ECE 571 – Advanced Microprocessor-Based Design Lecture 23
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Different Types of RAM RAM RAM Stands for Random Access Memory. It Is Place Where Computer Stores Its Operating System. Applicat
Different types of RAM RAM RAM stands for Random Access Memory. It is place where computer stores its Operating System. Application Program and current data. when you refer to computer memory they mostly it mean RAM. The two main forms of modern RAM are Static RAM (SRAM) and Dynamic RAM (DRAM). DRAM memories (Dynamic Random Access Module), which are inexpensive . They are used essentially for the computer's main memory SRAM memories(Static Random Access Module), which are fast and costly. SRAM memories are used in particular for the processer's cache memory. Early memories existed in the form of chips called DIP (Dual Inline Package). Nowaday's memories generally exist in the form of modules, which are cards that can be plugged into connectors for this purpose. They are generally three types of RAM module they are 1. DIP 2. SIMM 3. DIMM 4. SDRAM 1. DIP(Dual In Line Package) Older computer systems used DIP memory directely, either soldering it to the motherboard or placing it in sockets that had been soldered to the motherboard. Most memory chips are packaged into small plastic or ceramic packages called dual inline packages or DIPs . A DIP is a rectangular package with rows of pins running along its two longer edges. These are the small black boxes you see on SIMMs, DIMMs or other larger packaging styles. However , this arrangment caused many problems. Chips inserted into sockets suffered reliability problems as the chips would (over time) tend to work their way out of the sockets. 2. SIMM A SIMM, or single in-line memory module, is a type of memory module containing random access memory used in computers from the early 1980s to the late 1990s . -
Improving DRAM Performance by Parallelizing Refreshes
Improving DRAM Performance by Parallelizing Refreshes with Accesses Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishti† [email protected] [email protected] [email protected] Alaa R. Alameldeen† Chris Wilkerson† Yoongu Kim Onur Mutlu [email protected] [email protected] [email protected] [email protected] Carnegie Mellon University †Intel Labs Abstract Each DRAM cell must be refreshed periodically every re- fresh interval as specified by the DRAM standards [11, 14]. Modern DRAM cells are periodically refreshed to prevent The exact refresh interval time depends on the DRAM type data loss due to leakage. Commodity DDR (double data rate) (e.g., DDR or LPDDR) and the operating temperature. While DRAM refreshes cells at the rank level. This degrades perfor- DRAM is being refreshed, it becomes unavailable to serve mance significantly because it prevents an entire DRAM rank memory requests. As a result, refresh latency significantly de- from serving memory requests while being refreshed. DRAM de- grades system performance [24, 31, 33, 41] by delaying in- signed for mobile platforms, LPDDR (low power DDR) DRAM, flight memory requests. This problem will become more preva- supports an enhanced mode, called per-bank refresh, that re- lent as DRAM density increases, leading to more DRAM rows freshes cells at the bank level. This enables a bank to be ac- to be refreshed within the same refresh interval. DRAM chip cessed while another in the same rank is being refreshed, alle- density is expected to increase from 8Gb to 32Gb by 2020 as viating part of the negative performance impact of refreshes. -
NON-CONFIDENTIAL for Publication COMP
EUROPEAN COMMISSION Brussels, 15.1.2010 SG-Greffe(2010) D/275 C(2010) 150 Subject: Case COMP/C-3/ 38 636 Rambus (Please quote this reference in all correspondence) […]* 1. I refer to Hynix' complaint to the Commission of 18 December 2002 lodged jointly with Infineon pursuant to Article 3 of Council Regulation No. 17/621 against Rambus Inc. ("Rambus"), an undertaking incorporated in 1990 in California and reincorporated in Delaware, USA, in 1997, with its principal place of business in Los Altos, California, regarding alleged violations of Article 101 and Article 102 of the Treaty on the Functioning of the European Union ("TFEU")2 in connection with computer memory chips which are known as synchronous DRAM chips ("the Complaint"). I also refer to the letters listed here below, by which Hynix provided additional information/explanations on the above matter, as well as the Commission’s letter of 13 October 2009 ["Article 7 letter"] addressed to Hynix in that matter and the response to the Article 7 letter of 12 November 2009. […] 2. For the reasons set out below, the Commission considers that there is no sufficient degree of Community interest for conducting a further investigation into the alleged infringement and rejects your complaint pursuant to Article 7(2) of the Commission Regulation (EC) 773/20043. * This version of the Commission Decision of 15.1.2010 does not contain any business secrets or other confidential information. 1 Regulation No. 17 of the Council of 6 February 1962, First Regulation implementing Articles 85 and 86 of the Treaty (OJ No. 13, 21.2.1962, p. -
Refresh Now and Then Seungjae Baek, Member, IEEE, Sangyeun Cho, Senior Member, IEEE, and Rami Melhem, Fellow, IEEE
IEEE TRANSACTIONS ON COMPUTERS 1 Refresh Now and Then Seungjae Baek, Member, IEEE, Sangyeun Cho, Senior Member, IEEE, and Rami Melhem, Fellow, IEEE Abstract—DRAM stores information in electric charge. Because DRAM cells lose stored charge over time due to leakage, they have to be “refreshed” in a periodic manner to retain the stored information. This refresh activity is a source of increased energy consumption as the DRAM density grows. It also incurs non-trivial performance loss due to the unavailability of memory arrays during refresh. This paper first presents a comprehensive measurement based characterization study of the cell-level data retention behavior of modern low-power DRAM chips. 99.7% of the cells could retain the stored information for longer than 1 second at a high temperature. This average cell retention behavior strongly indicates that we can deeply reduce the energy and performance penalty of DRAM refreshing with proper system support. The second part of this paper, accordingly, develops two practical techniques to reduce the frequency of DRAM refresh operations by excluding a few leaky memory cells from use and by skipping refreshing of unused DRAM regions. We have implemented the proposed techniques completely in the Linux OS for experimentation, and measured performance improvement of up to 17.2% with the refresh operation reduction of 93.8% on smartphone like low-power platforms. Index Terms—SDRAM, refresh operation, power consumption, performance improvement. ✦ 1 INTRODUCTION again. Refresh period, the time interval within which we RAM is commonly used in a computer system’s main must walk through all rows once, is typically 32 ms or D memory. -
Baby Steps to Our Future by Ron Fenley
Baby Steps to our Future by Ron Fenley Memory – Past, Present and Future, Part 2 of 3 Memories,… food for the EGO. Manifestation of memories into self-esteem, honor, dignity and many other traits characterize the individual. Obviously, memories are stored in the brain and scientist have identified, subdivided, labeled and compartmentalized the brain in many functional regions. Computer memory like human memory manifests it presents in different ways to perform a variety of functions; and computer memory has been divided into partitions, subsystems and specialization. Although the memory in today’s computers have not been programmed with personality traits, some PC systems do demonstrate personality disorders, particularly the one this article was written with. There is an abundance of terms that have been used to describe or label computer memory functions, features and attributes. Some terms apply to the hardware technology, some terms apply to the packing of these chips and others apply to the memory usage or memory systems within the computer. Collectively, all of these terms may be confusing and to help sort out and clarify these labels we will look at how these items have been applied to computer memory. To simplify this task, the effort will be divided into the following 5 areas: packing, parity & ECC, buffered/non-buffered, systems and labels. MEMORY PACKAGING Just as memory technology has evolved so has memory packaging. Shown below is a table of the different form factors (packaging) that has been used in memory deployment over -
Memory & Storage Challenges and Solutions
Memory & Storage Challenges and Solutions G S A 2 0 1 9 Jinman Han Senior Vice President, Memory Product Planning & Application Engineering Legal Disclaimer This presentation is intended to provide information concerning SSD and memory industry. We do our best to make sure that information presented is accurate and fully up-to-date. However, the presentation may be subject to technical inaccuracies, information that is not up-to-date or typographical errors. As a consequence, Samsung does not in any way guarantee the accuracy or completeness of information provided on this presentation. The information in this presentation or accompanying oral statements may include forward-looking statements. These forward-looking statements include all matters that are not historical facts, statements regarding the Samsung Electronics' intentions, beliefs or current expectations concerning, among other things, market prospects, growth, strategies, and the industry in which Samsung operates. By their nature, forward- looking statements involve risks and uncertainties, because they relate to events and depend on circumstances that may or may not occur in the future. Samsung cautions you that forward looking statements are not guarantees of future performance and that the actual developments of Samsung, the market, or industry in which Samsung operates may differ materially from those made or suggested by the forward-looking statements contained in this presentation or in the accompanying oral statements. In addition, even if the information contained herein or the oral statements are shown to be accurate, those developments may not be indicative developments in future periods. Abstract Memory-centric system innovation is the overarching theme of modern semiconductor technology and is one of the crucial driving forces of the future IT world. -
Micron Technology Inc
MICRON TECHNOLOGY INC FORM 10-K (Annual Report) Filed 10/26/10 for the Period Ending 09/02/10 Address 8000 S FEDERAL WAY PO BOX 6 BOISE, ID 83716-9632 Telephone 2083684000 CIK 0000723125 Symbol MU SIC Code 3674 - Semiconductors and Related Devices Industry Semiconductors Sector Technology Fiscal Year 03/10 http://www.edgar-online.com © Copyright 2010, EDGAR Online, Inc. All Rights Reserved. Distribution and use of this document restricted under EDGAR Online, Inc. Terms of Use. UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended September 2, 2010 OR TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number 1-10658 Micron Technology, Inc. (Exact name of registrant as specified in its charter) Delaware 75 -1618004 (State or other jurisdiction of (IRS Employer incorporation or organization) Identification No.) 8000 S. Federal Way, Boise, Idaho 83716 -9632 (Address of principal executive offices) (Zip Code) Registrant ’s telephone number, including area code (208) 368 -4000 Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Common Stock, par value $.10 per share NASDAQ Global Select Market Securities registered pursuant to Section 12(g) of the Act: None (Title of Class) Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. -
Swissbit SMT Memory Product Guide Rev1.9.Pub
SWISSMEMORY™ Industrial Product Line DRAM Memory Products Solutions for Industrial and Embedded Applications Surface Mount Technology (SMT) DDR3 DDR2 DDR SDRAM DRAM Visit us at www.swissbit.com Version 1.9 - 01/2009 DDR3 SDRAM TECHNOLOGY SDRAM DDR3 modules are Swissbit’s most recent Double Data Rate products to market. DDR3 is the memory choice for performance driven systems with clock frequencies of 400 to 800MHz and data rates of 800 to 1600 Mb per second. In addition to DDR3’s improved performance in dual- and multi-core systems, it also provides increased efficiency with lower power consumption. DDR3 power consumption is approximately 20% or more lower than its predecessor at 1.35V to 1.5V as compared to the 1.8V of DDR2. Swissbit offers DDR3’s unmatched combination of high bandwidth and density with lower power consumption in the variety of module packages. Density Swissbit PN Data Rate (MT/s) - CL Height # IC’s IC Org Rank DDR3 SDRAM UDIMM (240 pin) 512MB (64Mx64) SGU06464C1CB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 4 64Mx16 1 1GB (128Mx64) SGU12864D1BB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 8 128Mx8 1 2GB (256Mx64) SGU25664E1BB2xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 16 128Mx8 2 DDR3 SDRAM UDIMM w/ ECC (240 pin) 512MB (64Mx72) SGU06472H1CB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 5 64Mx16 1 1GB (128Mx72) SGU12872F1BB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 9 128Mx8 1 2GB (256Mx72) SGU25672G1BB2xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 18 128Mx8 2 DDR3 SDRAM -
Low Power DRAM Evolution Osamu Nagashima Executive Professional Micron Memory Japan
Low Power DRAM Evolution Osamu Nagashima Executive Professional Micron Memory Japan JEDEC Mobile Copyright © 2016 Micron Technology, Inc & IOT Forum How We Got Here • Low Power DRAM evolved from a lower- voltage, lower-performance version of PC-DRAM designed for mobile packages to become one of the highest bandwidth-per-pin DRAMs available • High resolution displays, high-resolution cameras, and 3D rendered content are the primary drivers for increased bandwidth in mobile devices Mainstream DRAM Datarate by Type and Year of Introduction 4500 4000 3500 3000 2500 2000 1500 1000 500 0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 LPDDR PC-DDR Evolution of Mainstream DRAM Energy Power Evolution 50.00 DDR2 DDR3 DDR4 LPDDR2 LPDDR3 LPDDR4 ENERGY, PJ/BITENERGY, 0.00 500 1000 1500 2000 2500 3000 3500 4000 4500 DATA RATE, MBPS Typical Mobile Device Usage 2% 8% 100% 4% 4% • The percentage of 20% 80% active usage has 20% 24% greatly increased in 60% recent years, driving 22% 13% an increase in 40% 12% memory bandwidth 20% 37% 34% • This has shifted 0% limitations from Heavy user Light user standby battery life to active battery life and Read Energy Write Energy Activate Energy thermal limits Standby Energy Refresh Energy Self Refresh Energy Near-Term Future • This evolution of system limitations is driving future LPDRAM architectures, beginning with the evolution of the LPDDR4 standard • Responding to the need for lower power, JEDEC is developing a reduced-I/O power version of LPDDR4, called LPDDR4X • LPDDR4X will reduce the Vddq level from 1.1v to 0.6v • Signaling swing will remain similar to LPDDR4 – This allows the same receiver designs and specifications to be used for both LPDDR4 and LPDDR4X LPDDR4X: I/O Energy Reduction • Reducing Vddq from 1.1v to 0.6v produces about 40% I/O energy savings LPDDR4 vs. -
Dynamic Random Access Memory Topics
Dynamic Random Access Memory Topics Simple DRAM Fast Page Mode (FPM) DRAM Extended Data Out (EDO) DRAM Burst EDO (BEDO) DRAM Synchronous DRAM (SDRAM) Rambus DRAM (RDRAM) Double Data Rate (DDR) SDRAM One capacitor and transistor of power, the discharge y Leaks a smallcapacitor amount slowly Simplicit refresh Requires top sk de in ed Us le ti la o v General DRAM Formats • DRAM is produced as integrated circuits (ICs) bonded and mounted into plastic packages with metal pins for connection to control signals and buses • In early use individual DRAM ICs were usually either installed directly to the motherboard or on ISA expansion cards • later they were assembled into multi-chip plug-in modules (DIMMs, SIMMs, etc.) General DRAM formats • Some Standard Module Type: • DRAM chips (Integrated Circuit or IC) • Dual in-line Package (DIP) • DRAM (memory) modules • Single in-line in Package(SIPP) • Single In-line Memory Module (SIMM) • Dual In-line Memory Module (DIMM) • Rambus In-line Memory Module (RIMM) • Small outline DIMM (SO-DIMM) Dual in-line Package (DIP) • is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins • 14 pins Single in-line in Package (SIPP) • It consisted of a small printed circuit board upon which were mounted a number of memory chips. • It had 30 pins along one edge which mated with matching holes in the motherboard of the computer. Single In-line Memory Module (SIMM) SIMM can be a 30 pin memory module or a 72 pin Dual In-line Memory Module (DIMM) Two types of DIMMs: a 168-pin SDRAM module and a 184-pin DDR SDRAM module. -
SDRAM Memory Systems: Architecture Overview and Design Verification SDRAM Memory Systems: Architecture Overview and Design Verification Primer
Primer SDRAM Memory Systems: Architecture Overview and Design Verification SDRAM Memory Systems: Architecture Overview and Design Verification Primer Table of Contents Introduction . 3 - 4 DRAM Trends . .3 DRAM . 4 - 6 SDRAM . 6 - 9 DDR SDRAM . .6 DDR2 SDRAM . .7 DDR3 SDRAM . .8 DDR4 SDRAM . .9 GDDR and LPDDR . .9 DIMMs . 9 - 13 DIMM Physical Size . 9 DIMM Data Width . 9 DIMM Rank . .10 DIMM Memory Size & Speed . .10 DIMM Architecture . .10 Serial Presence Detect . .12 Memory System Design . .13 - 15 Design Simulation . .13 Design Verification . .13 Verification Strategy . .13 SDRAM Verification . .14 Glossary . .16 - 19 2 www.tektronix.com/memory SDRAM Memory Systems: Architecture Overview and Design Verification Primer Introduction Memory needs to be compatible with a wide variety of memory controller hubs used by the computer DRAM (Dynamic Random Access Memory) is attractive to manufacturers. designers because it provides a broad range of performance Memory needs to work when a mixture of different and is used in a wide variety of memory system designs for manufacturer’s memories is used in the same memory computers and embedded systems. This DRAM memory system of the computer. primer provides an overview of DRAM concepts, presents potential future DRAM developments and offers an overview Open memory standards are useful in helping to ensure for memory design improvement through verification. memory compatibility. DRAM Trends On the other hand, embedded systems typically use a fixed There is a continual demand for computer memories to be memory configuration, meaning the user does not modify larger, faster, lower powered and physically smaller. These the memory system after purchasing the product. -
Datakommunikasjon Og Maskinvare
Institutt for økonomi og IT Datakommunikasjon og maskinvare Kompendium til emnet 6105N Windows Server og datanett Jon Kvisli Universitetet i Sørøst-Norge, Januar 2020 © Jon Kvisli, 2020 Windows® og Windows Server® er varemerker registrert av Microsoft Corporation. Det må ikke kopieres fra dette heftet ut over det som er tillatt etter bestemmelser i «Lov om opphavsrett til åndsverk», og avtaler om kopiering inngått med Kopinor. Forsidebilde: Colourbox Sats: Jon Kvisli 2 Innhold 1. GRUNNPRINSIPPER I DATAKOMMUNIKASJON .......................................................................... 4 1.1. Punkt-til-punkt kommunikasjon ................................................................................................................ 4 1.2. Kommunikasjonsbusser ............................................................................................................................. 8 1.3. Signalering ................................................................................................................................................ 10 1.4. Dempning, støy og forvrengning.............................................................................................................. 14 1.5. Digitale og analoge signaler ..................................................................................................................... 16 1.6. Noen kommunikasjonsstandarder ........................................................................................................... 17 1.7. Sammendrag ...........................................................................................................................................