View Preprint

Total Page:16

File Type:pdf, Size:1020Kb

View Preprint A peer-reviewed version of this preprint was published in PeerJ on 17 January 2017. View the peer-reviewed version (peerj.com/articles/2903), which is the preferred citable publication unless you specifically need to cite this preprint. Kubicka AM, Rosin ZM, Tryjanowski P, Nelson E. 2017. A systematic review of animal predation creating pierced shells: implications for the archaeological record of the Old World. PeerJ 5:e2903 https://doi.org/10.7717/peerj.2903 A systematic review of natural processes in creating pierced shells: implications for the archaeological record Anna Maria Kubicka, Zuzanna M Rosin, Piotr Tryjanowski, Emma Nelson Background. The shells of molluscs survive well in most sedimentary contexts and yield information about the diet of prehistoric humans. They also yield evidence of symbolic behaviours, through their use as beads for body adornments. Researchers often analyse the location of perforations in shells to make judgements about their use as symbolic objects (i.e., beads), the assumption being, that holes attributable to deliberate human behaviour are more likely to exhibit low variability in their anatomical locations, while holes attributable to natural processes yield more random perforations. However, there are non-anthropogenic factors that can cause perforations in shells and these may not be random. The aim of the study is to look at the association between variation of holes in shell beads from archaeological sites and shells pierced by natural (non-human) processes. Methods. Two hundred and sixty scientific papers retrieved from online databases by using keywords, (e.g., ‘shell beads’; ‘pierced shells’); 77 of these publications enabled us to conduct a systematic review and assess the location of the hole in the shell beads in the published articles. Results. Almost all archaeological sites described shells beads with holes in a variety of anatomical locations. High variation of hole-placement was also found within the same species from the same site, as well as among sites. In contrast, predators were more specific in where they attacked molluscs; birds often select the thinnest part of the shell, while molluscs and cephalopods target thicker parts. Discussion. These results indicate that variation in hole-location on shells pierced by humans is greater than variation in the placement of holes created by natural processes. Consequently, these patterns are opposite to those expected. We also found that Gastropod and Bivalve predators choose similar hole locations to humans. Research into human shell-beads recovered from archaeological contexts should take into account non-anthropogenic factors, which can lead to more realistic scenarios of the cultural behaviours of prehistoric people. PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1710v1 | CC-BY 4.0 Open Access | rec: 4 Feb 2016, publ: 4 Feb 2016 1 A systematic review of natural processes in creating pierced shells: implications for 2 the archaeological record 3 Anna Maria Kubicka1, Zuzanna M. Rosin2, Piotr Tryjanowski3, Emma Nelson4,5 4 5 1Adam Mickiewicz University in Faculty of Biology, Department of Human 6 Evolutionary Biology, Poland.Poznań, 7 2Adam Mickiewicz UniversityPoznań, in Institute of Experimental Biology, Department of 8 Cell Biology, Poland. Poznań, 9 3 UniversityPoznań, of Life Sciences, Institute of Zoology, Poland. 10 4SchoolPoznań of Medicine, University of Liverpool, Liverpool, UKPoznań, 11 5Archeology, Classics and Egyptology, University of Liverpool, Liverpool, UK. 12 13 Corresponding author: 14 Anna Maria Kubicka 15 Umultowska 89, PL61-614, Poland 16 e-mail address: [email protected]ń, 17 ABSTRACT 18 Background. The shells of molluscs survive well in most sedimentary contexts and yield 19 information about the diet of prehistoric humans. They also yield evidence of symbolic 20 behaviours, through their use as beads for body adornments. Researchers often analyse the 21 location of perforations in shells to make judgements about their use as symbolic objects 22 (i.e., beads), the assumption being, that holes attributable to deliberate human behaviour 23 are more likely to exhibit low variability in their anatomical locations, while holes 24 attributable to natural processes yield more random perforations. However, there are non- 25 anthropogenic factors that can cause perforations in shells and these may not be random. 26 The aim of the study is to look at the association between variation of holes in shell beads 27 from archaeological sites and shells pierced by natural (non-human) processes. 28 Methods. Two hundred and sixty scientific papers retrieved from online databases by 29 using keywords, (e.g., ‘shell beads’; ‘pierced shells’); 77 of these publications enabled us to 30 conduct a systematic review and assess the location of the hole in the shell beads in the 31 published articles. 32 Results. Almost all archaeological sites described shells beads with holes in a variety of 33 anatomical locations. High variation of hole-placement was also found within the same 34 species from the same site, as well as among sites. In contrast, predators were more 35 specific in where they attacked molluscs; birds often select the thinnest part of the shell, 36 while molluscs and cephalopods target thicker parts. 37 Discussion. These results indicate that variation in hole-location on shells pierced by 38 humans is greater than variation in the placement of holes created by natural processes. 39 Consequently, these patterns are opposite to those expected. We also found that Gastropod 40 and Bivalve predators choose similar hole locations to humans. Research into human shell- 41 beads recovered from archaeological contexts should take into account non-anthropogenic 42 factors, which can lead to more realistic scenarios of the cultural behaviours of prehistoric 43 people. 44 Keywords: Gastropoda, Scaphopoda, Bivalvia, shell beads, interspecies interactions, 45 jewellery, predators. 46 INTRODUCTION 47 The adornments of prehistoric people play an important role in our understanding 48 of the evolution of human behaviour (Bednarik, 2001; Gutiérrez-Zugasti et al., 2013) 49 because they can indicate evolutionary changes in the cognitive and linguistic abilities of 50 early humans (Vanhaeren & d’Errico, 2006; Schick & Toth, 2013; Stiner, 2014). These 51 findings help anthropologists to construct a picture of the life of prehistoric human groups, 52 and can give insights into their social status (Bednarik, 1998; Stiner, 1999; Vanhaeren & 53 d’Errico, 2005), group membership, age or marital status (Kuhn et al., 2001). Personal 54 adornments made from molluscs survive well in most sedimentary contexts (Bar-Yosef- 55 Mayer & Beyin, 2009) and can be interpreted in a various ways, depending on the context 56 of the find. Usually the deposits are associated with graves (Vanhaeren et al., 2004; 57 Vanhaeren & d’Errico, 2005), human made-shelters (Kuhn et al., 2001) and hearths (Douka 58 et al., 2014). Some of the earliest forms of body adornments are in the form of shells beads 59 and date back to ~75 Kya (Henshilwood et al., 2004)and ~82 Kya (Bouzouggar et al., 60 2007), possibly even 100-130 Kya (Vanhaereny et al., 2006)or earlier (Bednarik, 2015). 61 However, others researchers argue that this “modern behaviour” was probably established 62 much earlier and taphonomic processes mean that shell beads are simply the earliest 63 material associated with body adornment that have survived (Bowdler & Mellars, 1990; 64 Noble & Davidson, 1996; Botha, 2008, 2010). 65 Generally shell artefacts are limited to marine molluscs found in habitation levels 66 (Vanhaeren & d’Errico, 2006), while evidence of land and freshwater gastropods are more 67 rare [e.g., El Cuco, 23-34 Kya(Gutiérrez-Zugasti et al., 2013)]. The majority of shell artefacts 68 are known from the Palaeolithic and Neolithic sites in Levant, South Africa, Europe, North 69 America and Asia. Interestingly, while early dated shell remains from occupation layers in 70 Africa are only associated with anatomically modern humans (AMHs), molluscs recovered 71 from Middle Palaeolithic (MP) layers in Europe are mainly related to Neanderthal 72 occupations(Gutiérrez-Zugasti et al., 2013). Although some researchers have argued that 73 strategies for exploiting coastal resources do not differ between European Neanderthals 74 and AMHs in Africa during the MP and MSA (Stringer & Barton, 2008), others interpret the 75 evidence differently, with Neanderthals exploiting marine environments infrequently 76 compared to AMH (Shipman, 2015). 77 Researchers make detailed analyses of adornments, radiometric dates and 78 stratigraphic information to explain innovations in shell beads, as well as the spread of 79 cultural traditions (Kuhn et al., 2001). Piercings in shells carry indications as to the 80 placement, the rigidity or flexibility of the ornament within a larger assemblage and, in 81 relation to the substrate or cord, the direction the traction was exerted (Cristiani, 2012). 82 Based upon this kind of painstaking evidence-gathering, experts make judgements as to 83 whether perforations in shells from archaeological sites are anthropogenic in origin or 84 formed by natural processes (d’Errico et al., 2005), such as those made by hole-drilling 85 animals (predators, parasites; (Kowalewski, 2004; Li, Young & Zhan, 2011)). While the 86 location of the perforation is only part of raft of evidence that indicates an operational 87 chain (starting with the collection of the raw material,
Recommended publications
  • Molluscan Studies
    Journal of The Malacological Society of London Molluscan Studies Journal of Molluscan Studies (2014) 80: 412–419. doi:10.1093/mollus/eyu037 Advance Access publication date: 20 June 2014 Morphological expression and histological analysis of imposex in Gemophos viverratus (Kiener, 1834) (Gastropoda: Buccinidae): a new bioindicator of tributyltin pollution on the West African coast Ruy M. A. Lopes-dos-Santos1, Corrine Almeida2, Maria de Lourdes Pereira3, Carlos M. Barroso4 and Susana Galante-Oliveira4 1Biology Department, University of Aveiro, Campus Universita´rio de Santiago, 3810-193 Aveiro, Portugal; 2Department of Engineering and Sea Sciences (DECM), University of Cabo Verde, Campus da Ribeira de Julia˜o, CP 163 Sa˜o Vicente, Cabo Verde; 3Biology Department & CICECO, University of Aveiro, Campus Universita´rio de Santiago, 3810-193 Aveiro, Portugal; and 4Biology Department & CESAM, University of Aveiro, Campus Universita´rio de Santiago, 3810-193 Aveiro, Portugal Correspondence: R. M. A. Lopes-dos-Santos; e-mail: [email protected] (Received 8 January 2014; accepted 24 March 2014) ABSTRACT We describe the reproductive system and morphological expression of imposex in the marine gastropod Gemophos viverratus (Kiener, 1834) for the first time. This species can be used as a bioindicator of tributyl- tin (TBT) pollution on the west coast of Africa, a region for which there is a lack of information regard- ing levels and impacts of TBT pollution. Adult G. viverratus were collected between August 2012 and July 2013 in Sa˜o Vicente Island (Republic of Cabo Verde), at pristine sites on the northeastern and eastern coasts and at Porto Grande Bay, the major harbour in the country.
    [Show full text]
  • Bab Iv Hasil Penelitian Dan Pembahasan
    BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Penelitian dan Pembahasan Tahap 1 1. Kondisi Faktor Abiotik Ekosistem perairan dapat dipengaruhi oleh suatu kesatuan faktor lingkungan, yaitu biotik dan abiotik. Faktor abiotik merupakan faktor alam non-organisme yang mempengaruhi proses perkembangan dan pertumbuhan makhluk hidup. Dalam penelitian ini, dilakukan analisis faktor abiotik berupa faktor kimia dan fisika. Faktor kimia meliputi derajat keasaman (pH). Sedangkan faktor fisika meliputi suhu dan salinitas air laut. Hasil pengukuran suhu, salinitas, dan pH dapat dilihat sebagai tabel berikut: Tabel 4.1 Faktor Abiotik Pantai Peh Pulo Kabupaten Blitar Faktor Abiotik No. Letak Substrat Suhu Salinitas Ph P1 29,8 20 7 Berbatu dan Berpasir S1 1. P2 30,1 23 7 Berbatu dan Berpasir P3 30,5 28 7 Berbatu dan Berpasir 2. P1 29,7 38 8 Berbatu dan Berpasir S2 P2 29,7 40 7 Berbatu dan Berpasir P3 29,7 33 7 Berbatu dan Berpasir 3. P1 30,9 41 7 Berbatu dan Berpasir S3 P2 30,3 42 8 Berbatu dan Berpasir P3 30,1 41 7 Berbatu dan Berpasir 77 78 Tabel 4.2 Rentang Nilai Faktor Abiotik Pantai Peh Pulo Faktor Abiotik Nilai Suhu (˚C) 29,7-30,9 Salinitas (%) 20-42 Ph 7-8 Berdasarkan pengukuran faktor abiotik lingkungan, masing-masing stasiun pengambilan data memiliki nilai yang berbeda. Hal ini juga mempengaruhi kehidupan gastropoda yang ditemukan. Kehidupan gastropoda sangat dipengaruhi oleh besarnya nilai suhu. Suhu normal untuk kehidupan gastropoda adalah 26-32˚C.80 Sedangkan menurut Sutikno, suhu sangat mempengaruhi proses metabolisme suatu organisme, gastropoda dapat melakukan proses metabolisme optimal pada kisaran suhu antara 25- 32˚C.
    [Show full text]
  • Glossary of Major Terms and Concepts
    Glossary of Major Terms and Concepts The following terms and concepts form the core of much of this book. Generally, they appear in boldface type in the text. The chapters in which they are more fully discussed are also given. Acceleration: Faster rate of developmenral evenrs (at any level: cell, organ, individual) in the descendanr; produces peramorphie traits when expressed in the adult pheno­ type. (Chapters 1 and 2) Allometric heterochrony: Change in a trair as a function of size (as opposed to a function of age in " true" heterochrony); it is useful as adescriptor and can be inrerpretive considering that body size is often a beuer metric of " inrrinsic" age than chronologi­ cal age. The same categories apply as in " true" heterochrony, only the adjective "allometric" is prefixed: e.g. , " allometric progenesis" is when the descendant ter­ minates growth at a smaller size (as opposed to age) than the ancestor. (Chapter 2) Allometry: The study of size and shape, usually using biometrie data; the change in size and shape observed. Basic kinds of allometric change include the following. Com­ plex allometry: occurs when the ratio of the specific growth rates of the traits compared are not constant, a log-log plot comparing the traits will not yield a straight line (i.e., " k" in the allometric formula is inconstanr). Isometry: occurs when there is no change in shape with size increase; that is, when the traits being compared on a log-log plot yield a straight line with a slope (k in the allometric formula) that is effectively equal to 1.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Training Workshop on the Taxonomy of Marine Molluscs Mauritius, October 2017
    Training workshop on the taxonomy of marine molluscs Mauritius, October 2017 Introduction IOC Biodiversity and MOI organized a regional workshop in Mauritius in October 2017 for 4 days. The main objective of the workshop were (i) to train regional marine biologists to the taxonomy of molluscs, (ii) to build capacities in the description and identification of molluscs, (iii) to assess the mollusc biodiversity and its evolution in tropical marine ecosystems. Figure 1: Le Bouchon sampling site Material and Methods About 20 participants attended the workshop with about half of them from Mauritius and the others from Madagascar, Comoros, Kenya and Tanzania. The workshop was led by an Australian expert. The workshop followed these 3 steps: - Day 1: Formal classroom training about taxonomy, molluscs and shells features. Generals information slide about molluscs were projected. - Day 2: Field sampling in Mauritius at Le Bouchon (South-east coast). The sampling was performed in various biotopes provided at the location: beach, rocky shore, mangrove and lagoon. Lagoon itself provided various environments (live coral, rubbles, sand, grass, silt). Some samplers were on foot and other snorkelling. The only method used was hand picking of shells during one hour. Shells were either dead (empty or crabbed) or alive with limitation of 1 specimen per species. The objective of the sampling was not quantitative but qualitative. The shells have been washed and put to dry in the lab after the field collection. - Day 3-4: Analysis of the samples sorted and numbered by kind and appearance. Participants had to write a description of as many species as they could in group of 2-3.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Shells from the Excavation of Yavne-Yam (North)
    ‘Atiqot 81, 2015 SHELLS FROM THE EXCAVATION OF YAVNE-YAM (NORTH) HENK K. MIENIS1 The salvage excavation at Yavne-Yam (North), Only the freshwater mussel Unio mancus carried out by Moshe Ajami and Uzi ‘Ad (this eucirrus has disappeared from Nahal Soreq due volume),2 yielded several samples of shells. to severe pollution of its waters in recent times. The presence of the land snail Theba pisana Material and Methods within a Roman-period context at Yavne-Yam The eight mollusc samples submitted for (North) is interesting. Heller and Tchernov identification were collected in six loci: three in (1978) considered Theba pisana a possible Area B and three in Area C. Most of the shells ancient introduction, since they did not find it could be identified on site. In a few cases, shell among the Pleistocene land snails occurring fragments were compared with recent samples in the coastal plain of Israel. However, in the Mollusc Collection of Tel Aviv University. that species has already been found in the The bulk of the sample was collected in the so- underwater Neolithic wells off ‘Atlit (Mienis, called shell-pit in Area C (L321; see Ajami and unpublished). ‘Ad, this volume: Plan 8); only the presence of None of the marine shells show clear-cut the various species was noted. markings of manipulation; however, some of the Glycymeris valves with a hole in the umbo Results might have served as a shell pendant. The The results of the studied material are listed in same is true for some of the holed valves of systematic order in Table 1.
    [Show full text]
  • Marine Mollusks from Bougainville and Florida, Solomon Islands
    ^^ FIELDIANA • ZOOLOGY 3 Published by CHICAGO NATURAL HISTORY MUSEUM Volume 39 October 17, 1958 No. 20 MARINE MOLLUSKS FROM BOUGAINVILLE AND FLORIDA, SOLOMON ISLANDS Alan Solem Assistant Curator, Division of Lower Invertebrates My checklist of the Solomon Island marine and fresh-water mol- lusks (Solem, 1953) was based on a large collection donated to Chicago Natural History Museum by Captain J. M. Ross and sup- plemented by a series of records in the literature. Two small collec- tions of marine shells given to the University of Michigan Museum of Zoology add to our knowledge of the fauna, and the additional data are reported below. I did not communicate with Dr. C. E. Fox, who presented the shells to Captain Ross, until after the checklist had been published. Dr. Fox then informed me that all the shells he gave to Captain Ross were found near Guadalcanal and Malaita Islands. The local- ity "Solomon Islands" cited by me (Solem, 1953) for the Fox col- lection should be restricted to "Guadalcanal and Malaita." Since September, 1952, when my manuscript (Solem, 1953) was submitted, the checklist of Kuroda and Habe (1952), the semi-pop- ular book of Kira (1955), and the ecological study of Demond (1957) have brought to my attention a number of nomenclatural changes affecting the names used by me (Solem, 1953) . These changes in no way alter the taxonomic position of the genera and species—only the names applied to the units. Both below, and in a report on the New Hebridean marine fauna (Solem, in press), a number of nomen- clatural changes are recorded.
    [Show full text]
  • Systematics and Phylogenetic Species Delimitation Within Polinices S.L. (Caenogastropoda: Naticidae) Based on Molecular Data and Shell Morphology
    Org Divers Evol (2012) 12:349–375 DOI 10.1007/s13127-012-0111-5 ORIGINAL ARTICLE Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology Thomas Huelsken & Daniel Tapken & Tim Dahlmann & Heike Wägele & Cynthia Riginos & Michael Hollmann Received: 13 April 2011 /Accepted: 10 September 2012 /Published online: 19 October 2012 # Gesellschaft für Biologische Systematik 2012 Abstract Here, we present the first phylogenetic analysis of callus) to be informative, while many characters show a a group of species taxonomically assigned to Polinices high degree of homoplasy (e.g. umbilicus, shell form). sensu latu (Naticidae, Gastropoda) based on molecular data Among the species arranged in the genus Polinices s.s., four sets. Polinices s.l. represents a speciose group of the infau- conchologically very similar taxa often subsumed under the nal gastropod family Naticidae, including species that have common Indo-Pacific species P. mammilla are separated often been assigned to subgenera of Polinices [e.g. P. distinctly in phylogenetic analyses. Despite their striking (Neverita), P. (Euspira), P.(Conuber) and P. (Mammilla)] conchological similarities, none of these four taxa are relat- based on conchological data. The results of our molecular ed directly to each other. Additional conchological analyses phylogenetic analysis confirm the validity of five genera, of available name-bearing type specimens and type figures Conuber, Polinices, Mammilla, Euspira and Neverita, in- reveal the four “mammilla”-like white Polinices species to cluding four that have been used previously mainly as sub- include true P. mammilla and three additional species, which genera of Polinices s.l.
    [Show full text]
  • From the Late Neogene of Northwestern France
    Cainozoic Research, 15(1-2), pp. 75-122, October 2015 75 The family Nassariidae (Gastropoda: Buccinoidea) from the late Neogene of northwestern France Frank Van Dingenen1, Luc Ceulemans2, Bernard M. Landau3, 5& Carlos Marques da Silva4 1 Cambeenboslaan A 11, B-2960 Brecht, Belgium; email: [email protected] 2 Avenue Général Naessens de Loncin 1, B-1330 Rixensart, Belgium; email: [email protected] 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands; Instituto Dom Luiz da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; email: [email protected] 4 Departamento de Geologia e Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; [email protected] 5 corresponding author Received 7 July 2015, revised version accepted 4 August 2015 In this paper we revise the nassariid Plio-Pleistocene assemblages of northwestern France. Twenty-eight species are recorded, of which eleven are described as new; Nassarius brebioni nov. sp., Nassarius landreauensis nov. sp., Nassarius merlei nov. sp., Nassarius pacaudi nov. sp., Nassarius palumbis nov. sp., Nassarius columbinus nov. sp., Nassarius turpis nov. sp., Nassarius poteriensis nov. sp., Nassarius plainei nov. sp., Nassarius martae nov. sp., Nassarius gendryi nov. sp., five are left in open nomenclature. Two nassariid genera are recognised (Nassarius and Demoulia). The ‘Redonian’ assemblages and localities are grouped in four assemblages (Assemblages I – IV) corresponding to the four major stratigraphic groups of deposits recognised in the post mid-Miocene sequences of northwestern France.
    [Show full text]
  • The Significance of Shore Height in Intertidal Macrobenthic Seagrass
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 21: 614–624 (2011) Published online 20 October 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/aqc.1234 The significance of shore height in intertidal macrobenthic seagrass ecology and conservation R. S. K. BARNESa,b,* and M. D. F. ELLWOODb aKnysna Field Laboratory, Department of Zoology and Entomology, Rhodes University, P.O. Box 1186, Knysna, RSA bDepartment of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK ABSTRACT 1. Benthic faunal assemblages of an intertidal seagrass bed were sampled at three shore heights (LWN, MLW, LWS) at the mouth, mid-point and head of the Steenbok Channel in South Africa’s premier seagrass site, the warm-temperate Knysna estuarine bay, Garden Route National Park. 2. Faunal abundance, species richness, species diversity, and proportion of rare species were relatively uniform along the Channel, as were faunal abundance, species diversity and proportion of rare species down the shore. Overall species richness per station, however, was significantly lower at LWN than at either MLW or LWS, although the distribution of species richness over the shore did not depart from random at one of the three sites. Overall faunal abundance and those of individual component species were dispersed patchily through the bed. 3. The nature of the faunal assemblages present, however, varied significantly throughout the bed, both along the Channel at each shore-height horizon, and down the shore at each site. LWN assemblages formed a unit distinct from those at MLW and LWS. Overall, the shore-height axis accounted for 47% and the along-shore axis 28% of total assemblage variation.
    [Show full text]
  • Bivalvia, Mollusca) Shells ÍO Almagro1, a *, PIOTR Drzymała2, B, ALEJANDRO B
    Crystallography and textural aspects of crossed lamellar layers in Arcidae (Bivalvia, Mollusca) shells ÍO Almagro1, a *, PIOTR Drzymała2, b, ALEJANDRO B. Rodríguez-Navarro1, c, C. IGNACIO Sainz-Díaz3, d, MARC G. Willinger4, e, JAN Bonarski2, f and 1, g ANTONIO G. Checa 1Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain 2Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland 3Instituto Andaluz de Ciencias de la Tierra (CSIC), Avda. de Las Palmeras nº 4, 18100. Armilla, Granada, Spain 4Fritz Haber Institute of the Max-Planck-Society, Department of Inorganic Chemistry. Faradayweg 4-614195 Berlin, Germany a*[email protected], [email protected], [email protected], [email protected], e willinger@fhi- berlin.mpg.de, [email protected], [email protected] Keywords: Aragonite, microstructure, crossed lamellar, texture, preferred orientations, mollusc shell Abstract. Bivalve shell microstructures are important traits that can be used for evolutionary and phylogenetic studies. Here we examine the crossed lamellar layers forming the shells of the arcoids; Arca noae, Glycymeris glycymeris and Glycymeris nummaria in order to better understand the crystallography of this complex biomaterial. Textural aspects and crystallography of the outer crossed lamellar layer of these species have been clarified using high-resolution electron microscopy and X-ray diffraction (XRD) techniques. These shells are made of aragonite crystals in a crossed lamellar arrangement with a high preferred crystal orientation (texture). The distribution of maxima in the pole figures implies that there is not a single crystallographic orientation, but a continuous variation between two crystallographic extreme orientations.
    [Show full text]