Modelling, Analysis, and Control Aspects of a Rotating Power Electronic Brushless Doubly-Fed Induction Generator
Total Page:16
File Type:pdf, Size:1020Kb
Modelling, Analysis, and Control Aspects of a Rotating Power Electronic Brushless Doubly-Fed Induction Generator NAVEED UR REHMAN MALIK Doctoral Thesis in Electrical Machines and Drives Stockholm, Sweden 2015 Laboratory of Electrical Energy Conversion (E2C), TRITA-EE 2015:63 KTH Royal Institute of Technology, ISSN 1653-5146 Teknikringen 33, 100 44 Stockholm, ISBN 978-91-7595-691-6 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framläg- ges till offentlig granskning för avläggande av teknologie doktorsexamen i månda- gen den 19 Oktober 2015 klockan 10:00 i Sal F3, Kungliga Tekniska Högskolan, Lindstedtsvägen 26, Stockholm. © Naveed ur Rehman Malik, September 2015 Tryck: Universitetsservice US AB iii Abstract This thesis deals with the modeling, analysis and control of a novel brush- less generator for wind power application. The generator is named as rotat- ing power electronic brushless doubly-fed induction machine/generator (RPE- BDFIM/G). A great advantage of the RPE-BDFIG is that the slip power recovery is realized in a brushless manner. This is achieved by introducing an addi- tional machine termed as exciter together with the rotating power electronic converters, which are mounted on the shaft of a DFIG. It is shown that the exciter recovers the slip power in a mechanical manner, and delivers it back to the grid. As a result, slip rings and carbon brushes can be eliminated, increasing the robustness of the system, and reducing the maintenance costs and down-time of the turbine. To begin with, the dynamic model of the RPE-BDFIG is developed and analyzed. Using the dynamic model, the working principle of the generator is understood and its operation explained. The analysis is carried out at speeds, ±20% around the synchronous speed of the generator. Moreover, the dynamics of the generator due to external load-torque disturbances are inves- tigated. Additionally, the steady-state model is also derived and analyzed for the machine, when operating in motor mode. As a next step, the closed-loop control of the generator is considered in detail. The power and speed control of the two machines of the generator and the dc-link voltage control is designed using internal model control (IMC) principles. It is found that it is possible to maintain the stability of the generator against load-torque disturbances from the turbine and the exciter, at the same time maintain a constant dc-link voltage of the rotor converter. The closed-loop control is also implemented and the operation of the generator with the control theory is confirmed through experiments. In the third part of the thesis, the impact of grid faults on the behaviour of the generator is investigated. The operation of the generator and its re- sponse is studied during symmetrical and unsymmetrical faults. An approach to successful ride through of the symmetrical faults is presented, using passive resistive network (PRN). Moreover, in order to limit the electrical and me- chanical oscillations in the generator during unsymmetrical faults, the dual vector control (DVC) is implemented. It is found that DVC to a certain ex- tent can be used to safeguard the converter against large oscillations in rotor currents. Finally, for completeness of the thesis, a preliminary physical design of the rotating power electronic converter has been done in a finite element software called ANSYS. The thermal footprint and the cooling capability, with estimates of the heatsink and fan sizes, are presented. Besides, another variant of a rotating electronic induction machine which is based on the Lindmark concept and operating in a single-fed mode is also iv investigated. It’s steady-state model is developed and verified through exper- iments. Index Terms: Brushless doubly-fed induction generator, dual vector con- trol, dynamic model, induction machine, internal model control, Lind- mark concept, low-voltage ride-through, passive resistive network, ro- tating power electronic converter, rotating exciter, symmetrical faults, synchronous machine, thermal model, unity power factor, unsymmetri- cal faults, vector control, wind turbines. v Sammanfattning Denna avhandling handlar om modellering, analys och kontroll av en ny typ av borstlös generator för vindkraft applikation. Generatorn benämns: rotating power electronic brushless doubly-fed induction machine /generator (RPE-BDFIM/G). En stor fördel med RPE-BDFIG är att eftersläpningseffekten kan återvin- nas utan släpringar och borstar. Detta uppnås genom att införa ytterligare en maskin som kallas “exciter” tillsammans med den roterande kraftelektron- iska omvandlaren, som monterades på DFIGs axeln. Det framgår att excitern återvinner slipeffekten på mekaniskt väg, och levererar den tillbaka till nätet. Som en följd, kan släpringar och kolborstar elimineras, vilket ökar systemets robusthet och minskar underhållskostnaderna och turbinens stilleståndstid. Till att börja med utvecklats och analyseras RPE-BDFIGs dynamiska modellen. Genom den dynamiska modellen kan generatorns arbetsprincip förstås och dess funktion förklaras. Analysen har utförts vid olika hastigheter t.ex. vid ±20% av det synkrona varvtalet för generatorn. Dessutom undersöks generatorns dynamik vid yttre störningar från lastens vridmoment. Vidare härleds och analyseras maskinens stationära modell vid motordrift. Som ett nästa steg, beaktas i detalj styrningen av generatorn i det slutna systemet. Effekt och varvtalsreglering av de två maskinerna i systemet samt spänningsreglering av DC mellanled har utvecklats med principer från “in- ternal model control (IMC)”. Det framgår av resultatet att det är möjligt att upprätthålla stabiliteten i generatorn mot lastmomentstörningarna från turbinen och excitern, samtidigt som man håller en konstant DC mellan- ledsspänning på omvandlaren i rotorn. Styrningen av generatorn i det slutna systemet har också implementerats och dess regleregenskaper bekräftas genom experiment. I den tredje delen av avhandlingen, har påverkan av fel på nätet på generatorn undersökts. Generatorns drift och dess beteende under sym- metriska och osymmetriska fel studerats. Ett tillvägagångssätt presenteras för framgångsrik “ride through” genom de symmetriska felen med “passive resistive network (PRN)”. Dessutom, i syfte att begränsa de elektriska och mekaniska oscillationerna i generatorn under osymmetriska fel, har tekniken “dual vector control (DVC)” tillämpats. Man har funnit att DVC i viss ut- sträckning kan användas för att skydda omvandlaren mot de stora oscillation- erna i rotorströmmarna. Slutligen, kompletteras avhandlingen med en preliminär design av RPE i finita elementprogrammet ANSYS. Den termiska analysen och kylförmågan med uppskattningar av storlekar för kylfläns och fläkt presenterats. Dessutom, har en annan variant av den roterande elektroniska induktion- smaskinen som är baserad på Lindmarks koncept och som arbetar utan att rotorlindningen återkopplas till nätet också undersökts. En stationär modell för konceptet har utvecklats och verifierats genom experiment. Acknowledgements This project was funded by the Vindforsk Research Program who are gratefully acknowledged. First of all, I would like to thank my supervisor Professor Chandur Sadarangani for his support, encouragement, and guidance during the project. Further, I would like to express my gratitude to the steering committee members for this project; Dr. Luca Peretti, Dr. Jouko Niiranen, and Dr. Robert Chin for their valuable feedback and fruitful discussions. I want to thank Prof. Lennart Harnefors for his excellent advice on the control theory, and for continuously spending his valuable time on revising my three journal papers. I hope we can continue with the scientific work in the future. Special thanks to Prof. Hans Peter Nee for carefully reviewing this thesis. I would also like to thank Dr. Alija Cosic for his help with the equipment in the laboratory while I was working with the experimental setup. Moreover, Mats Leksell is acknowledged for solving some of the problems, which I faced during the implementation of the experimental setup. Dr. Oskar Wallmark too, is acknowl- edged for his valuable feedback on latex and on some aspects related to the control theory of the project. I would also like to thank people during my exchange visit to North Carolina State University (NCSU) Raleigh, USA. I would like to thank my supervisor there and also a co-author of my two papers, Prof. Iqbal Husain for giving me an oppor- tunity to work at FREEDM Systems Center, NCSU. Furthermore, I would like to express my gratitude to the committee at ABB corporate research, Raleigh, USA, for giving valuable feedback on my work, which I performed during my visit. For this, special thanks goes to Dr. Waqas Arshad, Dr. Ghanshyam Shrestha, and Dr. Hongrae Kim. I am grateful to all my former and current colleagues at KTH, who have been a source of help in several ways. Besides, I would like to thank Henrik Grop, Alexander Stening, Kashif Khan, Shafigh Nategh, Andreas Krings, Noman Ahmed, Yanmei Yao, Kalle Ilves, Shoaib Almas, and Lebing Jin for their company during the conferences and courses. vii viii Special thanks to E2C financial administrator Eva Petterson, system adminis- trator Peter Lönn, Jesper Freiberg, and technician Jan-Olov Brännvall (late) for assisting me with the financial, computer, and lab issues, respectively. I would like to thank Eddie for an amazing company during indoor climbing and for our excursions within Stockholm city, especially with regards to search for restaurants serving good