Paul Ashley Lummis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Densifying Metal Hydrides with High Temperature and Pressure
3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C. -
New Generation Cadmium‑Free Quantum Dots for Biophotonics and Nanomedicine
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. New Generation Cadmium‑Free Quantum Dots for Biophotonics and Nanomedicine Xu, Gaixia; Zeng, Shuwen; Zhang, Butian; Swihart, Mark T.; Yong, Ken‑Tye; Prasad, Paras N. 2016 Xu, G., Zeng, S., Zhang, B., Swihart, M. T., Yong, K.‑T., & Prasad, P. N. (2016). New Generation Cadmium‑Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews, 116(19), 12234‑12327. https://hdl.handle.net/10356/83973 https://doi.org/10.1021/acs.chemrev.6b00290 © 2016 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Chemical Reviews, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acs.chemrev.6b00290]. Downloaded on 06 Oct 2021 00:28:06 SGT Page 1 of 288 Submitted to Chemical Reviews 1 2 3 4 5 6 New Generation Cadmium-Free Quantum Dots for 7 8 Biophotonics and Nanomedicine 9 10 11 12 13 14 Gaixia Xu1,5†, Shuwen Zeng2,5†, Butian Zhang2, Mark T. Swihart3*, 15 2* 4* 16 Ken-Tye Yong and Paras N. Prasad 17 18 19 20 1 21 Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong 22 Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P. R. 23 China 24 2 25 School of Electrical and Electronic Engineering, -
Hazardous Laboratory Chemicals Disposal Guide
Third Edition HAZARDOUS LABORATORY CHEMICALS DISPOSAL GUIDE Third Edition HAZARDOUS LABORATORY CHEMICALS DISPOSAL GUIDE Margaret-Ann Armour LEWIS PUBLISHERS A CRC Press Company Boca Raton London New York Washington, D.C. This edition published in the Taylor & Francis e-Library, 2005. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to http://www.ebookstore.tandf.co.uk/. Library of Congress Cataloging-in-Publication Data Armour, M.A. (Margaret-Ann) Hazardous laboratory chemicals disposal guide/Margaret-Ann Armour.—3rd ed. p. cm. Includes bibliographical references. ISBN 1-56670-567-3 1. Chemical laboratories—Waste disposal. 2. Hazardous substances. I. Title. QD64.A76 2003 542′.89–dc21 2002043358 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. -
UNIVERSITY of CALIFORNIA, IRVINE Transition Metal Complexes
UNIVERSITY OF CALIFORNIA, IRVINE Transition Metal Complexes of Modified Azaphosphatranes DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry by Zachary Thammavongsy Dissertation Committee: Professor Jenny Y. Yang, Chair Professor Andrew S. Borovik Professor William J. Evans 2019 © 2019 Zachary Thammavongsy DEDICATION For my mother, Kor, and my father, Vinai, who sacrificed their lives for me to live out mine. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES xv LIST OF SCHEMES xvi LIST OF CHARTS xvii ACKNOWLEDGMENTS xviii CURRICULUM VITAE xix ABSTRACT OF THE DISSERTATION xxv INTRODUCTION 1 CHAPTER 1: The Electronic and Steric Tolman Parameters of Proazaphosphatranes: Synthesis, Characterization, and Measurements 12 1.1. Motivation and Specific Aims 13 1.2. Background 13 1.3. Results and Discussion 15 R 1.3.1. Synthesis and Structure of Ni(L )(CO)3 Complexes (1-4) 15 Me 1.3.2. Synthesis and Structure of Ni(L )2(CO)2 Complex (5) 18 R 1.3.3. Tolman Electronic Parameters and Cone Angles of Ni(L )(CO)3 Complexes (1-4) 21 1.4. Conclusion 23 1.5. Experimental Details 24 1.6. References 38 CHAPTER 2: Expanding the Denticity of Proazaphosphatrane: Ligand Synthesis 41 2.1. Motivation and Specific Aims 42 2.2. Background 43 2.3. Results and Discussion 43 2.3.1. Synthesis of Tri-Substituted Tris(2-aminoethyl)amines 43 2.3.2. Synthesis of Protonated Tri-Substituted Azaphosphatranes 44 2.3.3. Synthesis of Tri-Substituted Proazaphosphatranes 46 2.4. Conclusion 49 2.5. -
Transition Metal Hydrides
Transition Metal Hydrides Biomimetic Studies and Catalytic Applications Jesper Ekström Stockholm University © Jesper Ekström, Stockholm 2007 ISBN 978-91-7155-539-7 Printed in Sweden by US-AB, Stockholm 2007 Distributor: Department of Organic Chemistry ‘Var som en anka brukade min mamma alltid säga. Håll dig lugn på ytan, och paddla utav bara helvete därunder.’ Michael Caine Abstract In this thesis, studies of the nature of different transition metal-hydride com- plexes are described. The first part deals with the enantioswitchable behav- iour of rhodium complexes derived from amino acids, applied in asymmetric transfer hydrogenation of ketones. We found that the use of amino acid thio amide ligands resulted in the formation of the R-configured product, whereas the use of the corresponding hydroxamic acid- or hydrazide ligands selec- tively gave the S-alcohol. Structure/activity investigations revealed that the stereochemical outcome of the catalytic reaction depends on the ligand mode of coordination. In the second part, an Fe hydrogenase active site model complex with a la- bile amine ligand has been synthesized and studied. The aim of this study was to find a complex that efficiently catalyzes the reduction of protons to molecular hydrogen under mild conditions. We found that the amine ligand functions as a mimic of the loosely bound ligand which is part of the active site in the hydrogenase. Further, an Fe hydrogenase active site model complex has been coupled to a photosensitizer with the aim of achieving light induced hydrogen production. The redox properties of the produced complex are such that no electron transfer from the photosensitizer part to the Fe moiety occurs. -
Thermochemistry of Transition Metal Hydrides: Bond Strength, Acidity, and Hydricity
tBu C 3 Rh tBu CH Hydrogen Atom + N 3 Transfer THF, rt 3 -1 -1 kH• = 1.2 × 10 M s FAST! BDFE = 52.3 kcal/mol BDFE ~ 70 kcal/mol tBu N P N N N tBu H H Proton N Transfer Rh Rh P N N N + N N CD3CN, rt -4 -1 -1 kH+ = 5 × 10 M s Rh(III)–H SLOW! pKa = 30.3 pKa = 28.4 N BF4 Me NCCH3 Hydride N Rh BF4 + Transfer N Me CH3CN, rt 5 -1 -1 kH- = 3.5 × 10 M s FAST! ∆GºH- = 49.5 kcal/mol ∆GºH- > 90 kcal/mol Hu, Y.; Norton, J. R., J. Am. Chem. Soc. 2014, 136, 5938-5948. Thermochemistry of Transition Metal Hydrides: Bond Strength, Acidity, and Hydricity Nick Shin The Knowles Group Princeton University Group Meeting September 28, 2019 Hieber, W.; Leutert, F., Naturwissenschaften 1931, 19, 360-361. Outline 1. Brief Overview of Metal Hydrides 2. Bond Strength of Transition Metal Hydrides 3. Acidity of Transition Metal Hydrides 4. Hydricity of Transition Metal Hydrides Types of Metal Hydrides What is a Hydride? • The anion of hydrogen, H- • A compound in which one or more hydrogen centers have nucleophilic, reducing, or basic properties 1. Ionic Hydrides • Hydrides bound to alkali metal or alkaline earth metal • NaH, KH, CaH2, … • Applications: strong base, reducing reagent, dessicant. CaH2 2. Interstitial (Metallic) Hydrides • Hydrides within metals or alloys • Non-stoichiometric adsorption of H atoms in the lattice • Examples: Ni–H for nickel-metal hydride battery (NiMH), Pd–H for fuel cells, heterogenous catalysis Mcgrady, G. -
Download Author Version (PDF)
Dalton Transactions Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/dalton Page 1 of 10Journal Name Dalton Transactions Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Designing metal hydride complexes for water splitting reactions: A molecular electrostatic potential approach K. S. Sandhya, a and Cherumuttathu H. Suresh* a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x Abstract: The hydridic character of octahedral metal hydride complexes of group VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand ( Vmin ) and MESP value at the hydride nucleus ( VH) are found to be very Manuscript 10 good measures of the hydridic character of the hydride ligand. -
Metal Hydride Complexes
Metal Hydride Complexes • Main group metal hydrides play an important role as reducing agents (e.g. LiH, NaH, LiAlH4, LiBH4). • The transition metal M-H bond can undergo insertion with a wide variety of unsaturated compounds to give stable species or reaction intermediates containing M-C bonds • They are not only synthetically useful but are extremely important intermediates in a number of catalytic cycles and also in battery technologies. 1 Transition Metal Hydride Preparation 1. Protonation requires an electron rich basic metal center 1. From Hydride donors main group metal hydrides are typically used as donors. 2 Transition Metal Hydride Preparation 1. Protonation requires an electron rich basic metal center 2. From Hydride donors main group metal hydrides are typically used as donors. 3 3. From H 2 via oxidative addition requires a coordinatively unsaturated metal center 3. From a ligand ( β-elimination) 4 3. From H 2 via oxidative addition requires a coordinatively unsaturated metal center 3. From a ligand ( β-elimination) H O K O Ph3P Cl Ph3P H Ru 2PPh3 Ru KCl Cl PPh3 Ph3P PPh3 H PPh3 4. From a ligand (decarboxylation) CO CO CO2 CO OC CO OC CO OC CO Cr OH Cr Cr OC CO OC COOH OC H CO CO CO Cr(CO)6 CO CO OC CO OC CO Cr Cr CO OC H CO 5 CO CO Transition Metal Hydride Reactivity • Hydride transfer and insertion are closely related • A metal hydride my have acidic or basic character depending on the electronic nature of the metal involved (and of course its ligand set). -
Preparations, Solution Composition, and Reactions of Complex Metal Hydrides and Ate Complexes of Zinc, Aluminum, and Copper a Th
PREPARATIONS, SOLUTION COMPOSITION, AND REACTIONS OF COMPLEX METAL HYDRIDES AND ATE COMPLEXES OF ZINC, ALUMINUM, AND COPPER A THESIS Presented to The Faculty of the Division of Graduate Studies By John Joseph Watkins In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology April, 1977 PREPARATIONS, SOLUTION COMPOSITION, AND REACTIONS OF COMPLEX METAL HYDRIDES AND ATE COMPLEXES OF ZINC, ALUMINUM, AND COPPER Approved: Erlin^rbrovenstein, Jr., Chairman H. 0. House E. C. Ashby Date approved by Chairman £~^3c>l~l~f ii ACKNOWLEDGMENTS Many individuals and organizations have contributed to the successful completion of this thesis. The following acknowledgments are not complete, but I hope I have expressed my gratitude to the people and organizations upon whom I depended the most. The School of Chemistry supported my first three years of work by the award of an NSF fellowship. My last year of work was generously supported by the St. Regis Paper Company, who graciously gave me leave of absence with salary so that the requirements for this thesis could be completed. This stipend and tuition support of my work freed me to concentrate on research without the financial difficulties encountered by many graduate students. All the faculty and staff of the School of Chemistry supported my research. I particularly would like to recognize Professor W. M. Spicer, Professor J. A. Bertrand, Professor C. L. Liotta, Mr. Gerald O'Brien, and Mr. D. E. Lillie. Post-doctoral assistants and fellow graduate students who contributed to my experience at the Georgia Insti tute of Technology include Dr. -
Studies on Group Ii Metal Alkyls Particularly Those of Beryllium
Durham E-Theses Studies on group ii metal alkyls particularly those of beryllium Robert, P.D. How to cite: Robert, P.D. (1968) Studies on group ii metal alkyls particularly those of beryllium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8717/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk STUDIES ON GROUP II METAL ALKYLS PARTICULARLY THOSE OF BERYLLIUM by P.D. ROBERTS, B.Sc. A thesis submitted for the Degree of Doctor of Philosophy in the University of Durham JULY 1968 Acknowledgements The author wishes to thank Professor G.E. Coates, M.A. , D.Sc, F.R.I.C., under whose supervision this research was carried out, for his constant encouragement and valuable advice. Thanks are also given to Dr. A.J. Downs, formerly of the University of Newcastle upon Tyne, for his help with vibrational spectroscopy and to members of this department, especially Dr. -
UNIVERSITY of CALIFORNIA, IRVINE Kinetic and Thermodynamic
UNIVERSITY OF CALIFORNIA, IRVINE Kinetic and Thermodynamic Factors for Selective CO2 Reduction at a Metal Hydride DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry by Bianca Myriah Ceballos Dissertation Committee: Associate Professor Jenny Y. Yang, Chair Professor A.S. Borovik Professor Alan F. Heyduk 2019 Portion of Chapter 1 © 2017 The Royal Society of Chemistry Portion of Chapter 2 © 2018 National Academy of Sciences DEDICATION Para Virginia & Angela. mi abuelas. quien soñaban con una vida mejor un sol naciente For Olivia & Martin. my parents. who lit a light of curiosity within me a warm fire For Justine. my sister. my hero. a sunrise summit For Erick. my brother. a bubbling brook overflowing For Sean. my youngest brother. a bird’s song For Zach. my cheerleader. falling snow For Rocky. my warm hug. an earthbound star ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES xi LIST OF SCHEMES xii LIST OF CHARTS xiii ACKNOWLEDGEMENTS xiv CURRICULUM VITAE xvi ABSTRACT OF THE DISSERTATION xxi INTRODUCTION 1 0.1 Energy Storage in Chemical Bonds 2 0.2 Electrochemical CO2 Reduction Strategies 3 0.3 Metal Hydricity in Catalysis 6 0.4 Research Goals 8 0.5 References 11 CHAPTER 1: Hydricity Determination, Solvent Effects, and Reactivity of 20 + [Ni(tmepe)2] 1.1 Motivations and Specific Aims 21 1.2 Background 21 1.3 Results and Discussion 24 1.3.1 Synthesis and Structure of [Ni(TMEPE)2][BF4]2, 24 [HNi(TMEPE)2][BF4], and [Ni(TMEPE)2] (TMEPE = 1,2- bis[di(methoxyethyl)phosphino]ethane) -
Isothiazoles in the Design and Synthesis of Biologically Active Substances and Ligands for Metal Complexes
SYNTHESIS0039-78811437-210X Georg Thieme Verlag Stuttgart · New York 2020, 52, 159–188 review 159 en Syn thesis A. V. Kletskov et al. Review Isothiazoles in the Design and Synthesis of Biologically Active Substances and Ligands for Metal Complexes Alexey V. Kletskov*a 0000-0002-6979-545X Nikolay A. Bumaginb Fedor I. Zubkova 0000-0002-0289-0831 Dmitry G. Grudinina Vladimir I. Potkinc a Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation [email protected] b M.V. Lomonosov Moscow State University, Leninskii Gory, 1/3, Moscow 119991, Russian Federation [email protected] c Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 13, 220072, Minsk, Belarus [email protected] Received: 21.07.2019 1 Introduction Accepted after revision: 09.09.2019 Published online: 17.10.2019 DOI: 10.1055/s-0039-1690688; Art ID: ss-2019-z0406-r The search for new chemical compounds with useful License terms: properties and the development of rational ways to synthe- © 2020. The Author(s). This is an open access article published by Thieme under the size them are priority tasks in chemical science, with the terms of the Creative Commons Attribution License, permitting unrestricted use, dis- synthesis of biologically active chemical compounds for tribution and reproduction, so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/) medicine and agriculture being of particular importance. In this respect, isothiazole derivatives, which have demon- Abstract The chemistry of isothiazoles is being intensively developed, strated high potential in the design and synthesis of a wide which is evidenced by the wide range of selective transformations in- range of biologically active substances, are of great interest.