75 Nawrot Et Al. 2015.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

75 Nawrot Et Al. 2015.Pdf Diversity and Distributions, (Diversity Distrib.) (2015) 21, 1075–1086 BIODIVERSITY What guides invasion success? Ecological RESEARCH correlates of arrival, establishment and spread of Red Sea bivalves in the Mediterranean Sea Rafał Nawrot1*, Devapriya Chattopadhyay2 and Martin Zuschin1 1Department of Palaeontology, University of ABSTRACT Vienna, Althanstrasse 14, Vienna 1090, Aim The opening of the Suez Canal in 1869 re-established the direct link Austria, 2Department of Earth Sciences, between long-separated biogeographic realms, allowing hundreds of marine Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, species to spread from the Red Sea to the Mediterranean. We use marine bival- WB-741246, India ves to relate species-level attributes to successful transition through successive stages of the invasion process. Location Mediterranean and Red Sea. Methods We compiled data on taxonomic composition, body size, life habit A Journal of Conservation Biogeography and geographic distribution of the Red Sea bivalve fauna from published litera- ture, museum collections and our own field surveys. Using multimodel infer- ence, we examined selectivity of the Lessepsian invasion and identify traits that distinguish successful species at three major stages of invasion: arrival, estab- lishment and spread. Results The upper limit of bathymetric range and occurrence outside the trop- ical zone in other regions are the strongest predictors of successful transition through the Suez Canal. Establishment in the Mediterranean is positively corre- lated with earlier arrival and association with hard-bottom habitats. Preference for hard substrates together with large body size is the primary factor distin- guishing invasive aliens representing a significant threat to recipient ecosystems from other established species. Main conclusions The relative strength of abiotic and biotic filters changes along the course of the invasion: environmental affinity and climate match con- strain the pool of potential invaders, while the establishment in the new region and invasive status depend on the habitat preferences and life history traits of aliens, affecting their interactions with resident species. Our results together with previous studies suggest that the eastern Mediterranean rocky shores are more susceptible to the establishment of Lessepsian species, many of which may induce strong pressure on recipient communities as ecosystems engineers and competitors of native species. *Correspondence: Rafał Nawrot, Department and Distributions Keywords of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. Alien species, biological invasions, biotic interchange, invasive species, Lessep- E-mail: [email protected] sian migration, marine invasions, Mollusca. into a global hotspot of marine bioinvasions (Rilov & Galil, INTRODUCTION 2009; Por, 2010; Edelist et al., 2013). This so-called Lessep- The opening of the Suez Canal in 1869 re-established the sian or Erythrean invasion (Por, 1971; Rilov & Galil, 2009; direct link between biogeographic realms separated since the Safriel, 2013) has led to profound changes in marine com- Diversity Middle Miocene and allowed hundreds of tropical species to munities of the eastern Mediterranean, which are now often spread from the Red Sea to the Mediterranean, turning it dominated by Red Sea taxa (Galil, 2007; Edelist et al., 2013; DOI: 10.1111/ddi.12348 ª 2015 John Wiley & Sons Ltd http://wileyonlinelibrary.com/journal/ddi 1075 R. Nawrot et al. Rilov, 2013). In contrast to other human-mediated invasions, We use information on taxonomic composition, bathy- the Lessepsian invasion encompasses whole complexes of metric and geographic distribution, body size and life habits species that are sympatric in their native range (Por, 2010) of the Red Sea bivalve fauna to quantitatively examine the and maintain high levels of gene flow between their newly biological selectivity of the consecutive stages of the Lessep- established and parent populations (Bernardi et al., 2010). sian invasion. We attempt to determine which characteristics Although the introduction of some Red Sea species is of the Red Sea species predispose them to enter the Mediter- undoubtedly facilitated by maritime transport (Shefer et al., ranean Sea and thrive there, and how particular traits of suc- 2004), for most of them, the natural dispersal through the cessful immigrants affect their post-establishment spread and Suez Canal and along the Mediterranean coasts remains the impact on native communities. primary means of range expansion (Gofas & Zenetos, 2003; Ben Rais Lasram et al., 2008; Tzomos et al., 2012). METHODS The Lessepsian invasion can be regarded as a unique biogeographic experiment (Por, 2010) that shares many simi- Data collection larities with large-scale biotic interchanges in the geological past (Vermeij, 2005). It can thus serve as a model system for We compiled a database on body size and ecological charac- comparing marine invasions in natural and anthropogenical- teristics of 394 bivalve species occurring at continental shelf ly altered ecosystems. Moreover, identification of factors depths (<200 m) in the Red Sea (see Appendix S1 in Sup- contributing to the invasion process may help to alleviate the porting Information). Data were collected from primary lit- threats it poses to native biodiversity and human economy erature, major monographs and museum collections (see (Streftaris & Zenetos, 2006; Galil, 2007; Katsanevakis et al., Appendix S2). Substantial information was derived from 2014). Oliver (1992), Dekker & Orlin (2000), Huber (2010) and Molluscs, with over 200 alien species, are currently the from our own field studies (Zuschin & Oliver, 2003, 2005; most species-rich animal phylum among non-native taxa in Zuschin & Ebner, 2015). Taxonomic nomenclature was pri- the Mediterranean Sea (Zenetos et al., 2012). In this study, marily based on the World Register of Marine Species we focus on marine bivalves, which are routinely used as a (WoRMS Editorial Board, 2014). Teredinid bivalves (12 spe- model clade in macroecological and macroevolutionary cies) were excluded from the analyses. This group is poorly studies (e.g. Roy et al., 2000; Vermeij et al., 2008; Berke studied in the Red Sea and may include cryptogenic species. et al., 2013), and encompass some of the most notorious Species of Red Sea origin that are non-indigenous to the invasive species (Streftaris & Zenetos, 2006; Katsanevakis Mediterranean fauna were identified based on the inventories et al., 2014). Taxonomic identity and distribution of Lessep- of Gofas & Zenetos (2003) and Zenetos et al. (2010, 2012), sian bivalves in the Mediterranean Sea is well documented updated with the most recent records (Appendix S2). We (Gofas & Zenetos, 2003; Zenetos et al., 2010; Tzomos et al., did not attempt to differentiate between species spreading 2012), and our knowledge about the ecology and biology of through the Suez Canal by natural means of dispersal, that is selected species is continuously expanding (e.g. Rilov et al., ‘true’ Lessepsian migrants sensu Por (1971), and those pas- 2004; Zurel et al., 2012). Nonetheless, the strong focus of sively introduced by ships. For many species, both vectors previous studies on just a few of the most conspicuous may operate simultaneously, especially during their second- immigrants (reviewed by Safriel, 2013) is hindering our ary spread within the Mediterranean Sea (e.g. Shefer et al., ability to understand the dynamics of the entire invasion 2004; Galil, 2008). We use the term Lessepsian species in a process. We therefore address the biological correlates of the broad sense to denote all Red Sea species that have pene- Lessepsian invasion in the whole pool of potential bivalve trated through the Suez Canal. The three cosmopolitan spe- immigrants. cies Perna perna (Linnaeus, 1758), Irus irus (Linnaeus, 1758) The invasion is a multistage process (Blackburn et al., and Martesia striata (Linnaeus, 1758) were considered native 2011) in which the effect of any particular trait on the spe- to both regions and excluded from the source pool of cies’ success may change depending on the stage at which it invaders. is evaluated (Cassey et al., 2004; Jeschke & Strayer, 2006). The information on the acclimatization status of Lessep- Accordingly, proper delineation of the species pool and an sian species was taken from Zenetos et al. (2010, 2012) rep- appropriate control group at each successive stage is a prere- resenting the most comprehensive overview of marine alien quisite for the identification of factors promoting or imped- species in the Mediterranean Sea currently available (see also ing success of alien species (Cassey et al., 2004; Miller & Appendix S2 for supplementary sources). Their classification Ruiz, 2009). Three stages of the Lessepsian invasion can be of alien species can be easily incorporated into the multistage distinguished following the modified framework of Black- framework for biological invasions of Blackburn et al. burn et al. (2011): (1) arrival of a Red Sea species to the (2011). We considered all Red Sea bivalves with confirmed Mediterranean Sea, (2) establishment of a viable alien popu- records in the Mediterranean Sea as alien (i.e., Lessepsian) lation, and (3) population growth and spread, imposing a species that successfully completed the arrival stage. Depend- considerable impact on native communities (see also discus- ing on the successful establishment of free-living and
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Botula) Falcata Gould 1851 (Bivalvia, Mytilidae)
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1970 The ciliary currents associated with feeding, digestion, and sediment removal in Adula (botula) falcata Gould 1851 (bivalvia, mytilidae) Peter Vaughn Fankboner University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Fankboner, Peter Vaughn. (1970). The ciliary currents associated with feeding, digestion, and sediment removal in Adula (botula) falcata Gould 1851 (bivalvia, mytilidae). University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1721 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE CILIAl\Y CURRENTS ASSOCIATED HITH FEEDING, DIGESTION, AND (BIVALVIA, MYTILIDAE} - ~--- --- -- A Thesis Pres~nted to the Faculty cf the Dt:-,partment of Biology University of "l:he Pad.fic In PaPtial Fulf:i.llmtm·:.: of the Requ.irement:3 for the Degree Master of Sciencp by Peter Vaughn Fankboner April 1970 This thesis, written and submitted by PETER VAUGHN FANKBONER is approved for recommendation to the .. Graduate Council, University of the Pacific • or Dean: 'Ihesis Committee: Dated ----~.J~f!it~'fL=7:=.J....J.../-L.f_u_~--- ACKNOWLEDGEMENTS I would like to acknowledge with thanks the helpful criticism and encouragement given by Dr. Charles R. Stasek, fonrierly of the California Academy of Sciences in San Francisco. I am also indebted to the Director of the Pacific Marine Station~ Dillon Beach~ California, for pr•oviding the facilities used dur'ing much of this work.
    [Show full text]
  • New Report and Taxonomic Comparison of Anadara and Tegillarca Species of Arcidae (Bivalvia: Arcoidea) from Southern Coast of India
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 New Report and Taxonomic Comparison of Anadara and Tegillarca Species of Arcidae (Bivalvia: Arcoidea) from Southern Coast of India Souji.S1, Tresa Radhakrishnan2 Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram-695 581, Kariyavattom, Kerala, India Abstract: Arcacea family is economically important group of animals. Most of the species in this family are misplaced into invalid subgenera and Indian arcids are wanted a revision in systematic positon. In the case of Arcidae family; all of the species are treated under Anadara as main genera, however, some authors considered that the Tegillarca genus is only a sub genus of Arcidae family. Anadara is the commercially important genus of bivalves of Arcidae family. These two genera are confused by many taxonomists and some considered that the morphometric changes of Tegillarca are only the habitual adaptation. But the collected samples from the same habitat from the southern part of India is clearly demarked the distinction between Anadara species and Tegillarca species. In this paper the differences between these two genera are illustrated with the help of specimens from the same habitat and with the help of taxonomic literature of these genera. Species level classification was done based on the morphometric characters like peculiarities of (i) periostracum, (ii) cardinal area, (iii) umbo, (iv) adductor muscle scar and (v) pallial line. The specimens were collected from Neendakara, Vizhinjam and Kovalam along with the south west coast and Thiruchendur in Tamil Nadu, south east coast of India.
    [Show full text]
  • Erminlo Caprotti F) L Avole Propriamente Nei Vasti Ammassi Di
    \ \ Erminlo Caprotti MOLLUSCHI DEL TABIANIANO (PLIOCENE INFERIORE) DELLA VAL D'ARDA. LORO CONNESSIONI TEMPORALI E SPAZIALI. Gebun und GÈb, Èir cwias Mc.r. - F'n we.-hselnd W€hén Èin slUhcnd t2ben: So schatf ich .m sausendeù WcE sruhl de. z.n Und{i.ke dér Gonhéir lebendig.s (W. C@thé, Faust, I, Nacht) A) Introduzione B) Composizione della fauna e comparazioni - Le associazioni , dominanti C) Origine e divenire D) Descrizioni paleontologiche E) Nota bibliografica F) l avole A) INTRODUZIONE Questo lavoro studia i molluschi reperiti dall'Autore con sue per- sonali ricerche nel Tabianiano (Pliocene inferiore) della Val d'Arda, in provincia di Piacenza. La ricerca e la raccolta del materiale è stata ef- fettuata sulla riva destra dell'Arda nei pressi di Lugagnano, e Piir propriamente nei vasti ammassi di argille azzure che si stendono dall'Arda verso il paese di Vernasca (Foglio I.G.M. n. 72 II N.E.). In particolare le due zone di raccolta, oggetto di questo studio, sono topograficamente racchiuse tm quota 208 (Case Micelli presso la riva destra dell'Arda) e quota 300 circa. Si tratta di un grande ammasso di argille azzurre, situato ad Est ed a Sud-Est della fornace per late- rizi di Lugagnano. Topograficamente sovrapposte a queste argille si trovano sabbie basali del Pliocene inferiore variate con intercalazioni marmose, sab- bie medie e grossolane, marne grigio chiare, sabbie argillo§e, argille marmoso-sabbiose. Da esse non sono stati prelevati che scarsi fram_ menti di molluschi e pertanto queste non fanno oggetto di questo Iavoro. Queste sabbie sooo stratigraficamente sottoposte alle argille prese qui in esame, mentre dal punto di vista topografico esse si e' stcndono fin quasi al paese di Veanasca.
    [Show full text]
  • Occurrence of the Hairy Ark Cockle (Anadara Gubernaculum, Reeve 1844) in Mayangan Coastal Waters, Subang – Province West Java: New Distribution Record of Indonesia
    Asian Journal of Conservation Biology, December 2016. Vol. 5 No. 2, pp. 70-74 AJCB: FP0075 ISSN 2278-7666 ©TCRP 2016 Occurrence of the hairy ark cockle (Anadara gubernaculum, Reeve 1844) in Mayangan coastal waters, Subang – Province West Java: new distribution record of Indonesia Dewi Fitriawati1*, Nurlisa Alias Butet2 and Yusli Wardiatno2 1Master Program in Aquatic Resources Management, Graduate School of Bogor Agricultural University, Kampus IPB Dramaga – Bogor 16680, Indonesia 2Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Kampus IPB Dramaga – Bogor 16680, Indonesia (Accepted November 25, 2016) ABSTRACT Thirty six specimens of the hairy ark cockle (Anadara gubernaculum Reeve, 1844) were collected from Mayangan waters, Subang of Province West Java, during marine biodiversity survey along northern coast of Java Island, Indonesia. Previous records of the cockle showed its occurrence in Cilincing, northern coast of Jakarta, Semarang coastal waters of Province Central Java, and Sidoarjo coastal waters located in northern part of Province East Java. The identification of the species was performed by morphological characters and is supported by molecular analysis. This finding represents a new distribution record of the species in Indonesia. Keywords: Arcidae, bivalves, first record, mollusc, north Java. INTRODUCTION A.gubernaculum from Mayangan waters, Subang – Province West Java, Indonesia. At the same time it is a As an aquatic biodiversity hotspot, Indonesia has rich and diverse marine organisms, one of them is the cock- new distribution record of the species in Indonesian les group of Arcidae. The family Arcidae is a large and waters. diverse family of marine bivalve distributed worldwide in warm seas of tropical areas.
    [Show full text]
  • The West African Enigma: Systematics, Evolution, and Palaeobiogeography of Cardiid Bivalve Procardium
    The West African enigma: Systematics, evolution, and palaeobiogeography of cardiid bivalve Procardium JAN JOHAN TER POORTEN and RAFAEL LA PERNA Poorten, J.J. ter and La Perna, R. 2017. The West African enigma: Systematics, evolution, and palaeobiogeography of cardiid bivalve Procardium. Acta Palaeontologica Polonica 62 (4): 729–757. Procardium gen. nov. is proposed for a group of early Miocene to Recent large cardiids in the subfamily Cardiinae. The type species is Cardium indicum, the only living representative, previously assigned to the genus Cardium. It is a mainly West African species, with a very limited occurrence in the westernmost Mediterranean. Procardium gen. nov. and Cardium differ markedly with regard to shell characters and have distinct evolutionary and biogeographic histories. Six species, in the early Miocene to Pleistocene range, and one Recent species are assigned to the new genus: Procardium magnei sp. nov., P. jansseni sp. nov., P. danubianum, P. kunstleri, P. avisanense, P. diluvianum, and P. indicum. During the Miocene, Procardium gen. nov. had a wide distribution in Europe, including the Proto-Mediterranean Sea, Western and Central Paratethys and NE Atlantic, with a maximum diversity during the Langhian and Serravallian. Its palaeobio- geographic history was strongly controlled by climate. During the Langhian stage, warm conditions allowed the genus to reach its highest latitude, ca. 54° N, in the southern North Sea Basin. With cooling, its latitudinal range gradually retreated southward, becoming mainly Mediterranean in the Pliocene–Pleistocene, and West African at present. Key words: Bivalvia, Cardiidae, systematics, Neogene, Quaternary, Africa, Europe. Jan Johan ter Poorten [[email protected]], Integrative Research Center, Field Museum of Natural History, Chica- go, IL 60605, USA.
    [Show full text]
  • Chemosymbiotic Bivalves from the Late Pliocene Stirone River Hydrocarbon Seep Complex in Northern Italy
    Chemosymbiotic bivalves from the late Pliocene Stirone River hydrocarbon seep complex in northern Italy STEFFEN KIEL and MARCO TAVIANI Kiel, S. and Taviani, M. 2018. Chemosymbiotic bivalves from the late Pliocene Stirone River hydrocarbon seep complex in northern Italy. Acta Palaeontologica Polonica 63 (3): 557–568. Seven species of chemosymbiotic bivalves are described from the late Pliocene Stirone River hydrocarbon seep com- plex in northern Italy, including one new species and two in open nomenclature. The known species are the solemyid Acharax doderleini, the lucinids Lucinoma persolida and Megaxinus ellipticus, and the vesicomyid Isorropodon aff. perplexum; in open nomenclature we report two lucinids, including the largest species of Lucinoma known from the Italian Pliocene to date, and a strongly inflated, large Anodontia sp. The most abundant species at the Stirone seep com- plex is the lucinid Megaxinus stironensis sp. nov. This Pliocene seep fauna differs from that of the well-known Miocene “Calcari a Lucina” seep deposits by lacking large bathymodiolin mussels and vesicomyid clams; instead, the dominance of the lucinid Megaxinus stironensis gives this fauna a unique character. We speculate that at the Stirone seep complex, Megaxinus had occupied the ecological niche that Meganodontia occupied at the Miocene “Calcari a Lucina” seep sites in the Mediterranean basin, and that the dominance of Megaxinus could be a wide-spread feature of Pliocene chemosyn- thesis-based ecosystems in Mediterranean Pliocene. Key words: Bivalvia, Lucinidae,
    [Show full text]
  • Bulletin of the Geological Society of Denmark, Vol. 27/03-04, Pp. 105-116
    Bivalves from the white chalk (Maastrichtian) of Denmark, II: Arcoida CLAUS HEINBERG Heinberg, C: Bivalves from the white chalk (Maastrichtian) of Denmark, II: Arcoida. Bull. geol. Soc. DGF Denmark, vol. 27, pp. 105-116, Copenhagen, March 23rd, 1979. Eight new species of Arcoida (Bivalvia) are described, the genus belonging to the families Limopsidae, Arcidae, Noetidae and Parallelodontidae. Two species (Barbatia) are redescribed and revised. Pseudo- grammatodon Aikell, 1930, is reinstated. Claus Heinberg, Institut for historisk Geologi og Palæontologi, Øster Voldgade 10, DK-1350 København K, Denmark. July 4th, 1978. The present paper is the continuation of a pro­ Type locality: Stevns Klint, north of Kulsti. ceeding one on Limopsidae (Heinberg 1976). Type stratum: The top hardground in the Upper The first paper contained information on biome- Maarstrichtian white chalk. tric parameters, collecting procedures, localities and lithostratigraphic position of the hardground Diagnosis: An equilateral, smooth shelled Li­ which has yielded the material. mopsis, flat lenticular in shape, subcircular in outline; umbo small; shell margins moulding each Systematic descriptions other, the right margin having a commarginal ridge which fits into the commarginal furrow of Family: Limposidae Dall, 1895 the left margin; equal sized adductor scars with Genus: Limopsis Sassi, 1827 myophoric flanges; area circumscribed by pallial Type species: Area aurita Brocchi, 1814 line bearing radiating striae. Limopsis maggae n. sp. Description: The shell is flat lenticular having a Fig. 1 subcircular outline. It is nearly equilateral, the Holotype: MGUH 14400. Height 5.4 mm, length anterodorsal shell margin being straighter than ca 6.5 mm the postero-dorsal one. The orthogyrate umbo is Fig.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • Catalog of Recent and Fossil Molluscan Types in the Santa Barbara Museum of Natural History. I. Caudofoveata
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256082238 Catalog of Recent and Fossil Molluscan Types in the Santa Barbara Museum of Natural History. I. Caudofoveata... Article in Veliger -Berkeley- · January 1990 CITATIONS READS 4 108 3 authors: Paul Valentich-Scott F.G. Hochberg Santa Barbara Museum of Natural History Santa Barbara Museum of Natural History 66 PUBLICATIONS 537 CITATIONS 48 PUBLICATIONS 755 CITATIONS SEE PROFILE SEE PROFILE Barry Roth 176 PUBLICATIONS 1,113 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Marine Bivalve Mollusks of Western South America View project Description of new polygyrid land snails from Oregon and California View project Available from: Paul Valentich-Scott Retrieved on: 21 November 2016 THE VELIGER © CMS, Inc., 1990 The Veliger 33(Suppl. 1):1-27 (January 2, 1990) Catalog of Recent and Fossil Molluscan Types in the Santa Barbara Museum of Natural History. I. Caudofoveata, Polyplacophora, Bivalvia, Scaphopoda, and Cephalopoda by PAUL H. SCOTT, F. G. HOCHBERG, AND BARRY ROTH Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, California 93105, USA Abstract. The non-gastropod molluscan types currently housed in the Department of Invertebrate Zoology at the Santa Barbara Museum are listed. Three hundred seventeen type lots are reported, representing 211 recent species and 9 species originally described as fossils. Each type lot recorded includes a complete citation, type locality, and the current type status of the specimens. An author index and alphabetic index are provided.
    [Show full text]