Why We Will Continue to Use the Genus Name Mimulus for All Monkeyflowers David B. Lowry1 1Department of Plant Biology, Michigan

Total Page:16

File Type:pdf, Size:1020Kb

Why We Will Continue to Use the Genus Name Mimulus for All Monkeyflowers David B. Lowry1 1Department of Plant Biology, Michigan Why we will continue to use the genus name Mimulus for all monkeyflowers David B. Lowry1 1Department of Plant Biology, Michigan State University, East Lansing, MI, 48824 In their recent paper, Barker et al. (2012) proposed splitting the genus Mimulus into new genera. This proposed change was based upon a molecular phylogenetic analysis that revealed other small genera, comprising a total of 21 species are located within the Mimulus clade (Beardsley & Olmstead 2002; Beardsley et al. 2004). The finding that Mimulus is a polyphyletic group warranted revision to the genus, as monophyletic groupings are preferred for the designation of genera. Four options were proposed by Barker et al. as solutions: 1) Minimize disruptive name changes by allowing Mimulus to remain as a polyphyletic or a biphyletic group; 2) Minimize disruptive name changes by grouping all genera into one monophyletic group Mimulus L.; 3) Minimize disruptive name changes by conserving Mimulus L. with a different species; 4) Divide Mimulus into multiple new genera, resulting in many disruptive name changes. Barker et al. chose to divide Mimulus into multiple new genera (option 4), even though it was the most disruptive solution. They justifiably ruled out option 1, as monophyletic groupings are preferred. They ruled out option 3, as it would result in name changes to eight widespread Mimulus species and would not recognize some genera that the authors designated as “distinct.” They also stated that they wanted to move forward without waiting for retypification to be approved by the next International Botanical Conference. The only justification given for dismissing option 2 was as follows: “Maximally enlarging Mimulus results in the loss of much useful information in the taxonomic hierarchy that recognizes the Australian-centered genera…each of which has apparent apomorphic features that justify treatment at generic rank.” While this justification on the surface appears reasonable, we feel that it may be short-sighted because it may prevent other scientists and the general public from recognizing the great diversity that is present within the entire clade of monkeyflowers. Further, taxonomic hierarchy can also be also be designated with sub-genera and thus, distinctive sub-genera do not need to be elevated to the generic level to be recognized. Mimulus is one of the most recognizable groups of angiosperms across western North America and is well known by botanists, horticulturalists, herbalists, and gardeners in this region. The highly disruptive number of name changes associated with option 4 has impacted all of these stakeholder groups. Mimulus is also well known elsewhere, such as in the state of Michigan, where M. michiganensis is the only endemic species in the entire state. Beyond being generally disruptive in terms of the number of species name changes, option 4 is highly disruptive to a large number of scientists, whose research is focused on Mimulus. Barker et al. dismissed the concerns of these scientists with the justification that their research is only focused on “relatively few species.” This argument is not justified for four reasons. First, it is not true, as some of these scientists have conducted studies across many different Mimulus species (Grossenbacher & Whittall 2011; Grossenbacher et al. 2014; Sobel 2014; Sheth et al. 2014; Sheth & Angert 2014; Chase et al. 2017; Yuan 2018). Second, this argument mischaracterizes the size of the research community that studies Mimulus. There are now more than 30 labs worldwide that focus their research effort primarily, if not exclusively, on Mimulus. Few non-crop species, beyond Arabidopsis thaliana, have this level of research activity. Third, the argument does not acknowledge that the renaming of Mimulus species results in major problems for conducting 21st-century science, especially with regard to the storage in and query of large databases (NCBI, iNaturalist). Finally, this research community identifies primarily by the name Mimulus and has spent considerable time over the last two decades building that community under the name Mimulus. Dividing the genera results in an unwelcome diaspora among community members and unnecessarily harms the well-established reputation of research advances made in Mimulus. The name Mimulus is far more recognized than any other by our colleagues in Evolution community, non-plant biologists, as well as by program officers at the National Science Foundation. Changing the name therefore acts as an impediment to communicating our discoveries to the broader scientific community and to funding agencies. For these reasons we have continued to use the name Mimulus. None of the us are trained taxonomists and thus, do not have the knowledge of the botanical code necessary to formally petition for a way to maintain the name Mimulus as the genera for all monkeyflowers. We would, however, be delighted if any reader of this journal or member of the taxonomic community collaborate with us to formally retain the name Mimulus across as broad a swath of monkeyflowers as possible. We suggest two possible routes for accomplishing this goal: 1) We propose that all species within the clade be renamed as Mimulus (option 2 of Baker et al. 2012). Further, grouping all of the species into one genera, Mimulus, would prevent more disruptive name changes in the future, if current relationships do not hold up for future phylogenies. While option 4 would results in the renaming of at least 136 species, option 2 only results in the introduction of 13 new names. Further, as noted by Barker et al., most of these species from Uvedalia, Thyridia, Elacholoma, Hemichaena, and Leucocarpus already have names in Mimulus. We propose that the monotypic genus Phryma retain its name, as its phylogenetic position is still unknown. In Beardsley and Olmstead (2002), Phryma was nested within Mimulus in the trnL/F tree, but was an outgroup to Mimulus in the nrDNA tree. Given this discrepancy in the data, it would be premature rename Phryma. As an aside, it was also probably premature to rename most of the genus Mimulus based on two discordant gene phylogenies. This option parallels what has recently been done with the genus Salvia (Drew et al. 2017). 2) We propose that the name Mimulus be retained across a much larger swath of the clade by changing the type species to either Mimulus guttatus or Mimulus lewisii (option 3 of Baker et al. 2012). Both of these species are highly studied by scientist and geographically widespread across western North American. Thus, they occur within the center of diversity of monkeyflowers, in contrast to Mimulus ringins, which is the type species because Europeans explored and colonized the eastern part of North America first and the botanical code’s guiding principle is priority. The conservation of the name Mimulus by changing the type species would bring Leucocarpus and Hemichaena into Mimulus. However, M. ringins and the Australian monkeyflowers would need to be given a different genera name. Thus, this option is less preferable, since it shrinks the diversity within Mimulus. The best way forward for an improved taxonomy in this group is for someone to step forward and construct a much more robust phylogeny based on far more than two loci. While we wait for phylogenetic and taxonomic collaborators to join us in our endeavor to petition for one of the two above options, we believe that it is important to articulate why we will continue to use the name Mimulus for all monkeyflowers. We have given several reasons above for our interest in maintaining the name. However, we also want to point out that there is straightforward way for our community to continue using the name Mimulus right now, as is made clear in writings of the taxonomist Guy Neasom: (www.guynesom.com/UsingMimulusNames.pdf): “If molecular geneticists want to refer to monkeyflower species by names in the genus Mimulus, it can be done simply and appropriately.” Thus, we believe is acceptable for any researcher to continue to use the name Mimulus in publications, presentation, public and private databases, and communication with the general public. That is exactly what we intend to do. References Barker WR, Nesom GL, Beardsley PM, Fraga NS. 2012. A taxonomic conspectus of Phrymaceae: a narrowed circumscription for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron. 39:1-60. Beardsley PM, Olmstead RG. 2002. Redefining Phrymaceae: the placement of Mimulus, tribe Mimuleae, and Phryma. American Journal of Botany. 89:1093-1102. Beardsley PM, Schoenig SE, Whittall JB, Olmstead RG. 2004. Patterns of evolution in western north american mimulus (Phrymaceae). American Journal of Botany. 91:474-489. Chase MA, Stankowski S, Streisfeld MA. 2017. Genomewide variation provides insight into evolutionary relationships in a monkeyflower species complex (Mimulus sect. Diplacus). American journal of botany. 104:1510-1521. Drew BT, González-Gallegos JG, Xiang CL, Kriebel R, Drummond CP, Walked JB, Sytsma KJ. 2017. Salvia united: The greatest good for the greatest number. Taxon. 66:133-145. Grossenbacher DL, Whittall JB. 2011. Increased floral divergence in sympatric monkeyflowers. Evolution: International Journal of Organic Evolution. 65:2712-2718. Grossenbacher DL, Veloz SD, Sexton JP. 2014. Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.). Evolution. 68:1270-1280. Sheth SN, Angert AL. 2014. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution. 68:2917-2931. Sheth SN, Jiménez I, Angert AL. 2014. Identifying the paths leading to variation in geographical range size in western North American monkeyflowers. Journal of Biogeography. 41:2344-2356. Sobel JM. 2014 Ecogeographic isolation and speciation in the genus Mimulus. The American Naturalist. 184:565-579. Yuan YW. 2019. Monkeyflowers (Mimulus): new model for plant developmental genetics and evo‐devo. New Phytologist. In press. .
Recommended publications
  • Mimulus Is an Emerging Model System for the Integration of Ecological and Genomic Studies
    Heredity (2008) 100, 220–230 & 2008 Nature Publishing Group All rights reserved 0018-067X/08 $30.00 www.nature.com/hdy SHORT REVIEW Mimulus is an emerging model system for the integration of ecological and genomic studies CA Wu, DB Lowry, AM Cooley, KM Wright, YW Lee and JH Willis Department of Biology, Duke University, Durham, NC, USA The plant genus Mimulus is rapidly emerging as a model direct genetic studies with Mimulus can address a wide system for studies of evolutionary and ecological functional spectrum of ecological and evolutionary questions. In genomics. Mimulus contains a wide array of phenotypic, addition, we present the genomic resources currently ecological and genomic diversity. Numerous studies have available for Mimulus and discuss future directions for proven the experimental tractability of Mimulus in laboratory research. The integration of ecology and genetics with and field studies. Genomic resources currently under bioinformatics and genome technology offers great promise development are making Mimulus an excellent system for for exploring the mechanistic basis of adaptive evolution and determining the genetic and genomic basis of adaptation and the genetics of speciation. speciation. Here, we introduce some of the phenotypic and Heredity (2008) 100, 220–230; doi:10.1038/sj.hdy.6801018; genetic diversity in the genus Mimulus and highlight how published online 6 June 2007 Keywords: adaptation; ecological genetics; floral evolution; Mimulus guttatus; Mimulus lewisii; speciation The broad goal of ecological and evolutionary functional Because the expression of such fitness traits can vary genomics (EEFG) is to understand both the evolutionary depending on the environment (for example, Campbell processes that create and maintain genomic and pheno- and Waser, 2001), a comprehensive assessment of the typic diversity within and among natural populations and adaptive significance of these traits also requires the species, and the functional significance of such variation.
    [Show full text]
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • 2019 Domain Management Plan
    Domain Management Plan 2019-2029 FINAL DRAFT 12/20/2019 Owner Contact: Amy Turner, Ph.D., CWB Director of Environmental Stewardship and Sustainability The University of the South Sewanee, Tennessee Office: 931-598-1447 Office: Cleveland Annex 110C Email: [email protected] Reviewed by: The Nature Conservancy Forest Stewards Guild ____________________________________________________________________________ Tract Location: Franklin and Marion Counties, Tennessee Centroid Latitude 35.982963 Longitude -85.344382 Tract Size: 13,036 acres | 5,275 hectares Land Manager: Office of Environmental Stewardship and Sustainability, The University of the South, Sewanee, Tennessee 2 Executive Summary The primary objective of this management plan is to provide a framework to outline future management and outline operations for the Office of Environmental Stewardship and Sustainability (OESS) over the next ten years. In this plan, we will briefly introduce the physical and biological setting, past land use, and current uses of the Domain. The remainder of the plan consists of an assessment of the forest, which has been divided into six conservation areas. These conservation areas contain multiple management compartments, and the six areas have similarities in topographical position and past land use. Finally, the desired future condition and project summary of each conservation area and compartment has been outlined. Background The University of the South consists of an academic campus (382 acres) with adjacent commercial and residential areas (783 acres) that are embedded within and surrounded by diverse natural lands (11,838 acres). The term “Domain” is used interchangeably to describe both the entire ~13,000 acres and the 11,800-acre natural land matrix (also referred to as the “Greater Domain”).
    [Show full text]
  • THE JEPSON GLOBE a Newsletter from the Friends of the Jepson Herbarium
    THE JEPSON GLOBE A Newsletter from the Friends of The Jepson Herbarium VOLUME 29 NUMBER 1, Spring 2019 Curator’s column: Don Kyhos’s Upcoming changes in the Con- legacy in California botany sortium of California Herbaria By Bruce G. Baldwin By Jason Alexander In early April, my Ph.D. advisor, In January, the Northern California Donald W. Kyhos (UC Davis) turns 90, Botanists Association hosted their 9th fittingly during one of the California Botanical Symposium in Chico, Cali- desert’s most spectacular blooms in fornia. The Consortium of California recent years. Don’s many contributions Herbaria (CCH) was invited to present to desert botany and plant evolution on upcoming changes. The CCH be- in general are well worth celebrating gan as a data aggregator for California here for their critical importance to our vascular plant specimen data and that understanding of the California flora. remains its primary purpose to date. Those old enough to have used Munz’s From 2003 until 2017, the CCH grew A California Flora may recall seeing in size to over 2.2 million specimen re- the abundant references to Raven and cords from 36 institutions. Responding Kyhos’s chromosome numbers, which to requests from participants to display reflect a partnership between Don and specimen data from all groups of plants Peter Raven that yielded a tremendous Rudi Schmid at Antelope Valley Califor- and fungi, from all locations (including body of cytogenetic information about nia Poppy Reserve on 7 April 2003. Photo those outside California), we have de- our native plants. Don’s talents as a by Ray Cranfill.
    [Show full text]
  • Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs
    Preslia 80: 101–149, 2008 101 Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs Zavlečená flóra Evropy: druhová diverzita, časové trendy, zákonitosti geografického rozšíření a oblasti budoucího výzkumu Philip W. L a m b d o n1,2#, Petr P y š e k3,4*, Corina B a s n o u5, Martin H e j d a3,4, Margari- taArianoutsou6, Franz E s s l7, Vojtěch J a r o š í k4,3, Jan P e r g l3, Marten W i n t e r8, Paulina A n a s t a s i u9, Pavlos A n d r i opoulos6, Ioannis B a z o s6, Giuseppe Brundu10, Laura C e l e s t i - G r a p o w11, Philippe C h a s s o t12, Pinelopi D e l i p e t - rou13, Melanie J o s e f s s o n14, Salit K a r k15, Stefan K l o t z8, Yannis K o k k o r i s6, Ingolf K ü h n8, Hélia M a r c h a n t e16, Irena P e r g l o v á3, Joan P i n o5, Montserrat Vilà17, Andreas Z i k o s6, David R o y1 & Philip E. H u l m e18 1Centre for Ecology and Hydrology, Hill of Brathens, Banchory, Aberdeenshire AB31 4BW, Scotland, e-mail; [email protected], [email protected]; 2Kew Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, United Kingdom; 3Institute of Bot- any, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected]; 4Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 01 Praha 2, Czech Republic; e-mail: [email protected]; 5Center for Ecological Research and Forestry Applications, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected]; 6University of Athens, Faculty of Biology, Department of Ecology & Systematics, 15784 Athens, Greece, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected]; 7Federal Environment Agency, Department of Nature Conservation, Spittelauer Lände 5, 1090 Vienna, Austria, e-mail: [email protected]; 8Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser- Str.
    [Show full text]
  • Biosystematics of the Mimulus Nanus Complex in Oregon
    AN ABSTRACT OF THE THESIS OF WAYLAND LEE EZELL for the DOCTOR OF PHILOSOPHY (Name) (Degree) in BOTANY presented on August 27, 1970 (Major) (Date) Title: BIOSYSTEMATICS OF THE MIMULUS NANUS COMPLEX IN OREGON Abstract approved:Redacted for Privacy Kenton L. Chambers A biosystematic study was made in seven populations of Mimulus nanus Hook. & Arn. and M. cusickii (Greene) Piper (Scrophulariaceae) in central Oregon, and a taxonomic revision was made of the four species of section Eunanus reported from Oregon--M. nanus, M. cusickii, M. clivicola Greenm. and M. jepsonii Grant.Mimulus nanus and M. cusickii have a chromosome number of n = 8. Based on their distinct genetic and morphological differences, M. nanus, M. cusickii and M. clivicola constitute three separate species in Oregon and surrounding regions. Members of M. nanus are the most highly variable in their morphology and are more widely dis- tributed geographically and ecologically.In a limited area of the Cascade Mountains of central and southern Oregon, an ecotype of M. nanus was discovered which differs from the typical form that is widely distributed in Oregon and Idaho.Also, the populations that have pre- viously been named M. jepsonii, occurring in the southern Cascade and northern Sierra Nevada mountains, Oregon and California, are herein treated as an ecotype of M. nanus; they are morphologically similar to this taxon but show differences in ecology and elevational range. The two ecotypes mentioned above appear to hybridize with typical M. nanus at their zones of contact, thus demonstrating the ability for genetic exchange in nature.Cross-compatibility was confirmed in greenhouse hybridizations between the Cascade ecotype and typical M.
    [Show full text]
  • (Linaria Vulgaris) and Dalmatian Toadflax (Linaria
    DISSERTATION VIABILITY AND INVASIVE POTENTIAL OF HYBRIDS BETWEEN YELLOW TOADFLAX (LINARIA VULGARIS) AND DALMATIAN TOADFLAX (LINARIA DALMATICA) Submitted by Marie F.S. Turner Department of Soil and Crop Sciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2012 Doctoral Committee: Advisor: Sarah Ward Christopher Richards David Steingraeber George Beck Sharlene Sing Copyright by Marie Frances Sundem Turner 2012 All Rights Reserved ABSTRACT VIABILITY AND INVASIVE POTENTIAL OF HYBRIDS BETWEEN YELLOW TOADFLAX (LINARIA VULGARIS) AND DALMATIAN TOADFLAX (LINARIA DALMATICA) Although outcomes of hybridization are highly variable, it is now considered to play an important role in evolution, speciation, and invasion. Hybridization has recently been confirmed between populations of yellow (or common) toadflax (Linaria vulgaris) and Dalmatian toadflax (Linaria dalmatica) in the Rocky Mountain region of the United States. The presence of hybrid toadflax populations on public lands is of concern, as both parents are aggressive invaders already listed as noxious weeds in multiple western states. A common garden experiment was designed to measure differences in quantitative (shoot length, biomass, flowering stems, seed capsule production) phenological (time of emergence, first flowering and seed maturity) and ecophysiological (photosynthesis, transpiration and water use efficiency (WUE)) traits for yellow and Dalmatian toadflax, F1 and BC1 hybrids, as well as natural field-collected hybrids from two sites. Genotypes were cloned to produce true replicates and the entire common garden was also replicated at two locations (Colorado and Montana); physiological data were collected only in Colorado. All genotypes grew larger and were more reproductively active in Colorado than in Montana, and hybrids outperformed parent taxa across vegetative and reproductive traits indicating heterosis.
    [Show full text]
  • Biology and Biological Control of Dalmatian and Y Ellow T Oadflax
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF DALMATIAN AND Y ELLOW T OADFLAX LINDA M. WILSON, SHARLENE E. SING, GARY L. PIPER, RICHARD W. H ANSEN, ROSEMARIE DE CLERCK-FLOATE, DANIEL K. MACKINNON, AND CAROL BELL RANDALL Forest Health Technology Enterprise Team—Morgantown FHTET-2005-13 U.S. Department Forest September 2005 of Agriculture Service he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photos: Toadflax (UGA1416053)—Linda Wilson, Beetles (UGA14160033-top, UGA1416054-bottom)—Bob Richard All photographs in this publication can be accessed and viewed on-line at www.forestryimages.org, sponsored by the University of Georgia. You will find reference codes (UGA000000) in the captions for each figure in this publication. To access them, point your browser at http://www.forestryimages.org, and enter the reference code at the search prompt. How to cite this publication: Wilson, L. M., S. E. Sing, G. L. Piper, R. W. Hansen, R. De Clerck- Floate, D. K. MacKinnon, and C. Randall. 2005. Biology and Biological Control of Dalmatian and Yellow Toadflax. USDA Forest Service, FHTET-05-13. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status.
    [Show full text]
  • Proceedings of the Indiana Academy Of
    : . ,, Some Flowering Plants Collected in Parke County, Indiana 133 SOME FLOWERING PLANTS COLLECTED IN PARKE COUNTY, INDIANA Rexford F. Daubenmire, Butler University The following is a list of flowering plants collected by the writer in Parke County, Indiana, during the summer of 1929. A specimen of each species has been deposited in the herbarium of Butler University, Indianapolis, Indiana. Although some of these species have been previously reported from this county, no record has come to the attention of the writer of specimens being placed in Indiana herbaria. An asterisk after the name indicates that the species has been previously reported. The nomenclature used is that of Gray's Manuel, 7th edition. The writer wishes to express appreciation for the cooperation of Mr. S. II. Esten of the Department of Conservation for the permission to collect in Turkey Run State Park. Abutilon theophrasti, Acorus calamus, Amelanchier canadensis, Anemone virginiana, Aralia racemosa, Blephilia hirsuta, Campanula americana, Carpinus caroliniana* , Cassia marylandica, Celtis occidentalis*, Circaea lutetiana, Cornus florida, Corylus americana, Cryptolaenia canadenis*, Echinocystis lobata*, Epi- pactis pubescens*, Erigeron annuus*, Eupatorium perfoliatum, E. purpureum* E. urticaejolium, Galium circaezans, G. concinnum, Gerardia skineriana, Hedeoma pulegioides, Hieraceum longipilum, Houstonia lanceolata, Hydrangea arborescens, Hypericum ascyron, H. gymnanthemum, Leonurus cardiaca, Linaria vulgaris, Lobelia inflata, L. siphilitica* , Mimulus alatus*, Osmorhiza clayloni*, Oxalis corniculata* , Parnassia caroliniana, Penthorum sedioides, Pentstemon hirsutus, Phryma leptostachya, Pilea pumila*, Plantago aristata, Pogonia trianthophora* Polygala sanguinea, Polygonum scandens, Populus grandidentata, Prunella vul- garis, Pycnanthemum pilosum, Quercus velutina, Ranunculus hispidus, Rudbeckia hirta, Rumex crispus*, Sabatia angularis, Salix longifolia* , Sambucus canadensis* Sassafras variifolium, Scutelaria canescens, Solidago altissima, S.
    [Show full text]
  • Bob Allen's OCCNPS Presentation About Plant Families.Pages
    Stigma How to identify flowering plants Style Pistil Bob Allen, California Native Plant Society, OC chapter, occnps.org Ovary Must-knows • Flower, fruit, & seed • Leaf parts, shapes, & divisions Petal (Corolla) Anther Stamen Filament Sepal (Calyx) Nectary Receptacle Stalk Major local groups ©Bob Allen 2017 Apr 18 Page !1 of !6 A Botanist’s Dozen Local Families Legend: * = non-native; (*) = some native species, some non-native species; ☠ = poisonous Eudicots • Leaf venation branched; veins net-like • Leaf bases not sheathed (sheathed only in Apiaceae) • Cotyledons 2 per seed • Floral parts in four’s or five’s Pollen apertures 3 or more per pollen grain Petal tips often • curled inward • Central taproot persists 2 styles atop a flat disk Apiaceae - Carrot & Parsley Family • Herbaceous annuals & perennials, geophytes, woody perennials, & creepers 5 stamens • Stout taproot in most • Leaf bases sheathed • Leaves alternate (rarely opposite), dissected to compound Style “horns” • Flowers in umbels, often then in a secondary umbel • Sepals, petals, stamens 5 • Ovary inferior, with 2 chambers; styles 2; fruit a dry schizocarp Often • CA: Apiastrum, Yabea, Apium*, Berula, Bowlesia, Cicuta, Conium*☠ , Daucus(*), vertically Eryngium, Foeniculum, Torilis*, Perideridia, Osmorhiza, Lomatium, Sanicula, Tauschia ribbed • Cult: Apium, Carum, Daucus, Petroselinum Asteraceae - Sunflower Family • Inflorescence a head: flowers subtended by an involucre of bracts (phyllaries) • Calyx modified into a pappus • Corolla of 5 fused petals, radial or bilateral, sometimes both kinds in same head • Radial (disk) corollas rotate to salverform • Bilateral (ligulate) corollas strap-shaped • Stamens 5, filaments fused to corolla, anthers fused into a tube surrounding the style • Ovary inferior, style 1, with 2 style branches • Fruit a cypsela (but sometimes called an achene) • The largest family of flowering plants in CA (ca.
    [Show full text]
  • Preliminary Checklist of the Terrestrial Flora and Fauna of Fern Cave
    Preliminary Checklist of the Terrestrial Flora and Fauna of Fern Cave National Wildlife Refuge ______________________________________________ Prepared for: United States Fish & Wildlife Service Prepared by: J. Kevin England, MAT David Richardson, MS Completed: as of 22 Sep 2019 All rights reserved. Phone: 256-565-4933 Email: [email protected] Flora & Fauna of FCNWR2 ABSTRACT I.) Total Biodiversity Data The main objective of this study was to inventory and document the total biodiversity of terrestrial habitats located at Fern Cave National Wildlife Refuge (FCNWR). Table 1. Total Biodiversity of Fern Cave National Wildlife Refuge, Jackson Co., AL, USA Level of Classification Families Genera Species Lichens and Allied Fungi 14 21 28 Bryophytes (Bryophyta, Anthocerotophyta, Marchantiophyta) 7 9 9 Vascular Plants (Tracheophytes) 76 138 176 Insects (Class Insecta) 9 9 9 Centipedes (Class Chilopoda) 1 1 1 Millipedes (Class Diplopoda) 2 3 3 Amphibians (Class Amphibia) 3 4 5 Reptiles (Class Reptilia) 2 3 3 Birds (Class Aves) 1 1 1 Mammals (Class Mammalia) 2 2 2 Total 117 191 237 II. Vascular Flora (Appendix 3) Methods and Materials To compile a thorough vascular flora survey, several examples of different plant communities at numerous sites were visited and sampled during the study. Approximately 45 minutes was spent documenting community structure at each site. Lastly, all habitats, ecological systems, and plant associations found within the property boundaries were defined based on floristic content, soil characteristics (soil maps) and other abiotic factors. Flora & Fauna of FCNWR3 The most commonly used texts for specimen identification in this study were Flora of North America (1993+), Mohr (1901), Radford et al.
    [Show full text]
  • Mimulus for All Monkeyflowers 2 3 Running Title: Mimulus for All Monkeyflowers 4 5 6 David B
    1 The case for the continued use of the genus name Mimulus for all monkeyflowers 2 3 Running Title: Mimulus for all monkeyflowers 4 5 6 David B. Lowry1*, James M. Sobel2, Amy L. Angert3, Tia-Lynn Ashman4, Robert L. Baker5, 7 Benjamin K. Blackman6, Yaniv Brandvain7, Kelsey J.R.P. Byers8, Arielle M. Cooley9, Jennifer 8 M. Coughlan10, Michele R. Dudash11, Charles B. Fenster11, Kathleen G. Ferris12, Lila Fishman13, 9 Jannice Friedman14, Dena L. Grossenbacher15, Liza M. Holeski16, Christopher T. Ivey17, 10 Kathleen M. Kay18, Vanessa A. Koelling19, Nicholas J. Kooyers20, Courtney J. Murren21, 11 Christopher D. Muir22, Thomas C Nelson13, Megan L. Peterson23, Joshua R. Puzey24, Michael C. 12 Rotter16, Jeffrey R. Seemann25, Jason P. Sexton26, Seema N. Sheth27, Matthew A. Streisfeld28, 13 Andrea L. Sweigart29, Alex D. Twyford30, Mario Vallejo-Marín31, John H. Willis32, Carrie A. 14 Wu33, Yao-Wu Yuan25 15 16 17 1Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA 18 2Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, 19 USA 20 3Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, V6T 21 1Z4, Canada 22 4Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA 23 5Department of Biology, Miami University, Oxford, OH, 45056, USA 24 6Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 25 94720, USA 26 7Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108,
    [Show full text]