The Search for Superconductivity in High Pressure Hydrides Tiange Bi, Niloofar Zarifi, Tyson Terpstra, Eva Zurek∗ Department of Chemistry University at Buffalo State University of New York Buffalo, NY 14260-3000, USA
[email protected], nzarifi@buffalo.edu,
[email protected], ∗
[email protected] June 4, 2018 Abstract The computational and experimental exploration of the phase diagrams of binary hydrides under high pressure has uncovered phases with novel stoichiometries and structures, some which are superconducting at quite high temperatures. Herein we review the plethora of studies that have been undertaken in the last decade on the main group and transition metal hydrides, as well as a few of the rare earth hydrides at pressures attainable in diamond anvil cells. The aggregate of data shows that the propensity for superconductivity is dependent upon the species used to “dope” hydrogen, with some of the highest values obtained for elements that belong to the alkaline and rare earth, or the pnictogen and chalcogen families. Keywords: superconductivity, hydrides, high pressure, density functional theory, electronic structure, crystal structure prediction, materials, extreme conditions, metallic hydrogen, Bardeen-Cooper-Schrieffer superconductor arXiv:1806.00163v1 [cond-mat.supr-con] 1 Jun 2018 1 1 Introduction The metalization of hydrogen under pressure was first proposed by J. D. Bernal, but only later transcribed by Wigner and Huntington in their seminal 1935 paper, which discussed the possi- bility of hydrogen transforming to an