Spinal Nerves and Reflexes

Total Page:16

File Type:pdf, Size:1020Kb

Spinal Nerves and Reflexes Central Nervous System - Spinal Nerves and Reflexes Chapter 13B Spinal Nerves - Number There are 31 pairs of spinal nerves…a total of 62 nerves. Spinal cord is located in the vertebral canal. Spinal nerves exit vertebral column through intervertebral foramina. Intervertebral foramen Vertebral canal Spinal Nerves Interneuron Sensory neuron Sensory fiber Spinal nerve Motor neuron Motor fiber All spinal nerves are mixed nerves….contain sensory and motor fibers. Spinal Nerves - Supply N V C2–C3 C2 C 3 C3 C4 Spinal nerves go to skin, muscles and some T2 C4 C5 T3 T1 of the internal organs. T4 T2 T5 C5 T3 T T 6 4 T7 T5 T8 Dermatomes: areas of the skin that is T2 T6 T9 T T2 T7 10 connected to a specific spinal nerve. T11 T8 T12 T9 C L1 6 T10 L2 T T L3 1 11 L4 C Myotomes: specific muscles that are C6 L 7 T12 5 L1 supplied by a specific spinal nerve. S4S L 3 2 S2 C8 C8 T L3 L1 1 1 S5 C7 S1 L5 L4 S2 L2 KEY L5 L Spinal cord regions 3 = Cervical = Thoracic S = Lumbar 1 = Sacral L4 ANTERIOR POSTERIOR Spinal Nerves - Branches Spinal nerve Dorsal Dorsal root Dorsal root ganglion ramus Spinal nerve Ventral Dorsal horn ramus Ventral Ventral root horn Rami communicantes After exiting vertebral column, EACH spinal nerve splits into branches, called rami: 1. Dorsal ramus: contains nerves that serve the dorsal portions of the trunk- carry visceral motor, somatic motor, and sensory information to and from the skin and muscles of the back. 2. Ventral ramus: contains nerves that serve the remaining ventral parts of the trunk and the upper and lower limbs- carry sensory information from the body wall and the limbs and motor information to smooth muscle, skeletal muscle and glands. 3. Rami communicates: Contain autonomic nerves that carry visceral motor and sensory information to and from the visceral organs. Roots: each root is either sensory or motor; Rami: each rami is sensory and motor. Spinal Nerves - Plexus Reminder: Each spinal nerve gives off a branch called ventral/anterior ramus goes to the muscles and skin on the anterior surface of the trunk, arms, legs, head and shoulders. Ventral/anterior rami branches of thoracic nerves T2-T12 (Do not form plexus) give rise to intercostal nerves- innervates intercostal muscles, muscles and skin of anterolateral thorax and most of the abdominal wall. Ventral/anterior rami branches of other spinal nerves- C1-C8, L1-L5, S1-S5 reorganize and form network on both sides of the spinal cord before going to the muscles and skin of their respective areas. This network of intersecting nerves is called plexus. Nerve plexus are found only on --------? Ventral rami Spinal Nerves - Plexus Plexus: Refers to a network formed by the ventral rami branches of the spinal nerves (exception of T1-T12). There are four major plexi formed next to the spinal cord: Cervical plexus: in the neck region. Brachial plexus: in the shoulder region. Lumbar plexus: in the lower back region. Sacral plexus: in the buttock region. Spinal Nerves – Cervical Plexus Cervical Plexus: Formed by the ventral rami branches of the spinal nerves C1 – C5. Supplies to the skin and muscles of the C1 C2 Cervical head, neck and upper part of the C3 plexus C4 shoulders. C5 Phrenic nerve- A major nerve of cervical plexus-originates from C3, C4 and C5 spinal nerves and supplies diaphragm, a key respiratory muscle. “C3, C4, C5 keeps the diaphragm alive” Spinal Nerves – Brachial Plexus Brachial Plexus: Formed by the ventral rami branches of the spinal nerves C5 – C8 and part of T1. Supplies to the skin and muscles of the shoulders and upper extremities (arms). C5 C6 C7 Brachial C8 T1 plexus 1) Axillary nerve- innervates deltoid muscle. 2) Musculocutaneous nerve- innervates flexor muscles on arm (biceps brachii, brachialis and coracobrachilais). 3) Radial nerve-Innervates the extensor muscle of the arm (triceps brachii) and forearm. 4) Ulnar nerve- innervates flexor muscles of wrist (flexor carpi ulnaris). 5) Median nerve- innervates flexor muscles of the forearm. Spinal Nerves – Lumbar Plexus T12 Lumbar Plexus: L1 Lumbar Formed by the ventral rami branches of L 2 plexus the spinal nerves part of T12, L1 – L4. L3 L4 Supplies to the skin and muscles of the lateral and anterior abdominal wall, external genitals and part the thighs. Major nerves include:- 1) Genitofemoral nerve 2) Lateral femoral cutaneous nerve 3) Femoral nerve Spinal Nerves – Sacral Plexus Sacral Plexus: Formed by the ventral rami branches of the spinal nerves L4 – L5 and S1 – S4. L4 Supplies to the skin and muscles of the L5 S1 buttocks and lower extremities (legs). Sacral S2 plexus S3 Major nerve:- S4 Sciatic nerve (originates from L4-S3)-longest and thickest nerve in the body-innervates gluteal muscle, hamstrings and calf muscle. Sciatic nerve Reflex Sensory fiber Cell body of Sensory neuron Dorsal/posterior root ganglion Denticulate ligament Spinal nerve Reflex: Motor fiber Refers to a fast response to an external or internal stimulus to maintain homeostasis. Example: Prick your finger muscles of the arm contract you pull your arm to prevent further injury and fluid loss. Brain is not usually involved in reflex action. With age, conduction rate decreases Does that increase or decrease reflex time?? Reflex Arc 1 2 Dorsal Arrival of Activation of a root Sensation stimulus and sensory relayed to the activation of neuron brain by axon receptor collaterals Spinal cord 3 Information REFLEX processing ARC in the CNS Receptor Stimulus Response by a peripheral effector Effector Ventral root KEY 4 Sensory neuron Activation of a (stimulated) motor neuron Interneuron Motor neuron (stimulated) Reflex arc: refers to the pathway followed in order to cause a reflex. It involves: 1. Receptor- receives the stimulus causes generation of an impulse. Could be dendrite of the sensory neuron or a specialized cell. 2. Sensory neuron- carries impulse to CNS (spinal cord/brain). 3. Integration center- CNS where information is analyzed. Association neuron/interneurons are involved. 4. Motor neuron- takes impulses from CNS to where the response occurs. 5. Effector- the structure that responds….muscle or a gland. Neuronal Circuits Human body has about: 10 million sensory neurons that bring impulses to CNS. Half million motor neurons that take impulses from CNS to the effectors to get a response. 20 billion interneurons that connect sensory neurons to correct motor neurons to get correct response! How interneurons coordinate all body functions….billions of interneurons are organized in much smaller number of units called neuronal pools- a group of neurons dedicated to a particular function/functional group of neurons that process & integrate information. Neuronal circuit-structural orientation of neurons in the neuronal pool. Neuronal Circuits Divergence Convergence Serial processing Parallel processing Reverberation Neuronal circuits can be of different types: 1. Divergence: one neuron triggers many other neurons-broad distribution of a specific input- causes amplification of signal, e.g.- a motor neuron innervating 1000’s of muscle fibers. 2. Convergence- many neurons converge to one neuron-causes concentration of signal, e.g.-different types of sensory stimuli can have same ultimate effect-linking different senses like sight, sound and smell to associate it with a memory. 3) Serial processing- a type of neuronal processing where one neuron stimulates the next, eventually causing a specific anticipated response. 4) Parallel processing-several neurons/neuronal pools process information simultaneously- many responses can occur at the same time-e.g. step on a nail pain, “ouch”, lift foot, balance your body…all at the same time. 5) Reverberation- a positive feedback mechanism-collateral branches of axon extends back toward the source of an impulse and further stimulates the presynaptic neuron to produce prolonged and repetitive effect, e.g. complex circuits that control consciousness, muscle coordination, breathing. Reflex Arc - Types Patellar reflex A. Innate reflexes: reflexes you are born with…blinking, suckling, chewing. Acquired reflexes: reflexes you learn…driving, jumping ropes. Withdrawal reflex B. Somatic reflex arc: results in contraction of skeletal muscle…voluntary effector. Autonomic/Visceral reflex arc: results in contraction of smooth/cardiac muscle or secretion of a gland…involuntary effectors. C. Monosynaptic reflex arc: does not involve interneuron…one synapse…sensory motor, e.g. patellar reflex. Polysynaptic reflex arc: has one or more interneurons…2 or more synapses, e.g. withdrawal reflex Intersegmental reflex arc: sensory neurons enter at certain level/segment of the spinal cord interneurons take to another level/segment motor neurons exit at different level. D. Spinal reflex arc: involves spinal cord as the integration center…simpler. Cranial reflex arc: involves brain as the integration center…more complex. Reflexes & Neurological Impairment Somatic reflexes are often used to diagnose nervous system injuries. Lack of reflex indicates pathway injuries. Patellar reflex: patellar ligament is tapped sensory impulses are sent to the spinal cord motor impulses exit on the same side thigh muscle- quadriceps femoris contracts extension of the leg at the knee. Achilles reflex: achilles tendon is tapped contraction of gastrocnemium muscle foot extends at the ankle. Reflex Arc - Types Spinal Cord Disorders Spinal cord trauma: damage to the spinal cord loss of muscle control paralysis. Paraplegia: where both the lower extremities are paralyzed. Quadriplegia: where all four limbs are paralyzed. Neuritis: inflammation of the nerves. Due to injuries, bone fracture, drugs, etc. Painful and affects muscle contraction. Sciatica: a type of neuritis. Compression of sciatic nerve against coxal bone or hip injury injury to sciatic nerve numbness of the lower extremity or severe pain radiating from the lower back to the leg. Shingles: where chicken pox virus, hiding in the peripheral nerves becomes re-activated when immune system in compromised starts multiplying spreads along the peripheral nerve form painful blisters on the area of the skin served by that nerve (dermatome).
Recommended publications
  • Let's Form a Reflex Arc Model
    Journal of Inquiry Based Activities (JIBA) /Araştırma Temelli Etkinlik Dergisi (ATED) Vol 9, No 2, 84-95, 2019 LET’S FORM A REFLEX ARC MODEL: A STEM ACTIVITY1 Ayşegül Kağnıcı2, Özlem Sadi3 ABSTRACT The purpose of this study is to introduce an activity which has been designed in accordance with Science, Technology, Engineering, Mathematics (STEM) education within the scope of 5E learning model and to present the implementation steps of it. The activity plan is on the topics of Nerves, Hormones and Homeostasis in Human Physiology Unit in 11th grade biology curriculum. The activity was implemented with the participation of 49 students at a public high school. For the implementation of the activity, the students were divided into groups of five and they tried to complete the activity in four class hours. The participant students stated that they both learned and enjoyed learning while they were creating their model. Moreover, the teachers who implemented the activity stated that the equipment used in the activity is easy to access, which creates an advantage for the activity to be done in class. Keywords: biology education, reflex arc, STEM, nervous system. REFLEKS YAYI MODELİ OLUŞTURALIM: BİR STEM ETKİNLİĞİ ÖZ Bu çalışmanın amacı STEM eğitimine uygun olarak tasarlanan bir etkinliğin 5E öğrenme modeli kapsamında tanıtılması ve uygulama basamaklarının sunulmasıdır. Etkinlik planı, 11. Sınıf Biyoloji Dersi Öğretim Programında bulunan İnsan Fizyolojisi ünitesindeki Sinirler, Hormonlar ve Homeostazi konusu ile ilgilidir. Etkinliğin özellikle, omuriliğin görevleri ile refleks yayının çalışma mekanizmalarının öğrenilmesi noktasında faydalı olacağı düşünülmüştür. Etkinlik, bir devlet lisesinde öğrenim gören 49 öğrencinin katılımıyla gerçekleştirilmiştir. Etkinliğin uygulanmasında öğrenciler beşer kişilik gruplar oluşturmuş ve dört ders saati boyunca etkinliği tamamlamaya çalışmışlardır.
    [Show full text]
  • Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions
    Hindawi International Journal of Rheumatology Volume 2020, Article ID 2919625, 13 pages https://doi.org/10.1155/2020/2919625 Review Article Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions Worku Abie Liyew Biomedical Science Department, School of Medicine, Debre Markos University, Debre Markos, Ethiopia Correspondence should be addressed to Worku Abie Liyew; [email protected] Received 25 April 2020; Revised 26 June 2020; Accepted 13 July 2020; Published 29 August 2020 Academic Editor: Bruce M. Rothschild Copyright © 2020 Worku Abie Liyew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lumbar disc degeneration is defined as the wear and tear of lumbar intervertebral disc, and it is mainly occurring at L3-L4 and L4-S1 vertebrae. Lumbar disc degeneration may lead to disc bulging, osteophytes, loss of disc space, and compression and irritation of the adjacent nerve root. Clinical presentations associated with lumbar disc degeneration and lumbosacral nerve lesion are discogenic pain, radical pain, muscular weakness, and cutaneous. Discogenic pain is usually felt in the lumbar region, or sometimes, it may feel in the buttocks, down to the upper thighs, and it is typically presented with sudden forced flexion and/or rotational moment. Radical pain, muscular weakness, and sensory defects associated with lumbosacral nerve lesions are distributed on
    [Show full text]
  • The Reflex Arc: How a Stimulus Elicits a Response
    The Reflex Arc How a Stimulus Elicits a Response A Knee-Jerk Response • What happened? • When the hammer hit the knee the foot jerked up. • Why? Reacting to Changes • You need to keep the conditions inside your body constant. Doing this is called homeostasis. Small changes inside your body can cause its cells to be damaged or destroyed. Yet, there are big changes going on outside your body. • You need to detect a change in the environment (a stimulus) and react to the change (a response) in a way that maintains homeostasis. When you do this without thinking, it is called a reflex. Reacting to Changes • It can get very hot or very cold outside, but the temperature inside your body stays the same. How? • When it gets cold outside (stimulus) you shiver (response) and keep the temperature inside your body from dropping. • When it gets hot outside (stimulus) you perspire (response) and keep the temperature inside your body from rising. Posture • In order to maintain your posture (even bad posture - stop slouching) your muscles are constantly monitoring their shape. A change in shape of a muscle (the stimulus) causes the muscle to readjust its shape (the response) and maintain your posture. • The knee-jerk reflex is base on the hammer changing the shape of a muscle. Revisiting the Knee-Jerk Response • What is the stimulus? The hammer hits the tendon. • What is the response? The muscle contracts, causing the foot to jerk upward. Other Reflexes Stimulus Response The aroma of your favorite Salivation food A nasty odor Nausea A bright light shining in your Pupils get smaller eye An insect flying towards your Blinking eye How is a Stimulus Detected? • Some cells are specialized to react to a specific stimulus.
    [Show full text]
  • Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves
    Chapter 13 Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves Posterior Spinous process of vertebra Posterior root Deep muscles of back Posterior ramus Spinal cord Transverse process of vertebra Posterior root ganglion Spinal nerve Anterior ramus Meningeal branch Communicating rami Anterior root Vertebral body Sympathetic ganglion Anterior General Anatomy of Nerves and Ganglia • Spinal cord communicates with the rest of the body by way of spinal nerves • nerve = a cordlike organ composed of numerous nerve fibers (axons) bound together by connective tissue – mixed nerves contain both afferent (sensory) and efferent (motor) fibers – composed of thousands of fibers carrying currents in opposite directions Anatomy of a Nerve Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Epineurium Perineurium Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Endoneurium Nerve Rootlets fiber Posterior root Fascicle Posterior root ganglion Anterior Blood root vessels Spinal nerve (b) Copyright by R.G. Kessel and R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, 1979, W.H. Freeman, All rights reserved Blood vessels Fascicle Epineurium Perineurium Unmyelinated nerve fibers Myelinated nerve fibers (a) Endoneurium Myelin General Anatomy of Nerves and Ganglia • nerves of peripheral nervous system are ensheathed in Schwann cells – forms neurilemma and often a myelin sheath around the axon – external to neurilemma, each fiber is surrounded by
    [Show full text]
  • Hand on a Hot Stove
    Hand on a Hot Stove Introduction: When You Put Your Hand on a Hot Stove Think about what happens if you accidentally place your hand on a hot stove. Use numbers 1-5 to place these statements in the order in which they happen. ____ You wave or shake your hand voluntarily to cool it. ____ Your arm moves to automatically move your hand away from the stove. ____ You feel pain in your hand. ____ You remember that you should not touch a hot stove. ____ You touch a hot stove. Life Sciences Learning Center 1 Copyright © 2013 by University of Rochester. All rights reserved. May be copied for classroom use Part 1: What is a reflex? Reflexes If you touch something that is very hot, your hand moves away quickly before you even feel the pain. You don’t have to think about it because the response is a reflex that does not involve the brain. A reflex is a rapid, unlearned, involuntary (automatic) response to a stimulus (change in the environment). Reflexes are responses that protect the body from potentially harmful events that require immediate action. They involve relatively few neurons (nerve cells) so that they can occur rapidly. There are a wide variety of reflexes that we experience every day such as sneezing, coughing, and blinking. We also automatically duck when an object is thrown at us, and our pupils automatically change size in response to light. These reflexes have evolved because they protect the body from potentially harmful events. Most reflexes protect people from injury or deal with things that require immediate action.
    [Show full text]
  • A Step Towards Stereotactic Navigation During Pelvic Surgery: 3D Nerve Topography
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Erasmus University Digital Repository Surgical Endoscopy and Other Interventional Techniques https://doi.org/10.1007/s00464-018-6086-3 A step towards stereotactic navigation during pelvic surgery: 3D nerve topography A. R. Wijsmuller1,2 · C. Giraudeau3 · J. Leroy4 · G. J. Kleinrensink5 · E. Rociu6 · L. G. Romagnolo7 · A. G. F. Melani7,8,9 · V. Agnus2 · M. Diana3 · L. Soler3 · B. Dallemagne2 · J. Marescaux2 · D. Mutter2 Received: 10 May 2017 / Accepted: 1 February 2018 © The Author(s) 2018. This article is an open access publication Abstract Background Long-term morbidity after multimodal treatment for rectal cancer is suggested to be mainly made up by nerve- injury-related dysfunctions. Stereotactic navigation for rectal surgery was shown to be feasible and will be facilitated by highlighting structures at risk of iatrogenic damage. The aim of this study was to investigate the ability to make a 3D map of the pelvic nerves with magnetic resonance imaging (MRI). Methods A systematic review was performed to identify a main positional reference for each pelvic nerve and plexus. The nerves were manually delineated in 20 volunteers who were scanned with a 3-T MRI. The nerve identifiability rate and the likelihood of nerve identification correctness were determined. Results The analysis included 61 studies on pelvic nerve anatomy. A main positional reference was defined for each nerve. On MRI, the sacral nerves, the lumbosacral plexus, and the obturator nerve could be identified bilaterally in all volunteers. The sympathetic trunk could be identified in 19 of 20 volunteers bilaterally (95%).
    [Show full text]
  • The-Nervous-System-3.Pdf
    Kingsmead Technology College Q1. Reflex actions are rapid and automatic. (a) Name the following structures in a reflex action. (i) The structure that detects the stimulus. ........................................................................................................................... (1) (ii) The neurone that carries impulses to the central nervous system. ........................................................................................................................... (1) (iii) The neurone that carries impulses away from the central nervous system. ........................................................................................................................... (1) (iv) The structure that brings about the response. ........................................................................................................................... (1) (b) Describe what happens at a synapse when an impulse arrives. ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... ....................................................................................................................................
    [Show full text]
  • 35. Lumbar Plexus. Sacral Plexus. Coccygeal Plexus
    GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic LUMBAR PLEXUS. SACRAL PLEXUS. COCCYGEAL PLEXUS 1. Relevance of the topic Lumbar, sacral and coccygeal plexuses innervate the skin of the abdomen, lower back and lower extremities and all the muscles of the lower limbs. Acquired knowledge is the basis for many fields of practical medicine, such as neurology, surgery and traumatology. 2. Specific objectives After the lesson the student should know and be able to: - describe the sources of the formation of the lumbar plexus; - classify the nerves of the lumbar plexus; - to be able to demonstrate and define the branches of the lumbar plexus; - describe sources of sacral plexus formation; - classify sacral plexus nerves; - be able to demonstrate and identify short and long branches of the sacral plexus; - describe the sources of formation coccygeal plexus; - classify coccygeal plexus nerves; - be able to demonstrate and identify branches of coccygeal plexus; - to explain the innervation of muscles and skin in the areas of the lower back and lower extremity. 3. Basic level of preparation For practical this lesson a student should know and be able: - to know the anatomy of the spine, pelvis, lower extremities; - to analyze and show large and small pelvis, their bones; - to analyze and demonstrate bones and joints of the lower limbs; - to demonstrate muscles of the abdomen, perineum, pelvic girdle and lower limbs; - to know the anatomy (external and internal structure) of the spinal cord; - to know the spinal nerve anatomy. 4. Tasks for independent work during preparation for the classes 4.1.
    [Show full text]
  • Management of Metastatic Tumors Invading the Peripheral Nervous System
    Neurosurg Focus 22 (6):E14, 2007 Management of metastatic tumors invading the peripheral nervous system JOHN GACHIANI, M.D.,1 DANIEL H. KIM, M.D.,3 ADRIANE NELSON, M.D.,2 AND DAVID KLINE, M.D.1 Departments of 1Neurosurgery and 2Pathology, Louisiana State University Health Sciences Center; 3Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, Louisiana Object. The authors present the results of a retrospective review of 37 surgically treated metastases to nerve (malignant peripheral non–neural sheath nerve tumors). Tumor frequencies, presentations, management, and prognosis are discussed. Methods. Thirty-seven patients who were treated for metastases to nerve between 1969 and 2006 at the Louisiana State University Health Sciences Center were identified in a review of patient records. Notes regarding patient history and physical examination findings were reviewed to provide informa- tion on presenting symptoms and signs. Imaging and histopathological examination results were also reviewed. Cases were analyzed depending on the primary tumor and the location of metastasis. Results. There included 37 surgically treated lesions, 16 of which originated in the breast and 10 of which originated in the lung. In two cases melanomas had metastasized to nerve, and one tumor each had metastasized from the bladder, rectum, skin, head and neck, and thyroid, and from a primary Ewing sarcoma. There was a single lymphoma that had metastasized to the radial nerve and one chor- doma and one osteosarcoma, each of which had metastasized to the brachial plexus. Conclusions. The nervous system is involved in numerous ways by oncological process. Direct involvement of the peripheral nervous system occurs mostly from direct extension, although it occa- sionally occurs because of distant spread from the primary tumor to nerve.
    [Show full text]
  • The Nervous System Reflexes Spinal Reflexes Reflex Arc the Stretch
    1/17/2016 Reflexes • Rapid, involuntary, predictable motor response to a stimulus The Nervous System Spinal Reflexes Spinal Reflexes Reflex Arc • Spinal somatic reflexes • Components of a reflex arc – Integration center is in the spinal cord 1. Receptor—site of stimulus action – Effectors are skeletal muscle 2. Sensory neuron—transmits afferent impulses to the CNS • Testing of somatic reflexes is important clinically 3. Synapses in gray matter—either monosynaptic or to assess the condition of the nervous system polysynaptic region within the CNS 4. Motor neuron—conducts efferent impulses away from cord • Identical stimulus should always elicit the same 5. Effector—muscle fiber or gland cell that responds to response stereotyped reflex the efferent impulses by contracting or secreting Stimulus The Stretch Reflex Skin • Monosynaptic reflex – 2 neurons (sensory and motor), 1 synapse 1 Receptor Interneuron • Muscle spindles 2 Sensory neuron – Sensory receptors in belly of muscle 3 Integration center – Detects changes in length of muscle 4 Motor neuron • Muscle is stretched, reflex reverses the stretch 5 Effector • Important for coordination, maintenance of posture, keeps muscles from over stretching Spinal cord (in cross section) Figure 13.14 1 1/17/2016 Secondary sensory The patellar (knee-jerk) reflex—a specific example of a stretch reflex Efferent (motor) endings (type II fiber – fiber to muscle spindle senses when muscle 2 is still) Quadriceps 3a (extensors) 3b 3b ααα Efferent (motor) 1 Primary sensory fiber to extrafusal Patella endings (type Ia Muscle Spinal cord muscle fibers spindle Fiber – senses (L 2–L4) stretching) Extrafusal muscle 1 Tapping the patellar ligament excites fiber Hamstrings Patellar muscle spindles in the quadriceps.
    [Show full text]
  • BOOK REVIEW Central Nerve Plexus Injury
    Spinal Cord (2009) 47, 271–272 & 2009 International Spinal Cord Society All rights reserved 1362-4393/09 $32.00 www.nature.com/sc BOOK REVIEW Central nerve plexus injury Carlstedt T even though the book was published in 2007, only about 10% Central Nerve Plexus Injury, London, Imperial College Press, 2007, of the references listed in this chapter were published after 192 pages, US $128.00 2000, and the most recent papers were published in 2004. ISBN-10: 1860945732; ISBN-13: 978-1860945731 In Chapter 7, the author describes his approach to managing the brachial and lumbosacral plexuses. His Spinal Cord (2009) 47, 271–272; doi:10.1038/sc.2008.111 descriptions of surgical procedures are well written. How- ever, the quality of the photographs of surgical procedures is The fact that neurons from the central nervous system can less than satisfactory in most instances. regenerate into peripheral nerves has been known for a long In Chapter 8, Dr Carlstedt describes his experiences with time.1 Now,inhisbook,DrCarlstedtappliesthisconceptto intradural root repair in a limited series of patients. He repair avulsion injuries of the brachial and lumbosacral plexus. attributes any and all recovery experienced by these patients In Chapter 1 of his book, Dr Carlstedt briefly describes the to the spinal procedure and then challenges the axiom that history of brachial plexus repair, up to his first cases of root normal function cannot be restored after any procedure in reimplantation into the spinal cord. the brachial plexus, excluding neurolysis. The fact that he In Chapter 2, he reviews the mechanisms and patterns of fails to consider other nonsurgical sources of recovery within root avulsion, reinforcing the concept that the lower roots of his small series of patients is disturbing.
    [Show full text]
  • Myelin Sheaths Myelin Sheaths in the PNS
    Myelin Sheaths Myelin Sheaths in the PNS • Segmented structures composed of the • Formed by Schwann cells lipoprotein myelin • Develop during fetal period and in the first • Surround thicker axons year of postnatal life • Form an insulating layer • Schwann cells wrap in concentric layers • Prevent leakage of electrical current around the axon • Increase the speed of impulse conduction • Cover the axon in a tightly packed coil of membranes • Neurilemma • Material external to myelin layers Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc. Myelin Sheaths in the PNS Unmyelinated Axons in the PNS (a) Myelinated axon in PNS (b) Unmyelinated axons in PNS An axon wrapped with a fatty insulating sheath Axons that are not covered with an insulating sheath formed from Schwann cells Myelin sheath Schwann cell plasma membrane 1 A Schwann cell Schwann cell Schwann cell envelops an axon. Schwann cell cytoplasm cytoplasm Axon Axon Schwann cell Axons Schwann cell nucleus Neurilemma 1 A Schwann Neurilemma Schwann cell cell surrounds Axons nucleus multiple axons. 2 The Schwann cell then rotates around the axon, wrapping its plasma membrane loosely around Cross section of a myelinated axon (TEM 30,000×) it in successive layers. Cross section of unmyelinated axons (TEM 11,000×) 3 The Schwann cell Neurilemma cytoplasm is forced from 2 Each axon is Myelin between the membranes. The encircled by the sheath tight membrane wrappings surrounding the axon form Schwann cell the myelin sheath. plasma membrane. Copyright © 2011 Pearson Education, Inc. Figure 12.7a Copyright © 2011 Pearson Education, Inc. Figure 12.7b Myelin Sheaths in the PNS Myelin Sheaths in the CNS • Nodes of Ranvier—gaps along axon • Oligodendrocytes form the myelin sheaths • Thick axons are myelinated in the CNS • Myelination speeds up nerve transmission • Have multiple processes • Thin axons are unmyelinated • Coil around several different axons • Conduct impulses more slowly Copyright © 2011 Pearson Education, Inc.
    [Show full text]