Functional Traits and Resource-Use Strategies of Native and Invasive Plants in Eastern North American Forests

Total Page:16

File Type:pdf, Size:1020Kb

Functional Traits and Resource-Use Strategies of Native and Invasive Plants in Eastern North American Forests Syracuse University SURFACE Dissertations - ALL SURFACE 5-15-2015 Functional traits and resource-use strategies of native and invasive plants in Eastern North American forests Jacob Mason Heberling Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Life Sciences Commons Recommended Citation Heberling, Jacob Mason, "Functional traits and resource-use strategies of native and invasive plants in Eastern North American forests" (2015). Dissertations - ALL. 213. https://surface.syr.edu/etd/213 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT Despite the presumption that native species are well adapted to their local environment, non- native invaders seem to outperform native plants. Intuitively, it appears paradoxical that non- native species, with no opportunity for local adaptation, can exhibit greater fitness than native plants with this advantage. Here, I compared traits of native and invasive shrub and liana species in Eastern North American (ENA) forests to test the overarching hypothesis that non-native understory species invasive to this region have superior resource-use strategies, or alternatively, they share the same metabolic tradeoffs as the native flora. First, at a global scale, I addressed the largely untested hypothesis that biogeography places significant constraints on trait evolution. Reanalyzing a large functional trait database, along with species’ native distribution data, I found that regional floras with different evolutionary histories exhibit different tradeoffs in resource capture strategies. Second, using a common garden to control for environment, I measured leaf physiological traits relating to resource investments, carbon returns, and resource-use efficiencies in 14 native and 18 non-native invasive species of common genera found in ENA understories, where growth is presumably constrained by light and nutrient limitation. I tested whether native and invasive plants have similar metabolic constraints or if these invasive species (predominantly from East Asia) are more productive per unit resource cost. Despite greater resource costs (leaf construction, leaf N), invaders exhibited greater energy- and nitrogen-use efficiencies, particularly when integrated over leaf lifespan. Efficiency differences were primarily driven by greater mean photosynthetic abilities (20% higher daily C gain) and leaf lifespans (24 days longer) in invasive species. Third, motivated by common garden results, I conducted a resource addition experiment in a central NY deciduous forest to investigate the role of resource limitation on invasion success in the field. I manipulated understory light environments (overstory tree removal) and N availabilities (ammonium-nitrate fertilization) to create a resource gradient across plots each containing 3 invasive and 6 native woody species. Invasive species generally exhibited greater aboveground productivity and photosynthetic gains. After two treatment years, invasive species displayed more pronounced trait responses to the resource gradients, primarily light, relative to the weaker responses of native species. Lastly, I asked whether species exhibit similar resource-use strategies in their native and invasive ranges. I measured leaf functional traits of Rhamnus cathartica (native to Europe, invasive in ENA) and Prunus serotina (native to ENA, invasive in Europe) in populations across central NY and northern France. Notably, I found invasive US populations of R. cathartica had markedly greater photosynthetic rates (50% higher) and reduced leaf N resorption rates in autumn (30% lower) than native French populations. Contrastingly, I found minimal leaf trait differences in P. serotina between native (US) and invasive (French) populations. Collectively, my results highlight the utility of functional trait perspectives and support a mechanistic explanation for invasion success based on differential abilities of species to convert limiting resources to biomass. FUNCTIONAL TRAITS AND RESOURCE-USE STRATEGIES OF NATIVE AND INVASIVE PLANTS IN EASTERN NORTH AMERICAN FORESTS by J. Mason Heberling B.S. Pennsylvania State University 2010 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Syracuse University May 2015 Copyright © JM Heberling 2015 All Rights Reserved ACKNOWLEDGMENTS I am thankful to so many people that it is difficult to express my gratitude here and avoid cliché. I hope I have expressed my thanks beyond the brief words on this page. First, I am fortunate to be connected to Allison Heberling, who was more than supportive in this venture, both personally and academically. She selflessly moved to Syracuse for my dream (not hers), whilst maintaining her independence. I was absent many weekends and evenings, including a month long trip to New Zealand when she dealt with a rambunctious dog in the unfriendly Syracuse winter – all while pregnant. She knows more about plant ecology than she’ll admit and physically contributed more to data collection than anyone else realizes. I am incredibly thankful to my advisor, Jason Fridley. He provided not only academic advice, but also personal support and confidence to continue in science. All of the chapters were co-authored with him. I cannot describe here the many ways he has inspired and mentored me. I know he is one of the best advisors out there because he was more than just an advisor. I am grateful to many collaborators. Guillaume Decocq and Thomas Kichey warmly welcomed me in France and were essential to Ch 4. I appreciate the other Fridley lab members, especially Elise Hinman for our chats and her fieldwork. Tom and Randi Starmer were extremely generous to allow my unrestricted access to their property. Tom was even out there with a chainsaw for Ch 3. Mara McPartland has gone well beyond a field assistant to make important decisions for Ch 3. I also thank my research committee, Doug Frank, Martin Dovciak and Mark Ritchie, for their input and time. Lastly, and most recently, I thank Susan Kalisz and her lab at U. of Pittsburgh for support. The last year away from Syracuse would not have been nearly as productive without her motivation and guidance. v TABLE OF CONTENTS LIST OF ILLUSTRATIVE MATERIALS ............................................................................................ vii INTRODUCTION. Understanding modern floristic interchange through functional traits................1 CHAPTER 1. Biogeographic constraints on the worldwide leaf economics spectrum .................. 12 CHAPTER 2. Resource-use strategies of native and invasive plants in Eastern North American forests ...................................................................................................................................... 43 CHAPTER 3. Influence of resource availability on understory invasion success: ecophysiological responses to an experimental light and nitrogen gradient in an Eastern North American deciduous forest ...................................................................................................................... 88 CHAPTER 4. Plant functional shifts in the invaded range: a test with reciprocal forest invaders of Europe and North America ................................................................................................... 133 SYNTHESIS. Proximate and ultimate mechanisms of plant invasions ......................................... 170 APPENDIX 1. A practical guide for measuring leaf-level photosynthesis ................................... 176 APPENDIX 2. Code for Bayesian implementation of FvCB C3 photosynthesis model ............... 195 VITA ............................................................................................................................................ 199 vi LIST OF ILLUSTRATIVE MATERIALS INTRODUCTION. Figure 1. Relationship between photosynthetic capacity (Amax) and leaf nitrogen (N) in a global dataset ......................................................................................................................... 3 Figure 2. Hypothesized functional differences between native and invasive species .............. 4 CHAPTER 1. Table 1. Standardized major axis (SMA) regression parameters, coefficients of determination, and sample sizes for each floristic contrast and trait relationship ............... 38 Figure 1. Hypothetical differences in leaf economic trait relationships between plants of evolutionarily distinct floristic regions ................................................................................ 41 Figure 2. Leaf economic trait relationships for each floristic contrast ................................... 42 CHAPTER 2. Table 1. Woody, deciduous species measured in this study ................................................... 72 Table 2. Mean values (± 1 SE) of photosynthetic, biochemical, structural, and resource-use efficiency leaf traits among native and invasive species ..................................................... 74 Figure 1. Average modeled light response curves for 12 native and 18 invasive species ...... 79 Figure 2. Standardized major axis relationships for maximum C assimilation parameters and leaf N ...................................................................................................................................
Recommended publications
  • Erigenia : Journal of the Southern Illinois Native Plant Society
    ERIGENIA THE LIBRARY OF THE DEC IS ba* Number 13 UNIVERSITY OF ILLINOIS June 1994 ^:^;-:A-i.,-CS..;.iF/uGN SURVEY Conference Proceedings 26-27 September 1992 Journal of the Eastern Illinois University Illinois Native Plant Society Charleston Erigenia Number 13, June 1994 Editor: Elizabeth L. Shimp, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial St., Harrisburg, IL 62946 Copy Editor: Floyd A. Swink, The Morton Arboretum, Lisle, IL 60532 Publications Committee: John E. Ebinger, Botany Department, Eastern Illinois University, Charleston, IL 61920 Ken Konsis, Forest Glen Preserve, R.R. 1 Box 495 A, Westville, IL 61883 Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 Lawrence R. Stritch, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial Su, Harrisburg, IL 62946 Cover Design: Christopher J. Whelan, The Morton Arboretum, Lisle, IL 60532 Cover Illustration: Jean Eglinton, 2202 Hazel Dell Rd., Springfield, IL 62703 Erigenia Artist: Nancy Hart-Stieber, The Morton Arboretum, Lisle, IL 60532 Executive Committee of the Society - April 1992 to May 1993 President: Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 President-Elect: J. William Hammel, Illinois Environmental Protection Agency, Springfield, IL 62701 Past President: Jon J. Duerr, Kane County Forest Preserve District, 719 Batavia Ave., Geneva, IL 60134 Treasurer: Mary Susan Moulder, 918 W. Woodlawn, Danville, IL 61832 Recording Secretary: Russell R. Kirt, College of DuPage, Glen EUyn, IL 60137 Corresponding Secretary: John E. Schwegman, Illinois Department of Conservation, Springfield, IL 62701 Membership: Lorna J. Konsis, Forest Glen Preserve, R.R.
    [Show full text]
  • New Insight Into the Phylogeographic Pattern Of
    New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east–west lineage split and genetic mixture within western subtropical China Aihong Yang, Yongda Zhong, Shujuan Liu, Lipan Liu, Tengyun Liu, Yanqiang Li and Faxin Yu The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China ABSTRACT Background: Subtropical China is a global center of biodiversity and one of the most important refugia worldwide. Mountains play an important role in conserving the genetic resources of species. Liriodendron chinense is a Tertiary relict tree largely endemic to subtropical China. In this study, we aimed to achieve a better understanding of the phylogeographical pattern of L. chinense andtoexploretheroleofmountainsintheconservationofL. chinense genetic resources. Methods: Three chloroplast regions (psbJ-petA, rpl32-ndhF, and trnK5’-matK) were sequenced in 40 populations of L. chinense for phylogeographical analyses. Relationships among chloroplast DNA (cpDNA) haplotypes were determined using median-joining networks, and genetic structure was examined by spatial analysis of molecular variance (SAMOVA). The ancestral area of the species was reconstructed using the Bayesian binary Markov Chain Monte Carlo (BBM) method according to its geographic distribution and a maximum parsimony (MP) tree based on Bayesian methods. Results: Obvious phylogeographic structure was found in L. chinense. SAMOVA Submitted 13 September 2018 revealed seven groups matching the major landscape features of the L. chinense Accepted 26 December 2018 Published 1 February 2019 distribution area. The haplotype network showed three clades distributed in the eastern, southwestern, and northwestern regions. Separate northern and southern Corresponding author Faxin Yu, [email protected] refugia were found in the Wu Mountains and Yungui Plateau, with genetic admixture in the Dalou Mountains and Wuling Mountains.
    [Show full text]
  • Potential Antioxidant and Antiproliferative Activities of a Hot-Water Extract from the Root of Tonh Khidum
    ONCOLOGY LETTERS 1: 383-387, 2010 383 Potential antioxidant and antiproliferative activities of a hot-water extract from the root of Tonh khidum JIQIANG LIU, ZHENYA ZHANG, GUOQING XING, HONGHAI HU, NORIO SUGIURA and INTABON KEO Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan Received September 29, 2009; Accepted December 4, 2009 DOI: 10.3892/ol_00000068 Abstract. In this study, for the first time, the possible antioxidant constituents and bioactivities. In particular, no investigation and antiproliferative activities of a hot-water extract (TW100) has been reported in the literature regarding the antioxidant from the root of Tonh khidum (Actinidia kolomikta Maxim) and antiproliferative properties of Tonh khidum in vitro. were examined in vitro. Total phenolic compound, 1,1-diphenyl- It is commonly accepted that under situations of oxidative 2-picrylhydrazyl (DPPH) radical-scavenging activity and stress, reactive oxygen species (ROS) such as superoxide ● - ● ● ● superoxide dismutase (SOD)-like activity assays were utilized to ( O2 , OOH), hydroxyl ( OH) and peroxyl (ROO ) radicals investigate its antioxidant activity. As a result, TW100 showed a are generated. ROS play an important role in degenerative strong antioxidant activity. The total phenolic content of TW100 or pathological processes such as aging (1), cancer, coronary was 143 µg gallic acid equivalents/mg. The SOD-like activity heart disease, Alzheimer's disease (2-4), neurodegenerative of TW100 was 666,667 U/g extract, and the DPPH radical- disorders, atherosclerosis, cataracts and inflammation (5). scavenging activity was 129 µg/ml at EC50 which was one Generally, cells possess endogenous systems [superoxide third of vitamin E (40 µg/ml).
    [Show full text]
  • 1. EUONYMUS Linnaeus, Sp. Pl. 1: 197
    Fl. China 11: 440–463. 2008. 1. EUONYMUS Linnaeus, Sp. Pl. 1: 197. 1753 [“Evonymus”], nom. cons. 卫矛属 wei mao shu Ma Jinshuang (马金双); A. Michele Funston Shrubs, sometimes small trees, ascending or clambering, evergreen or deciduous, glabrous, rarely pubescent. Leaves opposite, rarely also alternate or whorled, entire, serrulate, or crenate, stipulate. Inflorescences axillary, occasionally terminal, cymose. Flowers bisexual, 4(or 5)-merous; petals light yellow to dark purple. Disk fleshy, annular, 4- or 5-lobed, intrastaminal or stamens on disk; anthers longitudinally or obliquely dehiscent, introrse. Ovary 4- or 5-locular; ovules erect to pendulous, 2(–12) per locule. Capsule globose, rugose, prickly, laterally winged or deeply lobed, occasionally only 1–3 lobes developing, loculicidally dehiscent. Seeds 1 to several, typically 2 developing, ellipsoid; aril basal to enveloping seed. Two subgenera and ca. 130 species: Asia, Australasia, Europe, Madagascar, North America; 90 species (50 endemic, one introduced) in China. Euonymus omeiensis W. P. Fang (J. Sichuan Univ., Nat. Sci. Ed. 1: 38. 1955) was described from Sichuan (Emei Shan, Shishungou, ca. 1300 m). This putative species was misdiagnosed; it is a synonym of Reevesia pubescens Masters in the Sterculiaceae (see Fl. China 12: 317. 2007). The protologue describes the fruit as having bracts. The placement of Euonymus tibeticus W. W. Smith (Rec. Bot. Surv. India 4: 264. 1911), described from Xizang (3000–3100 m) and also occurring in Bhutan (Lhakhang) and India (Sikkim), is unclear, as only a specimen with flower buds is available. Euonymus cinereus M. A. Lawson (in J. D. Hooker, Fl. Brit. India 1: 611. 1875) was described from India.
    [Show full text]
  • Phylogenetic Relationships in Korean Elaeagnus L. Based on Nrdna ITS Sequences
    Korean J. Plant Res. 27(6):671-679(2014) Print ISSN 1226-3591 http://dx.doi.org/10.7732/kjpr.2014.27.6.671 Online ISSN 2287-8203 Original Research Article Phylogenetic Relationships in Korean Elaeagnus L. Based on nrDNA ITS Sequences OGyeong Son1, Chang Young Yoon2 and SeonJoo Park1* 1Department of Life Science, Yeungnam University, Gyeongsan 712-749, Korea 2Department of Biotechnology, Shingyeong University, Hwaseon 445-741, Korea Abstract - Molecular phylogenetic analyses of Korean Elaeagnus L. were conducted using seven species, one variety, one forma and four outgroups to evaluate their relationships and phylogeny. The sequences of internal transcribed spacer regions in nuclear ribosomal DNA were employed to construct phylogenetic relationships using maximum parsimony (MP) and Bayesian analysis. Molecular phylogenetic analysis revealed that Korean Elaeagnus was a polyphyly. E. umbellata var. coreana formed a subclade with E. umbellata. Additionally, the genetic difference between E. submacrophylla and E. macrophylla was very low. Moreover, E. submacrophylla formed a branch from E. macrophylla, indicating that E. submacrophylla can be regarded as a variety. However, several populations of this species were not clustered as a single clade; therefore, further study should be conducted using other molecular markers. Although E. glabra f. oxyphylla was distinct in morphological characters of leaf shape with E. glabra. But E. glabra f. oxyphylla was formed one clade by molecular phylogenetic with E. glabra. Additionally, this study clearly demonstrated that E. pungens occurs in Korea, although it was previously reported near South Korea in Japan and China. According to the results of ITS regions analyses, it showed a resolution and to verify the relationship between interspecies of Korean Elaeagnus.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • BIOGEOGRAPHIC RECONSTRUCTION of the GENUS FERULA INFERRED from ANALYSES of Nrdna and Cpdna SEQUENCES
    IRANIAN JOURNAL OF BOTANY 25 (2), 2019 DOI: 10.22092/ijb.2019.126389.1241 BIOGEOGRAPHIC RECONSTRUCTION OF THE GENUS FERULA INFERRED FROM ANALYSES OF nrDNA AND cpDNA SEQUENCES M. Panahi Received 2019. 05. 22; accepted for publication 2019. 11. 20 Panahi, M., 2019. 12. 30: Biogeographic reconstruction of the genus Ferula inferred from analyses of nrDNA and cpDNA sequences. -Iran. J. Bot. 25 (2): 79-94. Tehran. The divergence time of the largely Asian element, the genus Ferula L. (subtribe Ferulinae, tribe Scandiceae, Apiaceae) was initially analyzed using nrDNA, internal transcribed spacer (ITS) sequence data followed with three regions of cpDNA (rps16 and rpoC1 introns and rpoB-trnC intergenic spacers) from 141 representatives of subtribe Ferulinae (Ferula, Dorema, Leutea) and relatives. Further analyses of the biogeographical history of the Ferula group were carried out using BEAST, S-DIVA and BBM in RASP on all datasets. The results suggested that the initial split within Ferulinae occurred during Early Pliocene about 4.8 Ma and earlier ancestor of Ferula group has been originated mostly in Armeno-Iranian province. One descendent giving rises to the Ferula clade and another descendent subsequently underwent further divergence to account for Leutea lineages about 1.8-2 Ma. The rapid diversification within Ferulinae clade has occurred since the Middle Pliocene. Subsequent diversification of the Ferula clade intensified in the Irano-Turanian region during the late Pliocene in the Central Asian zone and toward west in Mediterranean zone during early Pleistocene. The ancestor of Chinese group of Ferula spread from Central Asia to eastern Asia in the Pliocene (2.2-4 Ma).
    [Show full text]
  • Studies of Fruit and Seed Characters of Selected Euonymus Species Bernd Schulz, Translated by Wolfgang Bopp
    Studies of fruit and seed characters of selected Euonymus species Bernd Schulz, translated by Wolfgang Bopp Summary Euonymus species are particularly prized for their decorative fruits. This work describes and illustrates (in water colour), the fruits and seeds of 30 commonly cultivated species found in Central European plant collections. The text discusses the criteria for species differentiation. As well as the shape of the fruits and seeds, seed colouration is described and compared to several published accounts in an attempt to correct previous misconceptions. This paper was originally published in German in 2006 (Schulz, 2006a). This translation contains some minor additions and adjustments to the original text and has been translated to the best of our ability, albeit not being a 100% accurate translation. 1 Introduction The German common name of Euonymus europaeus, is “Pfaffenhütchen” which translates as priest’s hat or mitre, in reference to its shape. In past centuries, the wearing of such a hat was a status symbol, showing the belonging to a professional group. Priests in Germany have, since the sixteenth century, been wearing the so-called biretta1,”a stiff and square-shaped head covering as worn by priests, also found in a wider and bigger version“ (Loschek 1993). In Germany today certain clerics wear a very similar head covering, closely resembling the shape of Euonymus europaeus fruits. While I never intended to get as closely involved with this genus, the very attractive nature of the fruits and seeds captivated me, and led me to produce this work. Prior to turning to the fruits of woody broadleaves, I primarily studied the winter buds and twigs of deciduous trees and shrubs (Schulz 1999, 2004, 2006b), a subject which was then little published, apart from the works by Schneider (1903) and Trelease (1931).
    [Show full text]
  • Extended Leaf Phenology and the Autumn Niche in Deciduous Forest Invasions
    LETTER doi:10.1038/nature11056 Extended leaf phenology and the autumn niche in deciduous forest invasions Jason D. Fridley1 The phenology of growth in temperate deciduous forests, including development, biweekly leaf production and chlorophyll (Chl) content, the timing of leaf emergence and senescence, has strong control over and monthly photosynthetic rate on select leaves at a range of light ecosystem properties such as productivity1,2 and nutrient cycling3,4, levels (50–800 mmol pm22 s21). Although not all species were mea- and has an important role in the carbon economy of understory sured each year, a similar number of native and non-native species plants5–7. Extended leaf phenology, whereby understory species were monitored annually and data sets for most species involved at assimilate carbon in early spring before canopy closure or in late least 2 years (Supplementary Table 1). autumn after canopy fall, has been identified as a key feature of The timing of leaf emergence across species was sensitive to inter- many forest species invasions5,8–10, but it remains unclear whether annual variation in spring temperatures (Supplementary Fig. 1), with there are systematic differences in the growth phenology of native all stages of bud development occurring several weeks earlier in the and invasive forest species11 or whether invaders are more responsive warmer spring of 2010 (P , 0.001, year contrasts in Mann–Whitney to warming trends that have lengthened the duration of spring or U-tests adjusted for multiple testing; Fig. 1). However, the timing of autumn growth12. Here, in a 3-year monitoring study of 43 native early stages of bud activity was not significantly different between and 30 non-native shrub and liana species common to deciduous native and non-native species for any year (Fig.
    [Show full text]
  • Proceedings of the International Conference on Biodiversity – Present State, Problems and Prospects of Its Conservation
    Proceedings of the International Conference on Biodiversity – Present State, Problems and Prospects of its Conservation January 8-10, 2011 University of Chittgaong, Chittagong 4331, Bangladesh Eivin Røskaft David J. Chivers (Eds.) Organised by Norwegian University of Science and Technology NO 7491, Trondheim, Norway University of Chittagong Chittagong 4331, Bangladesh Norwegian Centre for International Cooperation in Education (SIU), NO 5809, Bergen, Norway i Editors Professor Eivin Røskaft, PhD Norwegian University of Science and Technology (NTNU) Department of Biology, Realfagbygget, NO-7491, Trondheim, Norway. E-mail: [email protected] David J. Chivers, PhD University of Cambridge Anatomy School, Cambridge CB3 9DQ, United Kingdom. Contact address: Selwyn College, Grange Road, Cambridge CB3 9DQ, United Kingdom. E-mail: [email protected] Assistant Editor A H M Raihan Sarker, PhD Norwegian University of Science and Technology (NTNU) Department of Biology, Realfagbygget, NO-7491, Trondheim, Norway. E-mail: [email protected] and [email protected] Cover photo: Mountains from Teknaf Wildlife Sanctuary, Cox’s Bazar, Bangladesh is a part of Teknaf Peninsula and located in the south-eastern corner of Bangladesh near the Myanmar border. It was the first protected area in Bangladesh established in 1983 to protect wild Asian elephants (Elephas maximus). (Photograph © Per Harald Olsen, NTNU, Trondheim, Norway). ISBN 978-82-998991-0-9 (Printed ed.) ISBN 978-82-998991-1-6 (Digital ed.) ISSN 1893-3572 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks.
    [Show full text]
  • Plant List by Hardiness Zones
    Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]