Patterns in Micronekton Diversity Across the North Pacific Subtropical Gyre Observed from the Diet of Longnose Lancetfish (Alepisaurus Ferox)

Total Page:16

File Type:pdf, Size:1020Kb

Patterns in Micronekton Diversity Across the North Pacific Subtropical Gyre Observed from the Diet of Longnose Lancetfish (Alepisaurus Ferox) Author’s Accepted Manuscript Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox) Elan J. Portner, Jeffrey J. Polovina, C. Anela Choy www.elsevier.com PII: S0967-0637(16)30357-0 DOI: http://dx.doi.org/10.1016/j.dsr.2017.04.013 Reference: DSRI2784 To appear in: Deep-Sea Research Part I Received date: 28 October 2016 Revised date: 7 March 2017 Accepted date: 18 April 2017 Cite this article as: Elan J. Portner, Jeffrey J. Polovina and C. Anela Choy, Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox) , Deep-Sea Research Part I, http://dx.doi.org/10.1016/j.dsr.2017.04.013 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox) Elan J. Portnera*, Jeffrey J. Polovinab, C. Anela Choyc aHopkins Marine Station, Stanford University, 120 Ocean View Blvd., Pacific Grove, CA 93950, USA bNOAA Pacific Islands Fisheries Science Center 1845 Wasp Blvd., Honolulu, HI 96818, USA cMonterey Bay Aquarium Research Institute 7700 Sandholdt Road, Moss Landing, CA 95039, USA [email protected] [email protected] [email protected] *Corresponding author Abstract: We examined the diet of a common midwater predator, the longnose lancetfish (Alepisaurus ferox, n= 1371), with respect to fork length, season, and capture location within the North Pacific Subtropical Gyre (NPSG). While A. ferox fed diversely across 98 prey families, approximately 70% of its diet by wet weight was contributed by seven prey families (fishes: Sternoptychidae, Anoplogastridae, Omosudidae, Alepisauridae; hyperiid amphipods: Phrosinidae; octopods: Amphitretidae; polychaetes: Alciopidae). Altogether, these micronekton prey families constitute a poorly known forage community distinct from those exploited by other pelagic predators and poorly sampled by conventional methods. We demonstrate ontogenetic variation in diet of A. ferox between two size classes of a bimodal size structure of our specimens (<97cm fork length = “small”, ≥97cm fork length = “large”). Large A. ferox consumed more fish and octopods, fewer crustaceans, and were more cannibalistic than small A. ferox. Multiple observations supported ontogenetic shifts in vertical foraging habitat, including that large A. ferox consume more mesopelagic and larger prey overall, than small A. ferox. Spatial and 1 seasonal variation in the diet of A. ferox is consistent with expected patterns of variation in prey distribution with respect to oceanographic features of the NPSG. Within both size classes, the diets of specimens collected from the oligotrophic core of the NPSG were more diverse than those collected near the boundaries of the gyre and appeared to track seasonal variation in the position of the northern boundary of the gyre. Our data suggest seasonal and spatial variability in the midwater forage communities exploited by A. ferox across the NPSG, and demonstrate that sustained monitoring of diet would provide valuable insights into the long-term changes in these understudied communities. Keywords – Pelagic ecology, trophic dynamics, mesopelagic predator, diet analysis, biological sampler, lancetfish, micronekton, North Pacific Subtropical Gyre 1. Introduction Pelagic ecosystems are the largest on the planet in terms of volume (Ramirez-Llodra et al., 2010; Robison 2009) and support numerous species which are commercially harvested (e.g. tunas, billfishes, sharks, and squids; FAO 2012) or protected (e.g. whales, dolphins, and birds; Moore et al., 2009). Many of these species are direct predators of micronekton – actively swimming fishes, crustaceans, cephalopods, and gelatinous organisms approximately 2-20cm in length, which comprise a large biomass in pelagic ecosystems and link production at the base of the food web to top predators (Brodeur & Yamamura, 2005; Dambacher et al., 2010; Moteki, et al., 2001). The composition of micronekton communities varies between ocean basins (Brodeur and Yamamura, 2005), and diel migration of many micronekton species between the surface and mesopelagic depths (~200-1000m) creates vertical variability in within ocean basins (Maas et al., 2014; Tont 1976; Young 1978). Although spatial and temporal variation in micronekton communities has been detected at the scale of ocean basins, there have been few community- scale studies of micronekton ( Maynard et al., 1975; De Forest and Drazen, 2009; Drazen et al., 2011) and many species are able to actively avoid trawls, limiting our ability to thoroughly sample these dynamic midtrophic communities with conventional methods (Clarke, 1973; Kaartvedt et al., 2012). As such, natural variation in micronekton communities and their 2 responses to perturbations represent a critical gap in our understanding of pelagic ecosystem dynamics (Lehodey et al., 2010; Young et al., 2015). For pelagic fish predators, diet analysis is commonly used to study vertical distributions (Choy et al., 2013; Moteki, et al., 2001), variability in trophic ecology over space and time (Kuhnert et al., 2012; Olson and Galván-Magaña, 2002; Watanabe et al., 2009), and has been used in concert with acoustic and trawl surveys to assess temporal variability in prey availability and selectivity (Bertrand et al., 2002). Examining prey communities through diet is inherently biased by foraging behaviors, but provides access to prey that escape capture by midwater trawls. In the case of mesopelagic predators, diet analysis augments our understanding of deep-dwelling communities difficult to sample at high spatial or temporal resolutions. Previous work has shown that large pelagic fish can serve as biological samplers of micronekton and diet analysis can be used to detect large-scale changes in pelagic food webs (Olson et al., 2014; Overholtz et al., 2000). Most of the effort to elucidate pelagic trophic dynamics has been focused on commercially important apex predators, such as tunas and billfishes, many of which are metabolically tied to warm waters at the ocean’s surface (Block et al., 1992, 1997; Dewar et al., 2011, Olson et al., 2016). Examining the trophic ecology of deeper-dwelling, midtrophic predators could greatly augment our understanding of variability in the structure of mesopelagic micronekton communities by increasing the diversity of forage communities sampled. The longnose lancetfish, Alepisaurus ferox, is a midtrophic, mesopelagic predator found circumglobally at tropical and subtropical latitudes (Orlov & Ul’chenko, 2002), and is known mostly from reports of incidental catch in tuna and swordfish longline fisheries (Carruthers et al., 2009; Jantz et al., 2013; Uchiyama et al., 2003) and onshore records of dead individuals (Kubota & Uyeno, 1970; Orlov & Ul’chenko, 2002). Very little is known about the growth rate or life history of A. ferox; its maximum reported length is 215cm (Robins & Ray, 1986) and exploratory histological studies suggest that A. ferox is a simultaneous hermaphrodite, although the functionality of each gonad throughout its life history is unknown (Gibbs 1960, Smith & Atz, 1973). Alepisaurus ferox has a large, blind-sac gut typical of fishes in the suborder Alepisauroidea, but appears to store food in its stomach for extended periods with minimal digestion (Wassersug & Johnson, 1976), allowing for detailed prey identification. Diet studies from multiple ocean basins demonstrate that A. ferox consumes diverse prey (e.g. fishes, crustaceans, cephalopods, etc.) and have generally classified A. ferox as an opportunistic predator 3 (Moteki et al., 1993; Potier et al., 2007a, 2007b; Romanov et al., 2008). However, A. ferox from different locations have comparable diets (Choy et al., 2013, Romanov et al., 2008), suggesting that a better understanding of diet selectivity by A. ferox and the trophic niche it occupies will require more spatially expansive diet studies. Alepisaurus ferox plays important roles in pelagic ecosystems as both predator and prey (Moteki, et al., 2001; Potier et al., 2007a; Young et al., 2010). In the south- and central-western Pacific Ocean, A. ferox has been identified as a “key player” based on high numbers of trophic linkages and the negative modeled effects of its removal from these ecosystems (Dambacher et al., 2010). Within the North Pacific Subtropical Gyre (NPSG), which lies between 20º and 35º N latitude (Howell et al., 2012), the prevalence of A. ferox has increased over the past two decades in parallel with the expansion of the oligotrophic core of the NPSG (Polovina et al., 2008, 2011) and large-scale changes in the size structure and abundance of primary producers and top predators (Polovina et al., 2009; Barnes et al., 2011; Woodworth-Jefcoats et al., 2013). Fisheries observer data show that A. ferox was the most commonly captured species in the Hawaii-based, deep-set longline fishery between 2005 and 2015, but it is unclear how these trends relate to competitive release, reduction
Recommended publications
  • Diurnal Patterns in Gulf of Mexico Epipelagic Predator Interactions with Pelagic Longline Gear: Implications for Target Species Catch Rates and Bycatch Mitigation
    Bull Mar Sci. 93(2):573–589. 2017 research paper https://doi.org/10.5343/bms.2016.1008 Diurnal patterns in Gulf of Mexico epipelagic predator interactions with pelagic longline gear: implications for target species catch rates and bycatch mitigation 1 National Marine Fisheries Eric S Orbesen 1 * Service, Southeast Fisheries 1 Science Center, 75 Virginia Beach Derke Snodgrass 2 Drive, Miami, Florida 33149. Geoffrey S Shideler 1 2 University of Miami, Rosenstiel Craig A Brown School of Marine & Atmospheric John F Walter 1 Science, 4600 Rickenbacker Causeway, Miami, Florida 33149. * Corresponding author email: <[email protected]>. ABSTRACT.—Bycatch in pelagic longline fisheries is of substantial international concern, and the mitigation of bycatch in the Gulf of Mexico has been considered as an option to help restore lost biomass following the 2010 Deepwater Horizon oil spill. The most effective bycatch mitigation measures operate upon a differential response between target and bycatch species, ideally maintaining target catch while minimizing bycatch. We investigated whether bycatch vs target catch rates varied between day and night sets for the United States pelagic longline fishery in the Gulf of Mexico by comparing the influence of diel time period and moon illumination on catch rates of 18 commonly caught species/species groups. A generalized linear model approach was used to account for operational and environmental covariates, including: year, season, water temperature, hook type, bait, and maximum hook depth. Time of day or moon
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito in California Waters
    UC San Diego Fish Bulletin Title Fish Bulletin 152. Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters Permalink https://escholarship.org/uc/item/7t5868rd Authors Pinkas, Leo Oliphant, Malcolm S Iverson, Ingrid L.K. Publication Date 1970-06-01 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 152 Food Habits of Albacore, Bluefin Tuna, and Bonito In California Waters By Leo Pinkas , Malcolm S. Oliphant, and Ingrid L. K. Iverson 1971 1 2 ABSTRACT The authors investigated food habits of albacore, Thunnus alalunga, bluefin tuna, Thunnus thynnus, and bonito, Sarda chiliensis, in the eastern North Pacific Ocean during 1968 and 1969. While most stomach samples came from fish caught commercially off southern California and Baja California, some came from fish taken in central Califor- nia, Oregon, and Washington waters. Standard procedures included enumeration of food items, volumetric analysis, and measure of frequency of occur- rence. The authors identified the majority of forage organisms to the specific level through usual taxonomic methods for whole animals. Identification of partially digested animals was accomplished through the use of otoliths for fish, beaks for cephalopods, and the exoskeleton for invertebrates. A pictorial guide to beaks of certain eastern Pacific cephalopods was prepared and proved helpful in identifying stomach contents. This guide is presented in this publication. The study indicates the prominent forage for bluefin tuna, bonito, and albacore in California waters is the northern anchovy, Engraulis mordax. 3 ACKNOWLEDGMENTS The Food Habits Study of Organisms of the California Current System, (Project 6–7-R), was an investigation estab- lished under contract between the U.S.
    [Show full text]
  • SYNOPSIS of BIOLOGICAL DATA on SPECIES of the GENUS Thunnus (Sensu Lato) (SOUTH AFRICA)
    Species Synopsis No, 19 FAO Fisheries Biology Synopsis No, 62 FIb/SG2 (Distribution restricted) SAST - Tuna SYNOPSIS OF BIOLOGICAL DATA ON SPECIES OF THE GENUS Thunnus (Sensu lato) (SOUTH AFRICA) Exposé synoptique sur la biologie des espèces du genre Thunnus (Sensu lato) (Afrique du Sud) Sinopsis sobre la biologia de las especies del género Thunnus (Sensu lato) (Sudfrica) Prepared by F, H, TALBOT and M, J, PENRITH South African Museum Cape Town, South Africa FISHERIES DIVISION, BIOLOGY BRANCH FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1963 bU 8 FIb/S62 Thunnus alalunga 1:1 Thunnus alalunga IDENTITY species in having a clear white edge to the caudal. 1. 1Taxonomy Liver: Center of the three lobeb largest. Densely striated with surface veins ventrally, i. 1, 1Definition-ih similar to bluefin tuna. A Thunnus with liver densely striated with Swim bladder: Wide, and running nearly veins ventrally;cutaneous blood vessels pas- the full length of the body cavity, with marked sing through the myotome of the 5th vertebra; pit anteriorly, not divided into two by a con- with pectoral long, at least reaching beyond the nective tissue wall as found in the bigeye tuna, 2nd dorsal; and a total count of 27 to 30 gill- but may be slightly cleft anteriorly (three rakers on the first arch. specimens dissected). 1. 1. 2 Description-2/ 1. 2 Nomenclature Torpedo-shaped body, less deep and less 1. 2. 1Valid scientific name compressed than most tunas. Thunnus alalunga (Bonnaterre) Proportions: (expressed as a percentage of fork length).Head, 29 to 30;depth, 25 to 1.2.2 Synonyms-li 27;eye, 5.3 to 5.7; maxilla, 10 to 12; pec- toral length, 40 to 42;first dorsal height,11 Scomber alalunga Bonnaterre, 1788, p.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2003 Springer‐Verlag. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: Marshall, N. J., Cronin, T. W., & Frank, T. M. (2003). Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects. In S. P. Collin & N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments. (pp. 343‐372). Berlin: Springer‐Verlag. doi: 10.1007/978‐0‐387‐22628‐6_18 18 Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects N. Justin Marshall, Thomas W. Cronin, and Tamara M. Frank Abstract Crustaceans possess a huge variety of body plans and inhabit most regions of Earth, specializing in the aquatic realm. Their diversity of form and living space has resulted in equally diverse eye designs. This chapter reviews the latest state of knowledge in crustacean vision concentrating on three areas: spectral sensitivities, ontogenetic development of spectral sen­ sitivity, and the temporal properties of photoreceptors from different environments. Visual ecology is a binding element of the chapter and within this framework the astonishing variety of stomatopod (mantis shrimp) spectral sensitivities and the environmental pressures molding them are examined in some detail. The quantity and spectral content of light changes dra­ matically with depth and water type and, as might be expected, many adaptations in crustacean photoreceptor design are related to this governing environmental factor. Spectral and temporal tuning may be more influenced by bioluminescence in the deep ocean, and the spectral quality of light at dawn and dusk is probably a critical feature in the visual worlds of many shallow-water crustaceans.
    [Show full text]
  • Journal of Natural History
    This article was downloaded by:[Smithsonian Trpcl Res Inst] [Smithsonian Trpcl Res Inst] On: 24 May 2007 Access Details: [subscription number 777121079] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713192031 Extended parental care in two endobenthic amphipods M. Thiel a; S. Sampson a; L. Watling a a Darling Marine Center, University of Maine. Walpole, ME. USA To cite this Article: Thiel, M., Sampson, S. and Watling, L. , 'Extended parental care in two endobenthic amphipods', Journal of Natural History, 31:5, 713 - 725 To link to this article: DOI: 10.1080/00222939700770351 URL: http://dx.doi.org/10.1080/00222939700770351 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • An Estimation of the Life History and Ecology of Opah and Monchong in the North Pacific
    SCTB15 Working Paper BBRG-2 An estimation of the life history and ecology of opah and Monchong in the North Pacific Donald R. Hawn, Michael P. Seki, and Robert Nishimoto National Marine Fisheries Service (NMFS) Honolulu Laboratory Hawaii An investigation of the life history and ecology of opah and monchong in the North Pacific1 Donald R. Hawn, Michael P. Seki, and Robert Nishimoto National Marine Fisheries Service, NOAA Southwest Fisheries Science Center Honolulu Laboratory 2570 Dole Street Honolulu, HI 96822-2396 Introduction Two miscellaneous pelagic species incidentally caught by Hawaii-based longliners targeting bigeye tuna are the opah (Lampris guttatus) and monchong (Taractichthys steindachneri and Eumegistus illustris) (Fig. 1). Particularly valued by restaurants, these exotic, deep-water fishes are generally harvested in small, but nevertheless significant, quantities. For the period 1987-99, as much as 300,000 lbs. of “monchong” were landed at United Fishing Agency (UFA) with individual fish averaging 14.2 to 17.7 lbs. Mean price ranged from $1.35 to $2.06 per lb. with annual ex-vessel revenue ranging from negligible (<$10K) to $420K. Over the same time period, 150,000 to 1.2 million lbs of opah have been landed annually with individual fish weighing 97-111 lbs. Annual ex-vessel revenue for opah ranged from $240K to $1.4 million at a price per lb ranging from $0.87 to $1.40 (R. Ito, NMFS Honolulu Laboratory, pers. comm.). Since neither are targeted species, these fishes have historically been poorly studied and as a result available information pertaining to the biology and ecology of these resources are virtually nonexistent.
    [Show full text]
  • Vertical Distribution Patterns of Cephalopods in the Northern Gulf of Mexico
    fmars-07-00047 February 20, 2020 Time: 15:34 # 1 ORIGINAL RESEARCH published: 21 February 2020 doi: 10.3389/fmars.2020.00047 Vertical Distribution Patterns of Cephalopods in the Northern Gulf of Mexico Heather Judkins1* and Michael Vecchione2 1 Department of Biological Sciences, University of South Florida St. Petersburg, St. Petersburg, FL, United States, 2 NMFS National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States Cephalopods are important in midwater ecosystems of the Gulf of Mexico (GOM) as both predator and prey. Vertical distribution and migration patterns (both diel and ontogenic) are not known for the majority of deep-water cephalopods. These varying patterns are of interest as they have the potential to contribute to the movement of large amounts of nutrients and contaminants through the water column during diel migrations. This can be of particular importance if the migration traverses a discrete layer with particular properties, as happened with the deep-water oil plume located between 1000 and 1400 m during the Deepwater Horizon (DWH) oil spill. Two recent studies focusing on the deep-water column of the GOM [2011 Offshore Nekton Sampling and Edited by: Jose Angel Alvarez Perez, Analysis Program (ONSAP) and 2015–2018 Deep Pelagic Nekton Dynamics of the Gulf Universidade do Vale do Itajaí, Brazil of Mexico (DEEPEND)] program, produced a combined dataset of over 12,500 midwater Reviewed by: cephalopod records for the northern GOM region. We summarize vertical distribution Helena Passeri Lavrado, 2 Federal University of Rio de Janeiro, patterns of cephalopods from the cruises that utilized a 10 m Multiple Opening/Closing Brazil Net and Environmental Sensing System (MOC10).
    [Show full text]
  • 8.1 the Significance of Ocean Deoxygenation for Mesopelagic Communities Brad A
    8.1 The significance of ocean deoxygenation for mesopelagic communities Brad A. Seibel and Karen F. Wishner 8.1 The significance of ocean deoxygenation for mesopelagic communities Brad A. Seibel1 and Karen F. Wishner2 1College of Marine Science, University of South Florida, Florida, USA. Email: [email protected] 2Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode island, USA. Email: [email protected] Summary • Mesopelagic community structure is directly dependent on the availability of oxygen for aerobic metabolism. Diversity, abundance, distribution and composition of mesopelagic species are all influenced by variations in oxygen at both large and small scales. • Ocean deoxygenation will decrease the minimum oxygen content in the mesopelagic zone and cause oxyclines to shift vertically (i.e. expansion of the oxygen minimum zone (OMZ) core) in the water column. • A species’ ability to extract oxygen from sea water has evolved to meet specific oxygen demand. As a result, species do not have excess capacity, nor do they live in environments with excess oxygen relative to their evolved capacity; thus, they are susceptible to reductions in oxygen partial pressure and increasing temperature (which elevates metabolic demand). • Changes in temperature and oxygen profiles within the water column may therefore decouple or enhance competition among different mesopelagic zooplankton species and the larger predators that forage on them at depth by changing zooplankton abundances, distributions, and the depth of layers, and altering species composition and diversity. The biogeochemical cycles (i.e. the biological pump and microbial assemblages) that rely on the mesopelagic zooplankton community will be substantially altered. SECTION 8.1 SECTION Ocean deoxygenation: Everyone’s problem 265 8.1 The significance of ocean deoxygenation for mesopelagic communities Ocean hypoxia effect Potential consequences Decreasing oxygen partial pressure (PO2) in any • Reduced capacity for prey capture and predator habitat will reduce aerobic metabolic performance evasion.
    [Show full text]
  • 10B. 31B. Mantle Fused Dorsally with Head (Fig
    click for previous page - 22 - 4 rows of suckers 30a. Suckers on tentacular club in 4 longitudinal rows; mantle free dorsally (Fig. 63). Family Cycloteuthidae 30b. Suckers on tentacular club in 8 or more longitudinal rows; mantle fuseddorsally to head (Fig. 64) . .Family Promachoteuthidae 10b. Funnel fused to mantle on each side; no funnel-mantle locking apparatus present 31a. Mantle free dorsally, articulates with head by ridge and groove (Fig. 65. Family Grimalditeuthidae 31b. Mantle fused dorsally with head tentacular (Fig. 66). .Family Cranchiidae club 1b. Eight circumoral appendages (arms only) ventral view Cycloteuthidae (Discoteuthis)Fig. 63 32a.Suckers stalked (with chitinous rings); internal shell a chitinous, thin, broad, plate;a pair of small filamentous circu- moral appendages in pouch between bases of arms I & II; light organ (photo- phore) present at base of each fin and medial to each eye dorsally; colour black (Fig.67 ) . Order Vampyromorpha (monotypic order) 32b.Suckers sessile, without stalks and with- out chitinous rings; internal shell ves- tage either small cartilaginous rods or a U-shaped support; secondary filamen- tous appendages and light organs absent; colour to dark maroon, but never black. .Order Octopoda tentacular club ventral view Promachoteuthidae (Promachoteuthis)Fig. 64 filaments ventral view dorsal view dorsal view Cranchiidae Vampyromorpha Grimalditeuthidae (Vampyroteuthis) (Grimalditeuthis) (Mesonychoteuthis) Fig. 67 Fig. 65 Fig. 66 light organs - 23 - 33a. Cirri present on arms 34a. Secondary web present; body elon- gate with prominent head; shell vestige saddle-like (Fig. 68) . Family Ci rroteuthidae 34b. Secondary web absent; body flat- tened along dorsoventral axis; shell vestige straight or slightly bent (Fig.
    [Show full text]