Water and Wastewater Treatment Equipment and Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Water and Wastewater Treatment Equipment and Solutions Water and Wastewater Treatment Equipment and Solutions Water Wastewater Industrial Minerals Services and Operations World Leader - Process Experts - WesTech provides process solutions for water and wastewater treatment, liquid/ solids separation, and biological treatment needs in municipal, industrial, and minerals markets worldwide. We are proud that the equipment and systems we design, build, Customized Solutions - Innovative Design maintain, and operate are making the world a better place and creating a more sustainable environment for future generations. Aerators - Water Filtration - Specialty Package Treatment Systems Dewatering ATOMERATORTM Pressurized Aerator Granular Activated Carbon Contactor (GAC) AERALATER® Iron and Manganese Removal System Cascade Aerator Filter Press Ion Exchange System AltaPacTM Ultrafiltration Membrane Package System Forced and Induced Draft Aerator Horizontal Belt Filter SuperDiscTM Disc Filter Aquarius® Package Water Treatment Plant Rotary Vacuum Drum Filter SuperDrumTM Drum Filter Multi-Tech™ Pressurized Package System Vacuum Disc Filter WWETCO FlexFilter™ RapiSand PlusTM Package Treatment Plant Anaerobic Digestion Trident® HS Package Treatment Plant ® TM Trident HSC Package Treatment Plant Ana-Flo UASB – Upflow Anaerobic Sludge Blanket Dissolved Air Flotation (DAF) Trident® HSR Package Treatment Plant Digester Cover - Radial Beam and Truss Style Headworks Grit Removal ® TM Trident Package Treatment Plant DuoSphere Dual Membrane Gasholder Circular / Rectangular DAF Units and Screening Tri-Mite® Package Treatment Plant Dissolved Gas Flotation (DGF) ExtremeDuty™ Mechanical Sludge Mixer TM Water Boy™ Package Treatment System Dissolved Nitrogen Flotation (DNF) CleanFlo™ SHEAR Rotary Drum Screen Sludge Heating System Grit Collector R5 DAF Pre-Engineered Unit Shafted Grit Screw Classifier Biological Treatment Vortex Grit Chamber Drives Tankage BioDoc™ Rotary Distributor HydroDoc™ Rotary Distributor Cage Drive Anchor Channel Tanks LANDY-7 Slow Speed Surface Aerator Drives with Lift Industrial Screening Bolt Together Tanks OxyStream™ Oxidation Ditch Dual Drive Elevated Tanks PakTORTM Packed Bed Reactor Shaft Drive Linear Screen Field Erection STM-Aerotor™ IFAS System Replacement, Retrofit, and Rebuild Options Resin / Carbon Interstage Screen Shop-Built Tanks WTR Cup and Drum Screen WTR Fish Recovery and Return Screen Clarification Flocculation WTR Stationary Screen WTR Talon Rake™ and Bar Screen ® Thickening Adsorption Clarifier System Axial Blade Flocculators WTR Traveling Water Screen Backwash Clarifier Horizontal Paddle Flocculators AltaFlo™ High-Rate Thickener Conventional Clarifier Vertical Paddle Flocculators ® ® CONTRAFAST Thickening Clarifier CONTRAFAST Thickening Clarifier Conventional Sludge Thickener CONTRAFLO® Solids Contact Clarifier Membrane Filtration Deep Bed™ Paste Thickener COP™ Spiral Blade Clarifier Filtration - Granular Media EvenFlo® Feedwell COP™ Suction Header Clarifier ® TM HiDensity™ Paste Thickener Flocculating Clarifier CenTROL Gravity Filter AltaPac Ultrafiltration Membrane System ESSD® Washtroughs Electrodeionization (EDI) HiFlo™ High-Rate Thickener Metallurgical Clarifier MudMaxTM Bed-Level Instrument Pin Bed Clarifier Gravity Filtration System Nanofiltration and Reverse Osmosis System TM Ultrafiltration Membrane System Rotary Drum Thickener RapiSand™ Ballasted Flocculation LAZERFLO Low-Profile Underdrain TM TM TM Titan Traction Thickener TM VersaFilter Open-Platform Membrane System Sludge Sucker Sludge Removal System Manganese ANTHRA/SAND TM ® TOP Thickener Optimization Package Solids CONTACT CLARIFIER™ MULTIBLOCK Filter Underdrain ® Suction Header Clarifier MULTICELL Horizontal Pressure Filter Suction Pipe Clarifier MULTICRETE™ II Filter Underdrain MULTIWASH® Filtration Process SuperSettler™ Inclined Plate Clarifier Oil/Water Separation ® Zickert Shark™ Sludge Removal System MULTIWASH PRO Trough Pressure Filters [Vertical and Horizontal] Dissolved Air Flotation (DAF) Many of these products are available as TM SuperSand Continous Backwash Filter Oil/ Water Separators mobile/rental equipment or pilot plants. Combined Sewer Overflow WWETCO FlexFilterTM Services and Operations Our commitment to services and operations ensures that you get maximum performance from your plant operations. We provide insightful application and sizing knowledge to provide cost-effective process solutions, including complete engineer-design-procure-build-operate systems. These solutions are available for short-term, cyclical, and ongoing engagements. Aftermarket Services Pilot Plants Equipment Refurbishment and Rebuilds Industrial Field Service Minerals Maintenance Contracts Municipal Water Mechanical Troubleshooting Municipal Wastewater Plant Installation Service Plant Operations and Services Laboratory Services Best-Equipment Implementation Bench Scale Vacuum Filtration Full-Service Treatment Plant Maintenance Jar Testing for BOD, COD, and TOC, TSS, Color, Makeup Water Treatment Operations pH, and Turbidity Removal Plant Construction Oversight Sedimentation Testing for Clarifier and Thickener sizing Process Audits Real Time Feedback and Operational Data Wastewater Treatment Plant Operations Mobile and Rental Solutions Water Treatment Plant Operations Ash Pond Dewatering and Closure Biological Treatment Systems Integration Coal Pile Runoff FGD Wastewater Treatment Collaborative Delivery Frac Water Treatment Design-Build and Design-Build-Operate Heavy Metals Removal Engineer Procure, Construction, and Construction Management Mine Water Treatment Turnkey Solutions Oil, Grease, and Algae Removal Potable Water Secondary Clarification WESTECH IS Quality products, Design-build Customized Global network superior customer and operations solutions of experienced THE SUPERIOR service/support solutions for water with existing engineers and CHOICE FOR: treatment equipment agents Founded in 1973, with headquarters in Salt Lake City, Utah, WesTech is employee-owned with over 500 employees around the world. 801.265.1000 [email protected] westech-inc.com Salt Lake City, UT ©WesTech Engineering, Inc. 2021.
Recommended publications
  • Making Decisions About Water and Wastewater for Aqueous Operation
    Making Decisions about Water and Wastewater for Aqueous Operation John F. Russo Chapter 2.17 Handbook for Critical Cleaning Editor-in-Chief Barbara Kanegsberg Reprinted with permission from CRC Press www.crcpress.com INTRODUCTION..................................................................................................................................3 TYPICAL CLEANING SYSTEM............................................................................................................3 OPERATIONAL SITUATIONS OF TYPICAL USER ...............................................................................4 Determining the Water Purity Requirements .........................................................................................4 Undissolved Contaminants............................................................................................................4 Dissolved Contaminants...............................................................................................................4 Undissolved and Dissolved Contaminants........................................................................................5 Other Conditions...........................................................................................................................5 Determining the Wastewater Volume Produced .....................................................................................6 Source Water Trea tment .....................................................................................................................6 No
    [Show full text]
  • Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination
    Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination October 2020 Table of Contents Executive Summary Section 1 Background 1.1 Biosolids ................................................................................................................................................................ 1-1 Section 2 Data on Actual Costs to Wastewater and Biosolids Management Programs from PFAS 2.1 Introduction ......................................................................................................................................................... 2-1 2.2 NEBRA Survey ..................................................................................................................................................... 2-1 2.2.1 Background ............................................................................................................................................. 2-1 2.2.2 Results ...................................................................................................................................................... 2-2 2.3 Expanded Utility Survey ................................................................................................................................. 2-2 2.3.1 Background ............................................................................................................................................. 2-2 2.3.2 Results .....................................................................................................................................................
    [Show full text]
  • Landfill Leachate Pretreatment Process Evaluation and Pilot Study
    Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx.
    [Show full text]
  • Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
    Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin.
    [Show full text]
  • PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (Wwtps) in Michigan
    Evaluation of PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (WWTPs) in Michigan Prepared in association with Project Number: 60588767 Michigan Department of Environment, Great Lakes, and Energy April 2021 Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Prepared for: Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Stephanie Kammer Constitution Hall, 1st Floor, South Tower 525 West Allegan Street P.O. Box 30242 Lansing, MI 48909 Prepared by: Dorin Bogdan, Ph.D. Environmental Engineer, Michigan E-mail: [email protected] AECOM 3950 Sparks Drive Southeast Grand Rapids, MI 49546 aecom.com Prepared in association with: Stephanie Kammer, Jon Russell, Michael Person, Sydney Ruhala, Sarah Campbell, Carla Davidson, Anne Tavalire, Charlie Hill, Cindy Sneller, and Thomas Berdinski. Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Constitution Hall 525 West Allegan P.O. Box 30473 Lansing, MI 48909 Prepared for: Michigan Department of Environment, Great Lakes, and Energy AECOM Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Table of Contents 1. Introduction ......................................................................................................................................... 1 2. Background ........................................................................................................................................
    [Show full text]
  • Crystallization of Oxytetracycline from Fermentation Waste Liquor: Influence of Biopolymer Impurities
    Journal of Colloid and Interface Science 279 (2004) 100–108 www.elsevier.com/locate/jcis Crystallization of oxytetracycline from fermentation waste liquor: influence of biopolymer impurities Shi-zhong Li a,1, Xiao-yan Li a,∗, Dianzuo Wang b a Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China b Chinese Academy of Engineering, Beijing 100038, China Received 28 January 2004; accepted 17 June 2004 Available online 29 July 2004 Abstract Organic impurities in the fermentation broth of antibiotic production impose great difficulties in the crystallization and recovery of antibi- otics from the concentrated waste liquor. In the present laboratory study, the inhibitory effect of biopolymers on antibiotic crystallization was investigated using oxytetracycline (OTC) as the model antibiotic. Organic impurities separated from actual OTC fermentation waste liquor by ultrafiltration were dosed into a pure OTC solution at various concentrations. The results demonstrated that small organic molecules with an apparent molecular weight (AMW) of below 10,000 Da did not affect OTC crystallization significantly. However, large biopolymers, especially polysaccharides, in the fermentation waste caused severe retardation of crystal growth and considerable deterioration in the pu- rity of the OTC crystallized. Atomic force microscopy (AFM) revealed that OTC nuclei formed in the solution attached to the surfaces of large organic molecules, probably polysaccharides, instead of being surrounded by proteins as previously thought. It is proposed that the attachment of OTC nuclei to biopolymers would prevent OTC from rapid crystallization, resulting in a high OTC residue in the aqueous phase. In addition, the adsorption of OTC clusters onto biopolymers would destabilize the colloidal system of organic macromolecules and promote particle flocculation.
    [Show full text]
  • Refinery Wastewater Management Using Multiple Angle Oil-Water Separators
    REFINERY WASTEWATER MANAGEMENT USING MULTIPLE ANGLE OIL-WATER SEPARATORS Kirby S. Mohr, P.E. Mohr Separations Research, Inc. 1278 FM 407 Suite 109 Lewisville, TX 75077 Phone: 918-299-9290 Cell: 918-269-8710 John N. Veenstra, Ph.D., P.E., Oklahoma State University Dee Ann Sanders, Ph.D., P.E. Oklahoma State University A paper presented at the International Petroleum Environment Conference in Albuquerque, New Mexico, 1998 ABSTRACT In this work, an overview of oil-water separation, as used in the petroleum refining industries, is presented along with case studies. Discussions include: impact of solids, legal aspects, and differing types of systems currently in use, along with their advantages and disadvantages. Performance information on separators is presented with an emphasis on new multiple angle coalescing plate technology for refinery wastewater management. Several studies are presented including a large (20,000 US GPM flow rate) system recently installed at a major US refinery. The separator was constructed by converting two existing API separators into four separators, and adding multiple angle coalescing plates to increase throughput and efficiency. A year of operating experience with this system indicates good performance and few problems. Other examples provide information on separators installed in the United States and other countries. Keywords: Oil-water separator, multiple angle, coalescence, refinery, wastewater management, petroleum, coalescing plate technology BACKGROUND AND INTRODUCTION Oil has been refined for various uses for at least 1000 years. An Arab handbook written by Al-Razi, in approximately 865 A.D., describes distillation of “naft” (naphtha) for use in lamps and thus the beginning of oil refining (Forbes).
    [Show full text]
  • State-Of-The-Art Water Treatment in Czech Power Sector
    membranes Article State-of-the-Art Water Treatment in Czech Power Sector: Industry-Proven Case Studies Showing Economic and Technical Benefits of Membrane and Other Novel Technologies for Each Particular Water Cycle Jaromír Marek Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; [email protected]; Tel.: +420-732-277-183 Abstract: The article first summarizes case studies on the three basic types of treated water used in power plants and heating stations. Its main focus is Czechia as the representative of Eastern European countries. Water as the working medium in the power industry presents the three most common cycles—the first is make-up water for boilers, the second is cooling water and the third is represented by a specific type of water (e.g., liquid waste mixtures, primary and secondary circuits in nuclear power plants, turbine condensate, etc.). The water treatment technologies can be summarized into four main groups—(1) filtration (coagulation) and dosing chemicals, (2) ion exchange technology, (3) membrane processes and (4) a combination of the last two. The article shows the ideal industry-proven technology for each water cycle. Case studies revealed the economic, technical and environmental advantages/disadvantages of each technology. The percentage of Citation: Marek, J. State-of-the-Art technologies operated in energetics in Eastern Europe is briefly described. Although the work is Water Treatment in Czech Power conceived as an overview of water treatment in real operation, its novelty lies in a technological model Sector: Industry-Proven Case Studies of the treatment of turbine condensate, recycling of the cooling tower blowdown plus other liquid Showing Economic and Technical waste mixtures, and the rejection of colloidal substances from the secondary circuit in nuclear power Benefits of Membrane and Other plants.
    [Show full text]
  • Eutectic Freeze Crystallization for Table Salt
    Eutectic Freeze Crystallization on Sodium Chloride Analysis of a full experimental cycle Master of Science Thesis Document number: 2461 Bruno (J.J.) Verbeek Wb1179829 29-07-2011 Eutectic Freeze Crystallization on Sodium Chloride 2 Eutectic Freeze Crystallization on Sodium Chloride Faculty: Process Equipment For obtaining the degree of Master of Science in Sustainable Process- & Energy Technology Exam committee: Prof. dr. G.J. Witkamp Dr. L Hartmann K. Yasadi Copyright © BJJ Verbeek All rights reserved 3 Eutectic Freeze Crystallization on Sodium Chloride Contents Acknowledgement ........................................................................................................................................ 6 Abstract ......................................................................................................................................................... 7 Table of figures ............................................................................................................................................. 9 Nomenclature ............................................................................................................................................. 11 1. Introduction ........................................................................................................................................ 13 1.1. Eutectic freeze crystallization ..................................................................................................... 14 1.2. Sodium chloride solutions ..........................................................................................................
    [Show full text]
  • Coagulation-Flocculation As a Submerged Biological Filter Pre-Treatment with Landfill Leachate
    Coagulation-flocculation as a submerged biological filter pre-treatment with landfill leachate A. Gálvez Perez1,2, A. Ramos1,2,3, B. Moreno1,2,3 & M. Zamorano Toro1,2 1Department of Civil Engineering, Granada University, Spain 2MITA Research Group 3Institute of Water Research Abstract Landfill leachate may cause environmental problems if it is not properly managed and treated. An appropriate treatment process of landfill leachate often involves a combination of physical, chemical and biological methods to obtain satisfactory results. In this study, coagulation-flocculation was proposed as a pre- treatment stage of partially stabilized landfill leachate prior to submerged biological filters. Several coagulants (ferric, aluminium or organic) and flocculants (cationic, anionic or non-ionic) were assayed in jar-test experiments in order to determine optimum conditions for the removal of COD and total solids. Among the cationic flocculants, that of highest molecular weight and cationicity (CV/850) showed highest removal efficiencies (15% COD and 8% TS). Organic and aluminium coagulants showed better results than ferric coagulants. Coagulant removal efficiencies were between 9% and 17% for COD and between 10% and 15% for TS. Doses of 1 ml/l of coagulant were preferred. Some combinations of coagulant and flocculant enhanced the process. The best combinations obtained were FeCl3+A30.L, Ferriclar+A20.L, SAL8.2+A30.L and PAX-18+A30.L, which presented COD removal efficiencies between 24% and 37% with doses between 10 and 18 ml/l. Keywords: landfill leachate, coagulation-flocculation, submerged biological filter pre-treatment. Waste Management and the Environment II, V. Popov, H. Itoh, C.A. Brebbia & S.
    [Show full text]
  • New Technologies for Water and Wastewater Treatment: a Survey of Recent Patents Berrin Tansel*
    Recent Patents on Chemical Engineering, 2008, 1, 17-26 17 New Technologies for Water and Wastewater Treatment: A Survey of Recent Patents Berrin Tansel* Florida International University, Civil and Environmental Engineering Department, Engineering Center 3600, Miami, Florida 33174, USA Received: July 31, 2007; Accepted: September 19, 2007; Revised: November 12, 2007 Abstract: The concern over increasing needs for drinking water and awareness for development of systems to improve water quality both for drinking purposes and for effluents from wastewater treatment and industrial facilities have provided incentives to develop new technologies and improve performance of existing technologies. In this paper, the patents on treatment of water and wastewater approved during the period from 1999 to 2007 were reviewed. The patents surveyed were classified into two groups as technologies for water purification systems for drinking water, and technologies for treatment of wastewater. An assessment of the current and future outlook for development of new technologies, methods of treatment, equipment and instruments which can be used for water and wastewater treatment applications are presented. Keywords: Water treatment, water filtration, ultrapure water, wastewater treatment, ion exchange, disinfection, sorption, membrane filtration, nanofiltration, wastewater. 1. INTRODUCTION 2. WATER TREATMENT SYSTEMS FOR DRINKING Water is an essential substance for living systems as it WATER allows the transport of nutrients and waste products in living The general treatment of drinking water takes place in systems. Research shows a clear correlation between several steps to remove dissolved and suspended solids. The diseases and the amount and types of fluids consumed, treatment processes may include processes such as floccu- health-promoting properties of nutrients which can be added to water, optimal intake levels, and consumption patterns.
    [Show full text]
  • Integration of Aqueous Two-Phase Extraction As Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies
    antibodies Article Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies Axel Schmidt 1, Michael Richter 2, Frederik Rudolph 2 and Jochen Strube 1,* 1 Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, 38678 Clausthal-Zellerfeld, Germany; [email protected] 2 Boehringer Ingelheim Pharma GmbH & Co. KG, Bioprocess + Pharma. Dev. Biologicals, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany; [email protected] (M.R.); [email protected] (F.R.) * Correspondence: [email protected]; Tel.: +49-5323-72-2200 Received: 30 October 2017; Accepted: 20 November 2017; Published: 1 December 2017 Abstract: Substantial improvements have been made to cell culturing processes (e.g., higher product titer) in recent years by raising cell densities and optimizing cultivation time. However, this has been accompanied by an increase in product-related impurities and therefore greater challenges in subsequent clarification and capture operations. Considering the paradigm shift towards the design of continuously operating dedicated plants at smaller scales—with or without disposable technology—for treating smaller patient populations due to new indications or personalized medicine approaches, the rising need for new, innovative strategies for both clarification and capture technology becomes evident. Aqueous two-phase extraction (ATPE) is now considered to be a feasible unit operation, e.g., for the capture of monoclonal antibodies or recombinant proteins. However, most of the published work so far investigates the applicability of ATPE in antibody-manufacturing processes at the lab-scale and for the most part, only during the capture step.
    [Show full text]