Status of Time in Physics

Total Page:16

File Type:pdf, Size:1020Kb

Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Status of Time in Physics Ramis Movassagh Department of Mathematics, MIT/Northeastern September 17, 2012 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Outline Time in the scientific methods Conception of time throughout history Space-time in physics Origin of space-time Measuring time Information and time Modern views of fabric of space-time Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Out - of - line Time in psyche (perception/intensity) Time in religion Existence (now-ness, illusion of time) Reality Philosophy of time Management of time and its use Determinism with relation to free will Mythology Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time What is time? Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time What is time? [mass noun] the indefinite continued progress of existence and events in the past, present, and future regarded as a whole - Oxford Dictionaries Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time What is time? [mass noun] the indefinite continued progress of existence and events in the past, present, and future regarded as a whole - Oxford Dictionaries Time is the continuing sequence of events occurring in apparently irreversible succession from the past through the present to the future and a measure of the durations and frequencies of events and the intervals between them. -Wikipedia Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time What is time? [mass noun] the indefinite continued progress of existence and events in the past, present, and future regarded as a whole - Oxford Dictionaries Time is the continuing sequence of events occurring in apparently irreversible succession from the past through the present to the future and a measure of the durations and frequencies of events and the intervals between them. -Wikipedia Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Less controversial Wiki hits "time is what clocks measure" "time is what keeps everything from happening at once" Comment: Whoever wrote this didn’t believe in causality. Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time The Scientific Method Key element in science is experiment Confidence in experiment requires reproducibility There is a tacit assumption of homogeneity in time when performing experiments. Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time The Scientific Arrogance Zealous belief in comprehensibility of nature The Eventual Goal of Science is to provide a single theory that describes the whole universe - S. Hawking, Briefer History of Time Demanding a unified view especially developed in countries that were monotheistic (e.g. unifying forces, string theory etc.) Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Physics Physics is mainly concerned with the state and evolution in time of material particles and fields given the couplings among them. Newton's 2nd F = m a = m x “law of motion” Physics (empirical) Math (differential equation) Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Physics Physics Physics is mainly concerned with the state and evolution in time of material particles and fields given the couplings among them. t > 0 t = 0 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time (non) determinism (non) determinism Omar Khayyam (1048–1131) Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time (non) determinism And the first Morning of Creation wrote What the Last Dawn of Reckoning shall read. Omar Khayyam (1048–1131) Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Existence Static Existence: “Block Universe” t Person B's Life events y Person A's Life events x Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Determinism Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external, and by another name is called duration... Sir Isaac Newton (1649 -1736) Principia Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Arrow of Time Good References: ● S. Carroll's talks and book ● Schrödinger, 'what is life?' ● H Price, Time Arrow (Phil.) Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Arrow of time t 0 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Arrow of time Many ways of having such evolution t t > t 0 0 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Arrow of time ? t > t t 0 0 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Arrow of time YES! “...You would have to wait a long time” - L. Boltzmann NOT Many ways of having such evolution t > t t 0 0 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Micro vs. Macro States Microstates: any particular configuration in the phase space Macrostate: sets of macroscopically indistiguishable microstates S = kB lnD Entropy is lack of information, lack of structure Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Phase Space Probabilities Second law of thermodynamics: time evolution of the state S ≥ 0 t > t0 t = t0 Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time The second law of thermodynamics Equilibrium is death for living matter So why is the universe so complex (life, structure, etc.) ? ? Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time What is Life? S = kB lnD D: amount of disorder Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time What is Life? S = kB lnD 1 S = k ln = −k lnD drawn B D B D: amount of disorder Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Drawing order and pushing equilibrium away Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Drawing order and pushing equilibrium away Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space and Time Ludwig Boltzmann (1844 - 1906) ...That in Nature the transition from a probable to an improbable state does not happen equally often as the opposite transition, should be sufficiently explained by the assumption of a very improbably state of the whole universe surrounding us ... Ramis Movassagh Status of Time in Physics Time in Science and the Arrow of Time Einstein’s Relativity and Consequences Quantum Theory of Fields and the Fabric of Space
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • From Relativistic Time Dilation to Psychological Time Perception
    From relativistic time dilation to psychological time perception: an approach and model, driven by the theory of relativity, to combine the physical time with the time perceived while experiencing different situations. Andrea Conte1,∗ Abstract An approach, supported by a physical model driven by the theory of relativity, is presented. This approach and model tend to conciliate the relativistic view on time dilation with the current models and conclusions on time perception. The model uses energy ratios instead of geometrical transformations to express time dilation. Brain mechanisms like the arousal mechanism and the attention mechanism are interpreted and combined using the model. Matrices of order two are generated to contain the time dilation between two observers, from the point of view of a third observer. The matrices are used to transform an observer time to another observer time. Correlations with the official time dilation equations are given in the appendix. Keywords: Time dilation, Time perception, Definition of time, Lorentz factor, Relativity, Physical time, Psychological time, Psychology of time, Internal clock, Arousal, Attention, Subjective time, Internal flux, External flux, Energy system ∗Corresponding author Email address: [email protected] (Andrea Conte) 1Declarations of interest: none Preprint submitted to PsyArXiv - version 2, revision 1 June 6, 2021 Contents 1 Introduction 3 1.1 The unit of time . 4 1.2 The Lorentz factor . 6 2 Physical model 7 2.1 Energy system . 7 2.2 Internal flux . 7 2.3 Internal flux ratio . 9 2.4 Non-isolated system interaction . 10 2.5 External flux . 11 2.6 External flux ratio . 12 2.7 Total flux .
    [Show full text]
  • 2020-2021 Districtwide School Year Calendar
    FINAL 2020 – 2021 Districtwide School Year Calendar AUGUST FEBRUARY 2020-21 Calendar M T W T F M T W T F 3 4 5 6 7 1 2 3 4 5 Aug 17 Professional Meeting Day. No Students 8 Aug 18 -21 Staff Professional Development Day. 10 11 12 13 14 9 10 11 12 M No Students. Aug 24 Schools Open. Students Report. 17 18 19 20 21 15 16 17 18 19 Sept 7 Labor Day. Holiday. Schools Closed Sep 14 Midterm Week 24 25 26 27 28 22 23 24 25 26 Sep 21 –Oct 9 Fall Gifted Screening 31 Sep 28- Oct 9 INVIEW / Terra Nova (Elementary) Oct 14 PSAT (High Schools) Oct 16 End of First Quarter. Students Report. SEPTEMBER MARCH (39 Instructional Days, 44 Staff Days). M T W T F M T W T F Oct 21 – 27 3rd Grade Fall ELA. 1 2 3 4 1 2 3 4 5 Nov 2 Conference Comp Day –School Closed Nov 3 Election Day – Conference Day. 7 8 9 10 11 8 9 10 11 12 Q No Students. 14 M 15 16 17 18 15 16 17 18 19 Nov 9 Midterm Week 21 22 23 24 25 22 23 24 25 26 Nov 11 Veterans’ Day. Holiday Observance. Schools Closed. 28 29 30 29 30 31 Nov 25 Conference Day. No Students. Nov 26 Thanksgiving. Holiday Observance. OCTOBER APRIL Nov 27 Schools Closed. Dec 1 – 11 Fall HS End of Course M T W T F M T W T F Dec 14 -18 Semester 1 Exams (High Schools) 1 2 1 2 Dec 18 End of Second Quarter.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • The Second Law of Thermodynamics Forbids Time Travel
    Cosmology, 2014, Vol. 18. 212-222 Cosmology.com, 2014 The Second Law Of Thermodynamics Forbids Time Travel Marko Popovic Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA Abstract Four space-time coordinates define one thermodynamic parameter - Volume. Cell/ organism growth is one of the most fundamental properties of living creatures. The growth is characterized by irreversible change of the volume of the cell/organism. This irreversible change of volume (growth of the cell/organism) makes the system irreversibly change its thermodynamic state. Irreversible change of the systems thermodynamic state makes impossible return to the previous state characterized by state parameters. The impossibility to return the system to the previous state leads to conclusion that even to artificially turn back the arrow of time (as a parameter), it is not possible to turn back the state of the organism and its surroundings. Irreversible change of thermodynamic state of the organism is also consequence of the accumulation of entropy during life. So even if we find the way to turn back the time arrow it is impossible to turn back the state of the thermodynamic system (including organism) because of irreversibility of thermodynamic/ physiologic processes in it. Keywords: Time travel, Entropy, Living Organism, Surroundings, Irreversibility Cosmology, 2014, Vol. 18. 212-222 Cosmology.com, 2014 1. Introduction The idea of time travel has fascinated humanity since ancient times and can be found in texts as old as Mahabharata and Talmud. Later it continued to be developed in literature (i.e. Dickens' “A Christmas Carol”, or Twain's “A Connecticut Yankee in King Arthur's Court”…).
    [Show full text]
  • Coordinates and Proper Time
    Coordinates and Proper Time Edmund Bertschinger, [email protected] January 31, 2003 Now it came to me: . the independence of the gravitational acceleration from the na- ture of the falling substance, may be expressed as follows: In a gravitational ¯eld (of small spatial extension) things behave as they do in a space free of gravitation. This happened in 1908. Why were another seven years required for the construction of the general theory of relativity? The main reason lies in the fact that it is not so easy to free oneself from the idea that coordinates must have an immediate metrical meaning. | A. Einstein (quoted in Albert Einstein: Philosopher-Scientist, ed. P.A. Schilpp, 1949). 1. Introduction These notes supplement Chapter 1 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate on the discussion of bookkeeper coordinates and how coordinates are related to actual physical distances and times. Also, a brief discussion of the classic Twin Paradox of special relativity is presented in order to illustrate the principal of maximal (or extremal) aging. Before going to details, let us review some jargon whose precise meaning will be important in what follows. You should be familiar with these words and their meaning. Spacetime is the four- dimensional playing ¯eld for motion. An event is a point in spacetime that is uniquely speci¯ed by giving its four coordinates (e.g. t; x; y; z). Sometimes we will ignore two of the spatial dimensions, reducing spacetime to two dimensions that can be graphed on a sheet of paper, resulting in a Minkowski diagram.
    [Show full text]
  • 2021-22 Official District Calendar
    Perrysburg AMENDED JUNE 21, 2021 Public Schools Tuesday August 10 HPI - Grade 6 orientation, Junior High Orientation 2021-2022 Wednesday August 11 JH &HPI (grade 5) orientation Thursday August 12 Teacher Inservice School Year Calendar Friday August 13 Teacher Inservice Monday August 16 Teacher Inservice/Workday Tuesday-Thursday August 17-19 Elementary - Jacket Jump Start Appointments Tuesday August 17 HS-Freshman only attend, JH-Grade 8 only attend, HPI-Grade 6 only attend AUGUST 2021 SEPTEMBER 2021 OCTOBER 2021 Wednesday August 18 HS-Freshman only attend, JH-Grade 7 only attend, HPI-Grade 5 only attend M T W T F M T W T F M T W T F Thursday August 19 All High School, Junior High and HPI attend school 2 3 4 5 6 1 2 3 1 Thursday August 19 High School Open House - evening Elementary - First day 9 10 11 12 13 6 7 8 9 10 4 5 6 7 8 Friday August 20 Monday August 23 Preschool First Day 16 17 18 19 20 13 14 15 16 17 11 12 13 14 15 1 Thursday August 26 Junior High Open House - evening 23 24 25 26 27 20 21 22 23 24 18 19 20 21 22 Monday September 6 Labor Day - No School Preschool-12 30 31 27 28 29 30 25 26 27 28 29 Thursday September 23 High School Evening Conferences NOVEMBER 2021 DECEMBER 2021 JANUARY 2022 Friday October 15 End of first quarter M T W T F M T W T F M T W T F Monday & Wed.
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • The Arrow of Time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, Journal Homepage P.O
    The arrow of time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, journal homepage P.O. Box 871504, Tempe, AZ 852871504, USA. www.euresisjournal.org [email protected] Abstract The arrow of time is often conflated with the popular but hopelessly muddled concept of the “flow” or \passage" of time. I argue that the latter is at best an illusion with its roots in neuroscience, at worst a meaningless concept. However, what is beyond dispute is that physical states of the universe evolve in time with an objective and readily-observable directionality. The ultimate origin of this asymmetry in time, which is most famously captured by the second law of thermodynamics and the irreversible rise of entropy, rests with cosmology and the state of the universe at its origin. I trace the various physical processes that contribute to the growth of entropy, and conclude that gravitation holds the key to providing a comprehensive explanation of the elusive arrow. 1. Time's arrow versus the flow of time The subject of time's arrow is bedeviled by ambiguous or poor terminology and the con- flation of concepts. Therefore I shall begin my essay by carefully defining terms. First an uncontentious statement: the states of the physical universe are observed to be distributed asymmetrically with respect to the time dimension (see, for example, Refs. [1, 2, 3, 4]). A simple example is provided by an earthquake: the ground shakes and buildings fall down. We would not expect to see the reverse sequence, in which shaking ground results in the assembly of a building from a heap of rubble.
    [Show full text]
  • DECODING the PAST: the Work of Archaeologists
    to TEACHINGRT WITH THE POWER OOOF OBJECTS Smithsonian Institution November/December 1995 DECODING THE PAST: The Work of Archaeologists Inside Subjects Grades Publication of Art to Zoo is made possible Lesson Plan Social Studies 4–9 through the generous support of the Pacific Take-Home Page Science Mutual Foundation. in English/Spanish Language Arts CONTENTS Introduction page 3 Lesson Plan Step 1 page 6 Worksheet 1 page 7 Lesson Plan Step 2 page 8 Worksheet 2 page 9 Lesson Plan Step 3 page 10 Take-Home Page page 11 Take-Home Page in Spanish page 13 Resources page 15 Art to Zoo’s purpose is to help teachers bring into their classrooms the educational power of museums and other community resources. Art to Zoo draws on the Smithsonian’s hundreds of exhibitions and programs—from art, history, and science to aviation and folklife—to create classroom- ready materials for grades four through nine. Each of the four annual issues explores a single topic through an interdisciplinary, multicultural Above photo: The layering of the soil can tell archaeologists much about the past. (Big Bend Reservoir, South Dakota) approach. The Smithsonian invites teachers to duplicate Cover photo: Smithsonian Institution archaeologists take a Art to Zoo materials for educational use. break during the River Basin Survey project, circa 1950. DECODING THE PAST: The Work of Archaeologists Whether you’re ten or one hundred years old, you have a sense of the past—the human perception of the passage of time, as recent as an hour ago or as far back as a decade ago.
    [Show full text]
  • The Philosophy and Physics of Time Travel: the Possibility of Time Travel
    University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well Honors Capstone Projects Student Scholarship 2017 The Philosophy and Physics of Time Travel: The Possibility of Time Travel Ramitha Rupasinghe University of Minnesota, Morris, [email protected] Follow this and additional works at: https://digitalcommons.morris.umn.edu/honors Part of the Philosophy Commons, and the Physics Commons Recommended Citation Rupasinghe, Ramitha, "The Philosophy and Physics of Time Travel: The Possibility of Time Travel" (2017). Honors Capstone Projects. 1. https://digitalcommons.morris.umn.edu/honors/1 This Paper is brought to you for free and open access by the Student Scholarship at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Honors Capstone Projects by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact [email protected]. The Philosophy and Physics of Time Travel: The possibility of time travel Ramitha Rupasinghe IS 4994H - Honors Capstone Project Defense Panel – Pieranna Garavaso, Michael Korth, James Togeas University of Minnesota, Morris Spring 2017 1. Introduction Time is mysterious. Philosophers and scientists have pondered the question of what time might be for centuries and yet till this day, we don’t know what it is. Everyone talks about time, in fact, it’s the most common noun per the Oxford Dictionary. It’s in everything from history to music to culture. Despite time’s mysterious nature there are a lot of things that we can discuss in a logical manner. Time travel on the other hand is even more mysterious.
    [Show full text]