Larval" and Juvenile Cephalopods: a Manual for Their Identification

Total Page:16

File Type:pdf, Size:1020Kb

Larval * Larval" and Juvenile Cephalopods: A Manual for Their Identification MICHAEL J. SWEENEY, CLYDE F.E. ROPER, KATHARINA M. MANGOLD, MALCOLM R. CLARKE, and P^ MfcSIGURD V. BOLETZKY 3J EDITORS i SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 513 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover. Robert McC. Adams Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 513 'Larval" and Juvenile Cephalopods: A Manual for Their Identification Michael J. Sweeney, Clyde F.E. Roper, Katharina M. Mangold, Malcolm R. Clarke, and Sigurd v. Boletzky EDITORS ISSUED FEB 1 0 1992 SMITHSUMAN INSriUJTION SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1992 ABSTRACT Sweeney, Michael J., Clyde F.E. Roper, Katharina M. Mangold, Malcolm R. Clarke, and Sigurd v. Boletzky, editors. "Larval" and Juvenile Cephalopods: A Manual for Their Identification. Smithsonian Contributions to Zoology, number 513,282 pages, 277 figures, 6 tables, 1992. This manual provides a practical guide to the identification of "larval" and juvenile cephalopods. A comprehensive glossary of morphological terms is presented, as is a general pictorial key to the young stages of cephalopods, primarily to the family level. Systematically organized by order and family, the manual presents characters for adult and young forms, keys, illustrations, distributional and biological information, and references to pertinent literature. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: The coral Montastrea cavernosa (Linnaeus). Library of Congress Cataloging-in-Publication Data "Larval" and juvenile cephalopods : a manual for their identification / edited by Michael J. Sweeney ... [et al.]. p. cm.—(Smithsonian contributions to zoology : no. 513) "This manual represents the product of a workshop organized by the Cephalopod International Advisory Council (CIAC) held at Laboratoire Arago, Banyuls-sur-Mer, France, 17-28 June 1985"—Introd. Includes bibliographical references. 1. Cephalopoda—Identification. 2. Cephalopoda—Larvae—Identification. I. Sweeney, Michael J., 1945- . II. Cephalopod International Advisory Council. III. Series. QL1.S54 no. 513 [QL430.2] 591 s-dc20 [594'.5] 91-22098 ® The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials Z39.48—1984. Contents Page Preface vii Introduction 1 Glossary of Terms 3 Provisional Key to Young Stages of Cephalopods 11 Family Accounts 21 SEPIOIDEA (by C.C. Lu, A. Guerra, F. Palumbo, and W.C. Summers) 21 Key to Families of SEPTOIDEA 21 SPIRULIDAE 21 SEPIIDAE 21 Key to Genera of SEPIIDAE 21 SEPIADARIIDAE 27 Key to Genera of SEPIADARIIDAE 27 SEPIOLIDAE 27 Key to Subfamilies of SEPIOLIDAE 27 HETEROTEUTHINAE 27 Key to Genera of HETEROTEUTHINAE 27 ROSSIINAE 27 Key to Genera of RossnNAE 27 SEPIOLINAE 27 Key to Genera of SEPIOLINAE 31 IDIOSEPIIDAE 31 TEUTHOIDEA 37 MYOPSIDA (by R.T. Hanlon, S. v. Boletzky, T. Okutani, G. Perez-Gandaras, P. Sanchez, C. Sousa-Reis, and M. Vecchione) 37 PlCKFORDIATEUTHIDAE 37 LOLIGINIDAE 37 Key to Genera of LOLIGINIDAE (Adults and Subadults) 37 Western North Atlantic LOLIGINIDAE 40 Eastern North Atlantic and Mediterranean LOLIGINIDAE 40 Eastern North Pacific and Hawaiian LOLIGINIDAE 47 Western Pacific and Japanese LOLIGINIDAE 47 OEGOPSIDA 55 The Enoploteuthid Group of Families (by R.E. Young, K.M. Mangold, and M. Vecchione) 55 Key to Families and Genera of the Enoploteuthid Group (Young) 55 ENOPLOTEUTHIDAE 55 ANCISTROCHEIRIDAE 57 PYROTEUTHIDAE 57 LYCOTEUTHIDAE (by GJL Voss and S.J. Stephen) 67 Key to Subfamilies, Genera, and Species of LYCOTEUTHIDAE (Adults) 67 LAMPADIOTEUTHINAE 67 LYCOTEUTHINAE 67 Key to Species of LYCOTEUTHINAE 67 HISTIOTEUTHIDAE (by N.A. Voss, S.J. Stephen, and Zh. Dong) 73 in iv SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY Key to Species and Subspecies of HISTIOTEUTHIDAE (Adults, Subadults, and Juveniles) 73 BATHYTEUTHIDAE (by C.F.E. Roper and MJ. Sweeney) 93 Key to Species of Bathyteuthis (Adults and Juveniles) 94 PSYCHROTEUTHIDAE (by CJ\E. Roper and MJ. Sweeney 95 ARCHITEUTHIDAE (by C.F.E. Roper) 99 NEOTEUTHIDAE (by C.F.E. Roper) 101 Key to Genera of NEOTEUTHIDAE (Adults and Juveniles) 101 OMMASTREPHIDAE (by J.H. Wormuth, R.K. O'Dor, N. Balch, M.C. Dunning, E.C. Forch, RP. Harman, and T.W. Rowell) 105 Key to Subfamilies and Genera of OMMASTREPHIDAE (Adults and Juveniles) 105 ILLJCINAE 109 TODARODINAE 109 OMMASTREPHINAE 112 THYSANOTEUTHIDAE (by SJ. Stephen) 121 CTENOPTERYGIDAE (by K. Jefferts) 125 ONYCHOTEUTHIDAE (by M.R. Clarke) 127 Key to the Genera and Most Species of ONYCHOTEUTHIDAE 127 GONATIDAE (by T. Okutani and M.R. Clarke) 139 Key to Genera of GONATIDAE 139 Key to the North Pacific Species of GONATIDAE 139 Key I (Stage with no tentacular club developed) 139 Key II (Stage with tentacular club with minute sucker buds).... 142 Key III (Stage with developed tentacular club) 142 BRACHIOTEUTHIDAE (by C.F.E. Roper and MJ. Sweeney) 157 CYCLOTEUTHIDAE (by K. Jefferts and C.F.E. Roper) 161 Key to Genera of CYCLOTEUTHIDAE (Young) 161 OCTOPOTEUTHIDAE (by S J. Stephen and K. Jefferts) 165 Key to Genera of OCTOPOTEUTHIDAE (Juveniles) 166 LEPIDOTEUTHIDAE (by MJ*. Clarke) 167 PHOLIDOTEUTHIDAE (by M.R. Clarke) 168 BATOTEUTHIDAE (by Ci\E. Roper and MJ. Sweeney) 171 CHIROTEUTHIDAE (by CJ\E. Roper and MJ. Sweeney) 171 Key to Genera of CHIROTEUTHIDAE (Adults, Subadults, and Late Juveniles) 171 Key to Genera of CHIROTEUTHIDAE ("Larvae") 175 MASTIGOTEUTHIDAE (by C.F.E. Roper and MJ. Sweeney) 175 Key to Genera of MASTIGOTEUTHIDAE (Adults, Subadults, and Juveniles) 175 JOUBINTTEUTHIDAE (by C.F.E. Roper and M.R. Clarke) 179 GRIMALDITEUTHIDAE (by M.R. Clarke) 181 PROMACHOTEUTHIDAE (by N.A. Voss) 183 Key to Species of PROMACHOTEUTHIDAE (Juveniles -10-17 mm ML) 183 CRANCHIIDAE (by N.A. Voss, S J. Stephen, and Zh. Dong) 187 Key to Genera of CRANCHIIDAE ("Larvae" and Early Juveniles)... 187 CRANCHIINAE 188 TAONIINAE 192 VAMPYROMORPHA (by F.G. Hochberg and M. Nixon) 211 VAMPYROTEUTHIDAE 211 OCTOPODA (by F.G. Hochberg, M. Nixon, and R.B. Toll) 213 ClRRATA 213 ClRROTEUTHIDAE 213 NUMBER 513 STAUROTEUTHIDAE 217 OPISTHOTEUTHIDAE 217 INCIRRATA 219 AMPHITRETIDAE 219 BOLITAENIDAE 222 VLTRELEDONELLIDAE 225 ALLOPOSIDAE 227 TREMOCTOPODIDAE 228 OCYTHOIDAE 230 ARGONAUTTDAE 232 OCTOPODIDAE 237 Unidentified or Unverified Material 268 Appendix 1: Octopod Worksheet 280 Appendix 2: Workshop Participants 281 This volume is dedicated with gratitude and honor to Professor Gilbert L. Voss (1918-1989), a leading figure in cephalopod systematics and biology for nearly 40 years. In the early 1950s Dr. Voss intended to conduct research on larval and juvenile cephalopods of the Florida Current, but he was forced to abandon the project because even the adults from the Gulf of Mexico and the Caribbean Sea were mostly unknown. This was a world-wide problem and only by the mid 1980s was faunal knowledge sufficiently improved to attempt a compilation about larval cephalopods on a world-wide basis. This volume, in no small part, represents the tremendous contributions Gil Voss has made to cephalopod systematics and distribution. Preface This manual results from an intensive international workshop and subsequent efforts by most participants. The following summary (adapted from Roper, 1985:94, 95) provides readers with the historical perspective and organizational context from which this collaborative volume emerged. The concept of establishing an international body of cephalopod specialists to assess and encourage the direction and needs of cephalopod research was introduced and accepted at the International Workshop on the Biology and Resource Potential of Cephalopods,
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land 2 Snail Species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. Smith (1878) and 3 Achatina reticulata Pfeiffer 1845 (Gastropoda:Achatinidae) in Southwest Nigeria 4 5 6 7 8 9 Alexander B. Odaibo1 and Suraj O. Olayinka2 10 11 1,2Department of Zoology, University of Ibadan, Ibadan, Nigeria 12 13 Corresponding author: Alexander B. Odaibo 14 E.mail :[email protected] (AB) 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The aim of this study was to determine the differences in the shell, radula and genital 21 structures of 3 new invasive species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. 22 Smith (1878) and Achatina reticulata Pfeiffer, 1845 collected from southwestern Nigeria and to 23 determine features that would be of importance in the identification of these invasive species in 24 Nigeria.
    [Show full text]
  • Study of Earthworm
    4.1 SYSTEMATICS POSITION,HABIT AND HABITAT 4.2 EXTERNAL CHARACTERS 4.3 DIGESTIVE SYSTEM 4.4 CIRCULATORY SYSTEM 4.5 EXCRETORY SYSTEM 4.6 REPRODUCTIVE SYSTEM 4.7 NERVOUS SYSTEM AND SENSORY ORGANS 4.8 ECONOMIC IMPORTANCE Systematic Position Phylum: Annelida Class: Oligochaeta Genus: Pheretima Species: posthuma Common Name: Earthworm Habit and habitat • These are nocturnal in habit and live in damp, moist, humus-rich soil of lawns, gardens etc. In dry weather they burrow deeper into the soil to avoid dryness. Their niche is a herbivore and macro-decomposer and is important as a source of food for birds. It also helps in soil aeration and increasing soil fertility. EXTERNAL CHARACTERS • Body is long, narrow and cylindrical. • Length may reach upto 150 mm. • Body colour is brown. • Anterior end is pointed while the posterior end is blunt. • Body is divided into 100-140 segments called metameres. • The anteriormost segment is called Prostomium. • Mouth is a crescentic aperture, present at anterior end. The segment containing mouth is called peristomium. • Setae are present at all the segments except-1st and last. Each seta is embedded in a setal sac. • A glandular band called Clitellum is situated in 14th to 16th segments. It forms coccon during the reproduction. • female genital pore is situated in 14th segment (ventral surface)while male genital pore is present in 18th segment. • The earthworm feeds on organic matter in the soil. • The food is sucked by the pharynx and the oesophageal glands add calcite to neutralise acidity of the soil. • The food is then grinded by the horny lining of the gizzard and is absorbed in the intestine.
    [Show full text]
  • (GIS) Atlas of Cephalopod Distribution in the Southern Ocean
    Antarctic Science 11 (I): 61-62 (1999) Short note A Geographical Information System (GIS) Atlas of cephalopod distribution in the Southern Ocean J.C. XAVIER1,2,P.G. RODHOUSEl, P.N. TRATHANI and A.G. WOOD1 'BritishAntarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK 2Universidadedo Algarve, Campus de Gambelas, 8000 Faro, Portugal Received 12 May 1998, accepted 14 September 1998 Introduction Results The geographic distributions of many Antarctic cephalopod A total of 2497 geographic positions of 21 species of squid species are not well understood. Many may be influenced by (suborder Oegopsida) were obtained, combining data from physical factors such as watermasses, iceextent or bathymetry. 1886 (Challenger Expedition) to 1997. There are huge areas For example, there is an apparent association of mesoscale without any geographic positions that appear under-sampled. oceanographic features with some species (Rodhouse et al. The best represented species were G. glacialis (625 geographic 1996). Such associations suggest certain physical factors in positions), B. picta (412), T. filippovae (293), B. abyssicola the environment that may be predictors of foraging locations (250), M.hamiltoni (188), M. hyadesi (184) and P. glacialis for cephalopods and/or their predators. Improving our (112). understanding of such interrelations is important in developing The maps of the species distribution in relation to bathymetry, a better scientific basis for conservation and sustainable ocean fronts and sea-ice extent are on World Wide Web page: management of commercial fisheries (Trathan et al. 1993). http://www.nerc-bas.ac.uWpublic/dsd/squid-atlas/ A detailed bibliography is also provided there.
    [Show full text]
  • DIET of FREE-RANGING and STRANDED SPERM WHALES (Physeter
    DIET OF FREE-RANGING AND STRANDED SPERM WHALES (Physeter macrocephalus) FROM THE GULF OF MEXICO NATIONAL MARINE FISHERIES SERVICE CONTRACT REPORT Submitted to: Dr. Keith D. Mullin National Marine Fisheries Service Southeast Fisheries Science Center PO. Drawer 1207 Pascagoula, MS 39568-1207 Submitted by: Dr. Nelio B. Barros Mote Marine Laboratory Center for Marine Mammal and Sea Turtle Research 1600 Ken Thompson Parkway Sarasota, FL 34236-1096 (941) 388-4441 x 443 (941) 388-4317 FAX May 2003 Mote Marine Laboratory Technical Report Number 895 ABSTRACT Sperm whales are common inhabitants of the deep waters of the Gulf of Mexico. To date, no information is available on the diet of sperm whales in the Gulf. This study sheds light into the feeding habits ofthese whales by examining data collected from free-ranging and stranded animals. Prey species included a minimum of 13 species within 10 families of cephalopods, the only prey type observed. The most important prey was Histioteuthis, a midwater squid important in the diet of sperm whales worldwide. Most species of cephalopods consumed by Gulf sperm whales are meso to bathypelagic in distribution, being found in surface to waters 2,500 deep. Some of these prey are also vertical migrators. The diet of Gulf sperm whales does not include species targeted by the commercial fisheries. INTRODUCTION Until fairly recently, little was known about the species of whales and dolphins (cetaceans) inhabiting the deep waters of the Gulf of Mexico. Most of the information available came from opportunistic sightings and occasional strandings. In the early 1990' s large-scale dedicated surveys were initiated to study the distribution and abundance of marine mammals in the deep Gulf.
    [Show full text]
  • Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
    Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ...........................................................................................................................
    [Show full text]
  • A Short Note on the Cephalopods Sampled in the Angola Basin During the DIVA-1 Expedition Uwe Piatkowskiã, Rabea Diekmann
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 227–230 www.elsevier.de/ode RESULTS OF THE DIVA-1 EXPEDITION OF RV ‘‘METEOR’’ (CRUISE M48/1) A short note on the cephalopods sampled in the Angola Basin during the DIVA-1 expedition Uwe PiatkowskiÃ, Rabea Diekmann IFM-GEOMAR, Leibniz-Institut fu¨r Meereswissenschaften an der Universita¨t Kiel, Du¨sternbrooker Weg 20, D-24105 Kiel, Germany Abstract Five cephalopods, all belonging to different species, were identified from deep-sea trawl samples conducted during the DIVA 1-expedition of RV ‘‘Meteor’’ in the Angola Basin in July 2000. These were the teuthoid squids Bathyteuthis abyssicola, Brachioteuthis riisei, Mastigoteuthis atlantica, Galiteuthis armata, and the finned deep-sea octopus Grimpoteuthis wuelkeri. The present study contributes information on size, morphometry, biology and distribution of the species form this unique cephalopod collection. r 2004 Elsevier GmbH. All rights reserved. Keywords: Cephalopoda; Deep-sea; Angola Basin; Cirrate octopods Introduction captured. These circumstances demonstrate the great scientific value of any cephalopod sampled from deep- Cephalopods in the bathyal and abyssal ecosystems sea habitats. The abyssal plains still belong to the most have been the subject of only a limited number of studies unknown regions in the oceans. One of these plains, the due to the obvious difficulties involved in collecting Angola Basin was sampled during the RV ‘‘Meteor’’ them adequately at such great depths (Voss 1967; expedition in 2000. In the present study, we provide Villanueva 1992). A further drawback relates to their information on a small collection of cephalopods which delicate bodies, which are frequently damaged almost have been caught during the expedition and which beyond recognition in trawl samples.
    [Show full text]
  • Radula of Trajct1ut Ctcap11lcana ( Pilsbry and Lowe) N Eoteron Ariel
    THE GENUS TRAJANA (MOLLUSCA: GASTROPODA) IN THE NEW WORLD E:t\IILY II. VOKES TULANE UNIVERSITY CONTENTS I. ABSTRACT __ - 75 II. INTRODUCTION 75 III. ACKNOWLEDGMENTS 77 IV. SYSTEMATIC DESCRIPTIONS 77 V. LOCALITY DATA _ 83 VI. LITERATURE CITED (8" ) ILLUSTRATIONS TEXT FIGURE 1. Radula of Trajct1Ut ctcap11lcana ( Pilsbry and Lowe) 76 TEXT FIGUEE 2. N eoteron ariel Pilsbry and Lowe 76 PLATE 1 _ 81 I. ABSTRACT off the coast of western Mexico. All species The nassarioid gastropod genus T1'ajanct are treated systematically. s.s. includes those species with a closed siphonal canal and a circular aperture, sur­ II. INTRODUCTION rounded by a raised p eristome. There are Those gastropods possessing a short, but four species in the fossil record of the slightly recurved, closed siphonal canal, a New World, occurring in the upper Mio­ circular aperture surrounded by a raised cene of North Carolina, Florida, Mexico, peristome, and a single terminal varix have and Peru, and the Pliocene of Ecuador. One presented a problem to writers for many of these four is a new species: T. ve1'ctcru­ years. Dall ( 1910, p. 32-33) suggested that zana E. H . Vokes, from the upper Miocene they be referred to the genus Hindsict A. Agueguexquite Formation of Mexico, and Adams, 1851, which was a troubled group represents the first record of the genus in from the start. Dell ( 1967, p. 309-310) the "Tertiary Caribbean Province," linking has summarized the problem nicely, stating: the eastern United States and the western "The name Hindsia had an uncertain intro­ South American occurrences.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • Observations on Age and Reproduction of the Oceanic Squid Ancistrocheirus Lesueurii (D’Orbigny, 1842) (Cephalopoda: Ancistrocheiridae) H.J.T
    Journal of Natural History, 2015 Vol. 49, Nos. 21–24, 1319–1325, http://dx.doi.org/10.1080/00222933.2013.840748 Observations on age and reproduction of the oceanic squid Ancistrocheirus lesueurii (d’Orbigny, 1842) (Cephalopoda: Ancistrocheiridae) H.J.T. Hovinga,b* and M.R. Lipinskic aMonterey Bay Aquarium Research Institute, Moss Landing, CA, USA; bGEOMAR-Helmholtz Centre for Ocean Research Kiel, Kiel, Germany; cDepartment of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa (Received 18 December 2012; accepted 19 August 2013; first published online 24 February 2014) Despite the importance of Ancistrocheirus lesueurii in the diet of a wide variety of oceanic predators, many aspects of its biology are unknown. We report new observations on the reproductive system of the species and provide age estimates of one normal and two intersexual males based on the number of increments in the statoliths. The age of the examined mature males was estimated to be more than 2 years, increasing the maximum age known for males of the species. Female A. lesueurii have specific modified areas for spermatangia reception in the nuchal region. The morphology of the right hectocotylized ventral arm and the relatively large spermatophore are also described. Keywords: Cephalopoda; Ancistrocheirus lesueurii; spermatophore; mating; hectocotylus; deep sea; statoliths; age Introduction The oceanic squid Ancistrocheirus lesueurii (d’Orbigny, 1842) is important in the deep sea foodweb, being heavily preyed upon by sharks and cetaceans (Clarke 1980, 1996; Smale and Cliff 1998). Females attain larger sizes and mature later than males, and growth rates in both sexes are among the lowest known for squid (Arkhipkin 1997).
    [Show full text]