.V/. (1966): The Geolngyof Carbonatites.Rand BERAN,A., LBownKY, E. & ARIIBRUSrER,T. (1996): A singls- McNaIIY,Chicago, Ilinqis. crystal infrared spectroscopicand X-ray-diftaction study of untwinned San Benito perovskite gsataining OH Hu, M., Wm,rK,H.-R. & SNmsYNt,D.(L992):Microstructures grotps.Can Mineral.34, 803-809. in natural perovskites,Ara Minzral. 77, 359-373.

Bocron, N.Z & YopsR,H.S., JR. (1980): Distribution of rare Jaco, B.C. & GrmrNs,J. (1993):Pyrochlore crystallization in earth elements in perovskite from Oka carbonatite, carbonatites:the role of fluorine. S. Afr, J. GeoI.96(3)' Quebec.Ann. Rep. Din Geophys.Iah., CarncgieInst, 149-159. Wash.1919-1980, 30+307 . KApusrnr, Yu.L. (1984): Carbonate relationships in Bur-apr, A.G. & IvANKov, V.V. (L984): The Problems of metasomatically dolomitized carbonatite zotes. Dokl. Mineralogy and Petrology of Carbonatites. Univ. Acad. ScLIJSSR, Earth Sci.Sect.26' ll2-L15.

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 PEROVSICTE.GROUP MINERAI^S, KOLA CARBONATITES 1309

tcu-en, L.P.& BusEcK,P.R. (1994): Mnning h meteoriric Mscaw, H.D. (1973): Crystal Structures:AWorking Approach. andsynthetic perovskite. Arz Mineral. 79,7 3-79. W.B. Saunders Co., Philadelphia, Pennsylvani4. Knruna, S. & MueN, A. (1971a): Phaserelations in the MBrcEN, W. & HucEL, E. (1913): Uber die chenische systemCaO - iron - oxide TiO2 in ah. Am, Mineral. 56. Zusammensetzung des Dysa:ralyts von Vogtsburg im 1332-1346. Kaiserstuhl. Z. Arcrg. Allgem Chem. 82, 242-248. & (l97lb): Phasereluions - in the svstem MrrcIELL, R.H. (1994): The lamprophyre facies. Mineral. CaO - iron oxide - gitanium oxide under stronglv Petrol. Sl. 137-1,46. lgdusingconditi ons. Am. M inera I. 56, 1347-1 3 5g. (1996): Perovskites: a revised classification scheme Knru-ov, A.S. & Bunovn, T.A. (1967): Lueshiresfrom for an importantrare earth element host in alkalinelscks. carbonatitesof the Kola Peninsula. Iz Mineraloev Iz Rare Earth Minerals: Chemistry, Origin and Ore and Geochemistry2. Leningrad Univ. press, Leningrid, Deposits(A.P. Jones,F. Wall & Russia(28-39, in Russ.). C.T. Williams, eds.). Chapman& Hall, London,U.K. (41-76). Ktenscaeno, B.A. & llamrou, D.L. (1988): Liquid Cuor,J.8., [Iaw*ronxe, immiscibility andthe origin sf atkati-poorcarbonatites. F.C.,McCAr,fl\4oN, C.A. Mineral. Mag. 52, 43-55. & BuRNs,P.C. (1998): Latrappite: a re-investigation.Can- Mineral.36 (in press). KNop,A. (1877):Dysnalyt, ein pyrochlorartigesMineral. Z. Kri stallo gr. M incral. l, 28+296. & Vuroyml, N.V. (1993):Rare earth element-bearing tausoniteand potassiumbarium titanates from the Little Murun potassic Kocanro, LN., KoNottove,V.A., Onr.ove,M.p. & Woou-sy, alkaline complex. Mineral. Mag. 57, 65r-664. A.R. (1995): Alkaline Rocksand Carbonatitesof the World..Part 2: Formzr USSR.Chapman & Hall, London, U.K. Mun, I.J., MErsoN,J.B. & BeNcnoFr,G.M. (1984): szFe Mdssbauer spectra of perovskite and tit^nita. Can. Minzral. X2,689-694. Knemrl, U., Kocenxo, L.N., KoNoNovA!V.A. & Vernenw.l, H. (1993): The Kola Alkaline hovince of rhe CIS and NAnay-Szas6,S.V. (1943): : preciseRb-Sr agesdefiae 380-360 Ma Der Srrukturtypdes Perowskits rangefor (CaTiO:). all magmatism.Lithos 30,3344. Naturwh s. 31, 2n2-2O3. (1964): - Kurcnnwro, A.A. & Bacpesenov,E.A. (1961):perovskites NIcrm, E.H. Latrappite a proposednew namefor the perovskite-type mineral from ultramafic-alkatinerocks of the Kola peninsula. calcium niobate from the Oka areaof Can Mineral. TrunyVSEGEI, new sen 45(2),37-66(in Russ.). Quebec. 8, l2l-L22. (1980): Bumru, A.G., Il'rNsKu,G.A., S*Nranev. N.F.& NrsLsEN,T.F.D. The petrology of a melilitolire, Onr-ove, M.P. (1971): Metallogenic^peculiariries oJ melteigite,carbonatite and syenitering dike system,in the Alkaline Formations of the Eastem part of thz Baltic Gardiner complex, East Greenland.Lithos 13, l8l-197. Shield.TrudyLOE (Lenhgrad Natur. Soc.),Leningrad, Russia(in Russ.). (1994): Alkaline dike swarmsof the Gardiner Complexand the origin of ul6a6afrgalkaline complexes. - ORLovA,M.P., Bur-AKH, A.G., Bacoesanov,E.A., Ge oc hem- Int, 3l(3), 37-56. Rmsreya-KonsAKovA,O.M., NEFEDov,E.I., L-' ntsxn, G.A., Snncerv, A.S. & ABAKUMova,N.B. (1965): The O'KrrrEe, M. & Hype, B.G. (1977): Some structures Caledonian Complex of Ulnabasic Alkaline Rocl

Lurnu, L., Wurnvs, C.T.&Wmr-r-ey,A,R. (1992):Z,r-ich PI-ATr,R.G. (194): Perovskite,loparite and Ba-Fe hollandite garnet and 7.r and T\-nch perovskite from the polino from the Scbryburtlake carbonatitecomplex, northwestem carbonatite,Italy. MineraLMag. 56,581-586. Ontario,Canada. Mineral. Mag. 58,49-57.

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021 t3l0 THE CANADIAN MINERAIJOGIST

& EDGAR,A.D. (1972):The systemnepheline - Kola ScienceCente Press,Apatity, Russia(52-57; in diopside - s:nidine and its significance to the genesis of Russ.). melilite- and olivine-bearing alkaline rocks. J, Geol. EO, 22+236. TnsMAN"A.H. & Essnre,E.J. (1985):The Oka carbonatite complex, Quebec:geology and evidencefor silicate- PozIARrrsKAyA,L.K. & Sevovrov, V.S. (1972):Petrolog, carbonate liquid immiscibnt$. Am- Mineral. 70' Mineralogy and Geochemistry of EastSiberian r10l-1I 13. Carbonatites.Nauka hess, Moscow,Russia (in Russ.). Turr-E, O.F. & Grrrnts, J., eds. (1966): Carbonatites. Rnusrave-KonsAKovA,O.M., Bunova, T.A. & FRANK- IntersciencePublishers. New York, N.Y. KANm.WNI(Y,V.A. (1963): Lueshiteftom carbonatitesof the Kovdor massif.hp. Vses.Mineral. Obshchest.92, VeNWaLmsKE,L. (1980):Latrappite and ceriopyrochlore' 173-183(in Russ.). new mineralsfor FederalRepublic of Germany.Nezes Jahrb.MineraL, Monatsh,, l7 l-174. Sexowsn-Cowlev, A.C., Luxeszwrcz, trL & Mrclw, H.D. (1969):The structureof sdium niobateat room tempera- WB.TDI-ANDr,R.F. & IlennrsoN,W.J. (1979): Rareearth parti- ture and the problem of reliability in pseudosymmetric tioning beween immiscible carbonateand silicate fiquids structures.Acta CrystallnSr.825, 851-865. and CO2vapor: resultsand implications for the formation of light rare earth-enriched rocks. Contrib. Mineral. SAsAKr,S., PREwrrr,C.T., Bess, J.D. & Soruuzp, W.A. Petrol. 69. 409419. (1987): Orthorhombicperovskite CaTiO3 and CdTiO3: structure and space grotp. Acta Crysnllogn C43, WLKnIsoN, J.F.G. & Srolz, A.J. (1983): Low-pressure r668-1,674. fractionationof strongtyundenaurated alkaline ulfrabasic nagrna: the olivine-melilite-nepheline at Moiliili, Oahu' SHerttrtox,R.D. (1976): Revisedeffective ionic radii and Hawui Contrib. Mineral Petrol. 83, 363-374. systematicstudies of interatomicdistances in halidesand chalcogenides.Acta Crystallogr.N2, 75l-'167. WuAMs, C.T. & Kocenro, L.N. (1996): New data on rare-metalminsrali2ntisl in carbonatitesof the Guli Sussorr.I, V.V. & Mnt'smrov, Yu.P, (1987): Accessory massif, Polar Sibeia. Geokhimiya 1996(6)' 483491 (n lueshite and viggezite from Sebljavr carbonatites.Iz Russ.). Mineral Assemblages and Minerals of Magmatic Complexesof the Kola Peninsula.Kola ScienceCentre ZarrsBv,A. & Blrrr, K. (1995): Sr and Nd isotopedata of Press,Apatity, Russia (69-76; in Russ.). apatite, calcite and dolomite as indicators of source,and the relationshipsof phoscoritesand carbonatites.Contrib. Sunsornra, G.F. & Sunsornr, v.V. (1990): Mineral Mineral. Petrol.l2l, 32+335. paragenesesia carbonatitesof the Sallanlawa massif. 1z New Data on tle Mineralogy of the Kola-Karelian Znao, Yu, Wrnnm, D.J.,PansE, J.B. & Cox D.E. (1993): Region. Karelia ScienceCentre Press,Petrozavodsk, Thermal expansionand structuraldistortion of perovskite Russia(16l-174; in Russ.). - data for NaMgFsperovskite. l. Plrys. Earth Planet. Int. 76, t-16. & Lnoxrv, A.I. (1991): Niobium- concentrating minglals in ore-related rare-metal metasomatites of the carbonatite complexes. In New Data ReceivedMarch 27, 1997, revised manuscript accepted on the Rare-Element Mineralogy of the Kola Peninsula. September3, 1997.

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/35/5/1293/3435767/1293.pdf by guest on 26 September 2021