ILAE Historical Wall02.Indd 3 6/12/09 12:02:21 PM

Total Page:16

File Type:pdf, Size:1020Kb

ILAE Historical Wall02.Indd 3 6/12/09 12:02:21 PM 1930–1939 1933 1934 1936 1939 Thomas Morgan William Murphy Otto Loewi Gerhard Domagk 1930930 1932932 1934934 1935935 1937937 Karl Landsteiner Sir Charles Sherrington George Whipple Hans Spemann Albert Szent–Györgyi 1931931 1932932 1934934 1936936 1938938 Otto Warburg Edgar Adrian George Minot Sir Henry Dale Corneille Heymans 1930 Foester and Penfi eld’s paper on the surgical treatment of post–traumatic epilepsy published in Brain 1931 Dandy carries out the fi rst corpus callosal section to remove a congenital cyst 1932 Ritchie Russell’s landmark paper in Brain on head injury and post–traumatic epilepsy 1933 Epileptic inmates of some US asylums subject to forcible sterilisation 1934 Adrian and Matthews publish a renowned paper in Brain corroborating Berger’s EEG fi ndings 1934 The fi rst intra–operative electrocortigram by Foester and Altenburger 1935 A group of neurologists meet at the Lingfi eld Epilepsy Centre and relaunch the ILAE 1935 Great Britain, the United States and Scandinavia form branches of ILAE 1935 Lennox presents EEG fi ndings to 2nd International Congress of Neurology in London 1936 First EEG laboratory opens – in Boston at the MGH 1937 Second series of Epilepsia launched 1937 James W. Papez describes his limbic circuit 1937 First report of the anticonvulsant eff ects of the vital dyes (Brilliant Red) in epilepsy 1938 First use of phenytoin in epilepsy 1938 Holland and Czechoslovakia form branches of the ILAE 1938 Lennox, Gibbs and Gibbs divide seizures according to their EEG characteristics into petit mal, psychomotor and grand mal variants 1939 Action T4 – The mass murder of handicapped persons with epilepsy begins in Germany 1939 5th ILAE meeting in Copenhagen – then the ILAE again disrupted by the Second World War 1930 Immunisation against typhus by Hans Zinsser 1935 Cortisone isolated from the adrenal gland 1931 Mumps vaccine developed 1936 ECT described by Ugo Cerletti 1932 First sulphonamide antibiotic – Prontosil – developed by Armand Quick 1937 First antihistamine developed by Daniel Bovet 1933 First carcinogen identifi ed – a polycyclic aromatic hydrocarbon 1938 First total artifi cial hip replacement by John Wiles 1934 Vitamin C manufactured by Tadeusz Reichstein 1938 Sulphapyridine (M&B 693) manufactured by Arthur James Ewins and Montague Phillips 1935 Prefrontal leucotomy developed by Egaz Moniz 1939 Vitamin K discovered and synthesised ILAE_Historical wall02.indd 3 6/12/09 12:02:21 PM.
Recommended publications
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • 891 Daniel Bovet and His Role in the Development Of
    MEDICINA NEI SECOLI ARTE E SCIENZA, 20/3 (2008) 891-905 Journal of History of Medicine Articoli/Articles DANIEL BOVET AND HIS ROLE IN THE DEVELOPMENT OF PSYCHOBIOLOGY ALBERTO OLIVERIO Department of Genetics and Molecular Biology, Sapienza University of Rome, I. SUMMARY 2QHKXQGUHG\HDUVVLQFHKLVELUWKÀIW\\HDUVDIWHUKLV1REHODFKLHYHPHQW 'DQLHO%RYHWVWLOOHPHUJHVDVRQHRIWKHNH\ÀJXUHVRIERWKSKDUPDFRORJ\ and psychobiology, the biological and evolutionary roots of behaviour. The OLIHDQGVFLHQWLÀFDFWLYLWLHVRI'DQLHO%RYHW DUHFORVHO\OLQNHG to the ‘golden years’ of pharmacology, the exceptional development of this science from the end of the 1930s to the 1960s. Later on, from the 1960s to WKHHQGRIKLVVFLHQWLÀFFDUHHU%RYHWHQWHUHGDQHZÀHOGSV\FKRELRORJ\ through the study of the effects of drugs active on the nervous system and their effects on behaviour. This approach led him to explore different aspects of the biology of behaviour, namely the role of individual differences, the genetic determinants of behaviour and their implications on learning DQGPHPRU\,WLVWKHUHIRUHHYLGHQWWKDWWKHUDQJHRIKLVVFLHQWLÀFDFWLYLW\ KDV EHHQ YHU\ EURDG D IDFW GLIÀFXOWO\ FRQFHLYDEOH LQ \HDUV RI H[WUHPH specialization. Bovet won the 1957 Nobel Prize in Physiology and Medicine for his GLVFRYHU\RIGUXJVWKDWEORFNWKHDFWLRQVRIVSHFLÀFQHXURWUDQVPLW- WHUV+HLVEHVWNQRZQIRUKLVGLVFRYHU\LQRIDQWLKLVWDPLQHV used in allergy medication: however, his contribution is very broad and ranges from chemotherapy to the sulphonamide drugs, the phar- macology of the sympathetic nervous system, the therapy of allergic FRQGLWLRQV WKH V\QWKHVLV RI DQWLKLVWDPLQHV FXUDUH DQG FXUDUHOLNH Key words: Daniel Bovet - Psychobiology. 891 Alberto Oliverio drugs and the use of curare as an adjuvant to anaesthesia, different aspects of the pharmacology of the central nervous system and in the last years of his career behaviour genetics and the effects of drugs on learning and memory.
    [Show full text]
  • A Personal Perspective on Dr. Paul Janssen
    J. Med. Chem. 2005, 48, 1687-1688 1687 A Personal Perspective on Dr. Paul Janssen Sir James Black† Department of Analytical Pharmacology, King’s College London, Strand, London WC2R 2LS, England, U.K. Dr. Paul Janssen was the most prolific drug inventor tives of the lead and then evaluate them in the chosen of all time. Some people will point to the incredible bioassays. Whatever the result, any result would sug- number of drugs that he invented and marketed; some gest a new molecule to make and test. Iterative syn- people will note the huge revenues that his drugs earned thesis, bioassay evaluation, and test feedback would for Janssen Pharmaceutica and Johnson & Johnson; gradually build up a picture of structure-activity rela- some will marvel at the wide range of his inventions in tions. The whole process of forced chemical mutations psychopharmacology, neuropharmacology, gastroenter- that are tested for fitness in a biological environment ology, cardiology, parasitology, virology, immunology, is like Darwinian evolution. The one certain feature of anaesthesiology, and analgesia; others will draw atten- this cycling is that it is a slow process. The whole tion to his exceptional managerial skills in leading and process has to be driven by intense concentration and motivating and rewarding his very large R&D group; relentless commitment. Concentration is necessary to and more business-minded people will, with a mixture allow the evolving complex picture to be clear in the of admiration and envy, applaud his negotiating and mind so that timely judgments can be made about when deal-making skills in the marketplace.
    [Show full text]
  • Daniel Bovet
    D ANIEL B OVET The relationships between isosterism and competitive phenomena in the field of drug therapy of the autonomic nervous system and that of the neuromuscular transmission Nobel Lecture, December 11, 1957 Putting to good use the vast possibilities which organic synthesis offers, a number of workers have directed their efforts towards applying it to thera- peutics, and have sought to establish the bases of a science of pharmaceutical chemistry, or, more exactly perhaps, the bases of a science of chemical pharmacology worthy of this name. If such an ambitious programme has not yet been fully realized, we are at least justified in recognizing, in the work which has now been in progress for fifty years, the appearance of a few guiding principles whose value has not ceased to assert itself. This is particularly true, for example, in the case of ideas in isosterism and com- petition. The origin of many drugs must be looked for in substances of a biological nature, and in particular in the alkaloids. The elucidation of their structure has been a starting-off point for chemists to synthesize similar compounds. Cocaine, atropine, and morphia are particularly good examples in this respect, since substances which are made like them have shown, clinically, local anaesthetic, antispasmodic, and marked analgesic properties, respective- ly. In each of these cases the physiological properties of the new compound seem to be similar to the compound to which it is structurally related. This has been verified in many other fields, but it is nevertheless evident that in certain cases, molecules which are chemically closely related have very dif- ferent and even antagonistic properties.
    [Show full text]
  • Download This PDF File
    doi: http://dx.doi.org/10.5016/1806-8774.2009v11pT1 ARBS Annual Review of Biomedical Sciences Theme Topic on “Cell Receptors and Signaling” pdf freely available at http://arbs.biblioteca.unesp.br 2009;11:T1-T50 Story of Muscarinic Receptors, Alkaloids with Muscarinic Significance and of Muscarinic Functions and Behaviors Alexander G Karczmar* Research Service, Edward J. Hines VA Hospital and Department of Pharmacology, Loyola U. Medical Center, IL, USA Received: 23 October 2009; accepted 22 December 2009 Online on 21 February 2010 .Abstract Karczmar AG.. Story of Muscarinic Receptors, Alkaloids with Muscarinic Significance and of Muscarinic Functions and Behaviors. Annu Rev Biomed Sci 2009;11:T1-T50. This review of the studies of the muscarinic receptors, their synaptic activities and their functional and behavioral roles will begin with the history of the research of the autonomic and central nervous systems and their transmitters, the development of the notion of the receptor, and the tale of the significance of muscarine and other alkaloids as well as of organophosphorus (OP) anticholinesterases for these studies; we will then segue into the modern status of muscarinic receptors and of their functional and behavioral expression. © by São Paulo State University – ISSN 1806-8774 Keywords: muscarinic, cholinesterase, cholinergic, nicotinic, curare, atropine, behavior Table of Contents 1. Early Story of the Autonomic and Central Nervous System 2. The Early Story of Pharmacologically Active Alkaloids and of OP AntiChEs 3. From Gaskell’s and Langley’s Definition of Autonomic Nervous System to Loewi’s Demonstration of Peripheral Chemical, Cholinergic Transmission 4. Eccles’s Demonstration of Central Chemical, Cholinergic Transmission and Immediate Post-Ecclessian Studies of Central Nicotinic and Muscarinic Transmission 5.
    [Show full text]
  • Germ-Line Gene Editing and Congressional Reaction in Context: Learning from Almost 50 Years of Congressional Reactions to Biomedical Breakthroughs
    Journal of Law and Health Volume 30 Issue 1 Article 2 7-1-2017 Germ-Line Gene Editing and Congressional Reaction in Context: Learning From Almost 50 Years of Congressional Reactions to Biomedical Breakthroughs Russell A. Spivak, J.D. Harvard Law School I. Glenn Cohen, J.D. Harvard Law School Eli Y. Adashi, M.D., M.S. Brown University Follow this and additional works at: https://engagedscholarship.csuohio.edu/jlh Part of the Bioethics and Medical Ethics Commons, Cells Commons, Genetic Processes Commons, Health Law and Policy Commons, Medical Genetics Commons, Medical Jurisprudence Commons, Science and Technology Law Commons, and the Tissues Commons How does access to this work benefit ou?y Let us know! Recommended Citation Russell A. Spivak, J.D.; I. Glenn Cohen, J.D.; and Eli Y. Adashi, M.D., M.S., Germ-Line Gene Editing and Congressional Reaction in Context: Learning From Almost 50 Years of Congressional Reactions to Biomedical Breakthroughs, 30 J.L. & Health 20 (2017) available at https://engagedscholarship.csuohio.edu/jlh/vol30/iss1/2 This Article is brought to you for free and open access by the Journals at EngagedScholarship@CSU. It has been accepted for inclusion in Journal of Law and Health by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. GERM-LINE GENE EDITING AND CONGRESSIONAL REACTION IN CONTEXT: LEARNING FROM ALMOST 50 YEARS OF CONGRESSIONAL REACTIONS TO BIOMEDICAL BREAKTHROUGHS RUSSELL A. SPIVAK, J.D., HARVARD LAW SCHOOL, CLASS OF 2017 I. GLENN COHEN J.D., PROFESSOR OF LAW, HARVARD LAW SCHOOL, CO-DIRECTOR, PETRIE- FLOM CENTER FOR HEALTH LAW POLICY, BIOTECHNOLOGY, AND BIOETHICS, HARVARD UNIVERSITY, CAMBRIDGE, MA.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Curt Von Euler 528
    EDITORIAL ADVISORY COMMITTEE Albert J. Aguayo Bernice Grafstein Theodore Melnechuk Dale Purves Gordon M. Shepherd Larry W. Swanson (Chairperson) The History of Neuroscience in Autobiography VOLUME 1 Edited by Larry R. Squire SOCIETY FOR NEUROSCIENCE 1996 Washington, D.C. Society for Neuroscience 1121 14th Street, NW., Suite 1010 Washington, D.C. 20005 © 1996 by the Society for Neuroscience. All rights reserved. Printed in the United States of America. Library of Congress Catalog Card Number 96-70950 ISBN 0-916110-51-6 Contents Denise Albe-Fessard 2 Julius Axelrod 50 Peter O. Bishop 80 Theodore H. Bullock 110 Irving T. Diamond 158 Robert Galambos 178 Viktor Hamburger 222 Sir Alan L. Hodgkin 252 David H. Hubel 294 Herbert H. Jasper 318 Sir Bernard Katz 348 Seymour S. Kety 382 Benjamin Libet 414 Louis Sokoloff 454 James M. Sprague 498 Curt von Euler 528 John Z. Young 554 Curt von Euler BORN: Stockholm County, Sweden October 22, 1918 EDUCATION: Karolinska Institute, B.M., 1940 Karolinska Institute, M.D., 1945 Karolinska Institute, Ph.D., 1947 APPOINTMENTS: Karolinska Institute (1948) Professor Emeritus, Karolinska Institute (1985) HONORS AND AWARDS (SELECTED): Norwegian Academy of Sciences (foreign member) Curt von Euler conducted pioneering work on the central control of motor systems, brain mechanisms of thermoregulation, and on neural systems that control respiration. Curt von Euler Background ow did I come to devote my life to neurophysiology rather than to a clinical discipline? Why, in the first place, did I choose to study H medicine rather than another branch of biology or other subjects within the natural sciences? And what guided me to make the turns on the road and follow what appeared to be bypaths? There are no simple answers to such questions, but certainly a number of accidental circum- stances have intervened in important ways.
    [Show full text]
  • Scientific References for Nobel Physiology & Medicine Prizes
    Dr. John Andraos, http://www.careerchem.com/NAMED/NobelMed-Refs.pdf 1 Scientific References for Nobel Physiology & Medicine Prizes © Dr. John Andraos, 2004 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ 1901 - Emil Adolf von Behring "for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths." 1902 - Ronald Ross "for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it." Ross, R. Yale J. Biol. Med. 2002, 75 , 103 (reprint) Ross, R. Wilderness Environ. Med. 1999, 10 , 29 (reprint) Ross, R. J. Communicable Diseases 1997, 29 , 187 (reprint) Ross, R.; Smyth, J. Ind. J. Malarialogy 1997, 34 , 47 1903 - Niels Ryberg Finsen "in recognition of his contributions to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science." 1904 - Ivan Petrovich Pavlov "in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged." 1905 - Robert Koch "for his investigations and discoveries in relation to tuberculosis." 1906 - Camillo Golgi and Santiago Ramón y Cajal "in recognition of their work on the structure of the nervous system." Golgi, C.
    [Show full text]
  • Nobel Laureates with Their Contribution in Biomedical Engineering
    NOBEL LAUREATES WITH THEIR CONTRIBUTION IN BIOMEDICAL ENGINEERING Nobel Prizes and Biomedical Engineering In the year 1901 Wilhelm Conrad Röntgen received Nobel Prize in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him. Röntgen is considered the father of diagnostic radiology, the medical specialty which uses imaging to diagnose disease. He was the first scientist to observe and record X-rays, first finding them on November 8, 1895. Radiography was the first medical imaging technology. He had been fiddling with a set of cathode ray instruments and was surprised to find a flickering image cast by his instruments separated from them by some W. C. Röntgenn distance. He knew that the image he saw was not being cast by the cathode rays (now known as beams of electrons) as they could not penetrate air for any significant distance. After some considerable investigation, he named the new rays "X" to indicate they were unknown. In the year 1903 Niels Ryberg Finsen received Nobel Prize in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science. In beautiful but simple experiments Finsen demonstrated that the most refractive rays (he suggested as the “chemical rays”) from the sun or from an electric arc may have a stimulating effect on the tissues. If the irradiation is too strong, however, it may give rise to tissue damage, but this may to some extent be prevented by pigmentation of the skin as in the negro or in those much exposed to Niels Ryberg Finsen the sun.
    [Show full text]
  • Nobel Laureates in Physiology Or Medicine
    All Nobel Laureates in Physiology or Medicine 1901 Emil A. von Behring Germany ”for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths” 1902 Sir Ronald Ross Great Britain ”for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it” 1903 Niels R. Finsen Denmark ”in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science” 1904 Ivan P. Pavlov Russia ”in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged” 1905 Robert Koch Germany ”for his investigations and discoveries in relation to tuberculosis” 1906 Camillo Golgi Italy "in recognition of their work on the structure of the nervous system" Santiago Ramon y Cajal Spain 1907 Charles L. A. Laveran France "in recognition of his work on the role played by protozoa in causing diseases" 1908 Paul Ehrlich Germany "in recognition of their work on immunity" Elie Metchniko France 1909 Emil Theodor Kocher Switzerland "for his work on the physiology, pathology and surgery of the thyroid gland" 1910 Albrecht Kossel Germany "in recognition of the contributions to our knowledge of cell chemistry made through his work on proteins, including the nucleic substances" 1911 Allvar Gullstrand Sweden "for his work on the dioptrics of the eye" 1912 Alexis Carrel France "in recognition of his work on vascular suture and the transplantation of blood vessels and organs" 1913 Charles R.
    [Show full text]
  • Contributions of Civilizations to International Prizes
    CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen
    [Show full text]