Bioenergy Action Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paper 20Th World Energy Congress Rome 2007
BTL: a solution to increase energy efficiency in the Brazilian alcohol business 1 Dr. Eduardo Falabella Souza-Aguiar Coordinator - GTL Cell CENPES - PETROBRAS Avenida Jequitibá, 950, Quadra 7, Ilha do Fundão, Rio de Janeiro, Brasil 2 Sirlei Sebastião Alves de Sousa Senior Consultant - GTL Cell FUJB - Universidade Federal do Rio de Janeiro, UFRJ Avenida Jequitibá, 950, Quadra 7, Ilha do Fundão, Rio de Janeiro, Brasil 3 Fernando Barbosa de Oliveira Process Engineer - GTL Cell CENPES - PETROBRAS Avenida Jequitibá, 950, Quadra 7, Ilha do Fundão, Rio de Janeiro, Brasil 1. Introduction Due to 1973 oil crisis, the Brazilian government, then run by a military junta, initiated in 1975 the ProÁlcool program. The ProÁlcool or Programa Nacional do Álcool (National Alcohol Program) was nationwide program financed by the government to phase out all automobile fuels derived from fossil fuels (such as gasoline) in favor of ethanol. It began with the anhydrous alcohol to blend with the gasoline. This mixture has been used since then and is now done with 24% of alcohol and 76% gasoline [1]. The decision to produce ethanol from fermented sugarcane was based on the low cost of sugar at the time. Other sources of fermentable carbohydrates were tested such as the manioc [1]. Sugarcane is in itself an enormously efficient production unit: every ton has an energy potential that is equivalent to 1.2 barrels of petroleum. Brazil is the largest sugarcane world producer, having the lowest production costs, followed by India and Australia. On average, 55% of Brazilian sugarcane is turned into alcohol [2]. Sugarcane is grown in Brazil’s Central-South and North-Northeast regions, with two harvest periods. -
Barriers, Opportunities, and Research Needs Draft Report
Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT TASK 5. Biomass Energy in California’s Future: Barriers, Opportunities, and Research Needs_ Draft Report Prepared for: California Energy Commission Prepared by: UC Davis California Geothermal Energy Collaborative DECEMBER 2013 CEC‐500‐01‐016 Prepared by: Primary Author(s): Stephen Kaffka, University of California, Davis Robert Williams, University of California, Davis Douglas Wickizer, University of California, Davis UC Davis California Geothermal Energy Collaborative 1715 Tilia St. Davis, CA 95616 www.cgec.ucdavis.edu Contract Number: 500‐01‐016 Prepared for: California Energy Commission Michael Sokol Contract Manager Reynaldo Gonzalez Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research & Development Division Robert P. Oglesby Executive Director DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report. ACKNOWLEDGEMENTS The California Goethermal Energy Collaborative would like to thank the California Energy Commission and its Public Interest Energy Research Program (PIER) for sponsoring this important work as well as the Geothermal Energy Association for assisting in tracking down the most up to date data both within the United States and abroad. -
Bioenergy Action Plan for Ireland
BioEnErgy Action PlAn for irElAnd Report of thE MinistEriAl Task forcE on BioEnErgy Table of Contents Foreword 2 Executive Summary 3 Chapter Energy Trends in Ireland 990 to 2005 8 Chapter 2 Land Use in Ireland 3 Chapter 3 Bioenergy for the Transport Sector - Biofuels 6 Chapter 4 Bioenergy for the Heat Sector - Biomass 2 Chapter 5 Bioenergy for the Electricity Sector 26 Chapter 6 Public Sector Leadership - Driving Bioenergy Demand 32 Foreword Ireland has a significant bioenergy potential in the form of agricultural land, forestry and recycled waste from municipal, agriculture and industrial sources. All of these sources can be used to generate electricity, refined into fuel for the transport sector, provide heating/cooling for the building sector or as a source for biochemical raw materials for Irish industry. The development of our bioenergy resources will contribute to our overall security of energy supply and fuel diversity objectives. Increased use of these resources will also contribute to our renewable energy targets, our climate change mitigation policies, our waste policies and, at a time of great change in our agricultural sector, assist in rural development by providing new markets and employment development opportunities for our farming and forestry sectors as well as community enterprise. The sustainable development of our bioenergy potential and its deployment in the electricity, transport, heating and chemical sectors requires a fully coordinated approach across a number of Departments and State Agencies, working together across the sectors and with all stakeholders. In light of this challenge, the Government established a Ministerial Bioenergy Task Force which oversaw the delivery of the Action Plan. -
2007: the Role of a Low Carbon Fuel Standard in Reducing Greenhouse
FINAL The Role of a Low Carbon Fuel Standard in Reducing Greenhouse Gas Emissions and Protecting Our Economy Executive Summary Transportation accounts for more than 40% of California’s annual greenhouse gas (GHG) emissions and the state relies on petroleum-based fuels for 96 percent of its transportation needs. Petroleum use contributes to climate change and dependency on oil leaves workers, businesses and consumers vulnerable to price shocks from an unstable global energy market. No business should be hostage to a single supplier for its most critical raw materials; neither should any state or nation. To protect our jobs and wages, clean our air and maintain our way of life, we must diversify our fuel sources and reduce our reliance on oil. As one of the world's largest energy consumers and the national leader in energy efficiency, alternative energy and greenhouse gas reduction, California has the opportunity and ability to diversify its transportation fuel supplies, decrease the greenhouse gases emitted from those fuels, and establish a sustainable market for cleaner-burning fuels. Accordingly, by Executive Order the Governor will establish a first-of-its-kind policy to reduce the greenhouse gas impact from California's use of transportation fuels and in so doing diversify the state's transportation fuels portfolio. Specifically, Executive Order S-XX-07 will establish: 1. A Low Carbon Fuel Standard (LCFS) for transportation fuels sold in California, and 2. An initial LCFS goal of reducing the carbon intensity of California's passenger vehicle fuels by at least 10 percent by 2020. The LCFS is the world’s first global warming standard for transportation fuels, and as with other groundbreaking California policies, it may serve as a model for state, federal and international standards. -
Biomass with CO2 Capture and Storage (Bio-CCS)
Biomass with CO2 Capture and Storage (Bio-CCS) The way forward for Europe This document has been prepared on behalf of the Advisory Council of the European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP) and the Steering Committee of the European Biofuels Technology Platform (EBTP). The information and views contained in this document are the collective view of the ZEP Advisory Council and EBTP Steering Committee and not of individual members, or of the European Commission. Neither the ZEP Advisory Council, the EBTP Steering Committee, the European Commission, nor any person acting on their behalf, is responsible for the use that might be made of the information contained in this publication. European Technology Platform for Zero Emission Fossil Fuel Power Plants Contents KEY CONCLUSIONS........................................................... ....................................................................... 4 1 WHY EUROPE NEEDS TO GO CARBON-NEGATIVE ....................................................................... 5 1.1 More powerful technologies are now needed to keep global warming below 2°C........................5! 1.2 Bio-CCS: the only large-scale technology that can remove CO2 from the atmosphere.... ........... 5! 1.3 The EBTP/ZEP Joint Taskforce Bio-CCS: uniting high-level European stakeholders ................. 6! 2! CO2 CAPTURE AND STORAGE.......................................................................................................... 7! 2.1! CCS could provide almost 20% of global -
Coal Biomass to Liquid Fuels
Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis n Background Co-conversion of coal with some biomass to liquid fuels can help to reduce CO2 emissions because of the neutrality of biomass with respect to CO2 emissions. An NETL study [Affordable, low cost diesel fuel from domestic coal and biomass, DOE/NETL2009/1349, January 2009], in fact, has indicated that addition of even moderate amounts of biomass to coal for the production of liquids can potentially reduce Life Cycle Analysis (LCA) CO2 emissions relative to petroleum diesel baseline; for example, 20% less CO2 is produced with 8% biomass addition, with Carbon Capture, Storage, and Utilization (CCUS). Fischer-Tropsch synthesis (FTS) is a leading technology for converting syngas from gasification to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FT catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. Development and commercialization of a cost-effective gasification/FTS-based CBTL process to produce renewable gasoline and diesel can reduce the nation’s dependency on oil imported from foreign countries, help to stabilize the prices at the pump, and lower the emission of greenhouse gases. PLEASE CONTACT PARTICIPANTS PROJECT COST Santosh Gangwal Doe Technical Project Officer Chevron Energy DURATION Total Project Principal Investigator Arun Bose Technology Start Date Value Southern Research -
Consultancy Services to Undertake Bioenergy Development Strategy and Investment Plan for Western Africa Region
AFRICAN UNION UNION AFRICAINE UNIÃO AFRICANA Addis Ababa, ETHIOPIA, P. O. Box 3243, Telephone: +251-11-551 7700, Fax: +251-11-5517844, website: www. africa-union.org REQUEST FOR PROPOSALS Consultancy Services to Undertake Bioenergy development strategy and investment plan for Western Africa region Procurement No: AUC/IED/C/011 April 2019 May 2019 1 AFRICAN UNION UNION AFRICAINE UNIÃO AFRICANA Addis Ababa, ETHIOPIA, P. O. Box 3243, Telephone: +251-11-551 7700, Fax: +251-11-5517844, website: www. africa-union.org Section I: Letter of Invitation 9 May 2019 Dear Sirs, REF: REQUEST FOR EXPRESSIONS OF INTEREST: Consultancy Services to Undertake Bioenergy development strategy and investment plan for Western Africa region 1. The African Union would like to engage the services of a consulting for Consultancy Services to Undertake Bioenergy development strategy and investment plan for Western Africa region. The African Union Commission invites interested and eligible bidders to submit technical and financial proposals for the assignment as per attached Terms of Reference (TORS). 2. An Individual Consultant will be selected under the Consultant Qualification Selection procedures described in the AU Procurement Manual available on https://au.int/en/bids. The pass mark shall be 70%. 3. The deadline for submission of EOIs is 31 May 2019 at 1500hrs. Late submissions will be rejected. 4. Bidders may request for clarifications no less than 7 days from the deadline for submission, from The Chairperson, Internal Procurement Committee, African Union Commission, Telephone number (+251) 11 5517700, Ext 4341, Email tender@africa- union.org with a copy to [email protected] 4. -
Production of Liquid Biofuels
ENERGY TECHNOLOGY SYSTEM ANALYSIS PROGRAMME IEA-ETSAP and IRENA © Technology-Policy Brief P10 – January 2013 - www.etsap.org, www.irena.org Production of Liquid Biofuels INSIGHTS FOR POLICY MAKERS Liquid biofuels are made from biomass and have qualities that are similar to gasoline, diesel or other petroleum derived fuels. The two dominant liquid biofuels are bioethanol and biodiesel (i.e. 80% and 20% of the market, respectively), that together meet about 3% of the global transport fuel demand and are produced using 2-3% of the global arable land. Bioethanol can be produced from sugarcane, corn, sugar beets, wheat, potatoes, sorghum and cassava. In 2011, the largest producers of bioethanol were the United States (63%) using corn, Brazil (24%) using sugarcane, and China. Biodiesel is made from vegetable oils, derived from soybeans, rapeseed, palm seeds, sunflowers, jatropha as well as from animal fat or waste oils. The largest producers of biodiesel in 2011 were the European Union (43%), the United States (15%), Brazil and Argentina (each around 13%). The advantage of biofuels is that they can substantially reduce greenhouse gas emissions in the transport sector (up to 70%-90% compared to gasoline) with only modest changes to vehicle technology and existing fuel distribution infrastructure. The disadvantage is that, apart from sugarcane ethanol, large-scale production of liquid biofuels based on today’s technology and feedstock would compete with food production for arable land and water, with limited expansion potential in certain cases. Also of concern would be the conservation of biodiversity and the risk of important land-use changes. The use of shared international standards is crucial to ensure that liquid biofuels are produced in a sustainable manner, minimising these possible negative environmental and social impacts due to land-use change and competition for food. -
Exco66 Thermal Pre-Treatment of Biomass for Large-Scale Applications
Thermal Pre-treatment of Biomass for Large-scale This publication provides the Applications summary and conclusions from the workshop ‘Thermal Pre-treatment Summary and Conclusions from the of Biomass for Large-scale Applications’ held in conjunction IEA Bioenergy ExCo66 Workshop with the meeting of the Executive Committee of IEA Bioenergy in York, United Kingdom, on 12 October 2010. The purpose of the workshop was to provide the Executive Committee with perspectives on how to integrate large-scale bioenergy deployment with existing fuel logistics. The aim was to stimulate discussion between the Executive Committee, Task Leaders, and invited experts and thereby enhance the policy- oriented work within IEA Bioenergy. IEA Bioenergy IEA Bioenergy:ExCo:2011:05 INTRODUCTION The main points and questions raised during discussions are summarised below. The contributions from the speakers One of the major goals of IEA Bioenergy is to facilitate can be downloaded from IEA Bioenergy’s website commercialisation and market deployment of environmentally www.ieabioenergy.com. sound, sustainable, and cost-competitive bioenergy technologies. SESSION 1 – OVERVIEW OF Sustainable growth of biomass for energy production is PROCESSES possible in large areas of the world. Despite debate over ‘food versus fuel’, there are actually no major limitations Overview of Thermal Pre-treatment Processes for to increasing energy crop cultivation. Only a little more Large-scale Biomass Application – Jaap Kiel, ECN, the than 2% of worldwide agricultural production is used for Netherlands energy plantations. Unfortunately, large biomass growing Biomass is a difficult energy source to manage logistically, areas are not usually located in the vicinity of the urban and including handling of the raw biomass, transport and storage industrial areas with the highest energy consumption. -
Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion
Catalysts 2012, 2, 303-326; doi:10.3390/catal2020303 OPEN ACCESS catalysts ISSN 2073-4344 www.mdpi.com/journal/catalysts Review Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion Jin Hu, Fei Yu * and Yongwu Lu Department of Agricultural and Biological Engineering, Mississippi State University, MS 39762, USA; E-Mails: [email protected] (J.H.); [email protected] (Y.L.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-662-325-0206; Fax: +1-662-325-3853. Received: 16 April 2012; in revised form: 9 May 2012 / Accepted: 1 June 2012 / Published: 15 June 2012 Abstract: Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas) by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. -
From 1St- to 2Nd-Generation Biofuel Technologies
INTERNATIONAL ENERGY AGENCY agence internationale de l’energie FROM 1st- TO 2nd-GENERATION BIOFUEL TECHNOLOGIES An overview of current industry and RD&D activities EXTENded EXECUTIVE SUMMarY RALPH SIMS, MICHAEL TAYLOR INTERNATIONAL ENERGY AGENCY AND JACK SADDLER, WArrEN MABEE IEA Bioenergy © OECD/IEA, November 2008 INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) is an autonomous body which was established in November 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. It carries out a comprehensive programme of energy co-operation among twenty-eight of the OECD thirty member countries. The basic aims of the IEA are: n To maintain and improve systems for coping with oil supply disruptions. n To promote rational energy policies in a global context through co-operative relations with non- member countries, industry and international organisations. n To operate a permanent information system on the international oil market. n To improve the world’s energy supply and demand structure by developing alternative energy sources and increasing the efficiency of energy use. n To promote international collaboration on energy technology. n To assist in the integration of environmental and energy policies. The IEA member countries are: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States. The European Commission also participates in the work of the IEA. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of thirty democracies work together to address the economic, social and environmental challenges of globalisation. -
High-Efficiency Microalgae for Biodiesel Production
Bioenerg. Res. (2008) 1:20–43 DOI 10.1007/s12155-008-9008-8 Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk & Skye R. Thomas-Hall & Evan Stephens & Ute C. Marx & Jan H. Mussgnug & Clemens Posten & Olaf Kruse & Ben Hankamer Published online: 4 March 2008 # Springer Science + Business Media, LLC 2008 Abstract The use of fossil fuels is now widely accepted as for renewable and carbon-neutral fuel production. However, unsustainable due to depleting resources and the accumulation current supplies from oil crops and animal fats account for of greenhouse gases in the environment that have already only approximately 0.3% of the current demand for transport exceeded the “dangerously high” threshold of 450 ppm CO2-e. fuels. Increasing biofuel production on arable land could have To achieve environmental and economic sustainability, fuel severe consequences for global food supply. In contrast, production processes are required that are not only renewable, producing biodiesel from algae is widely regarded as one of but also capable of sequestering atmospheric CO2.Currently, the most efficient ways of generating biofuels and also nearly all renewable energy sources (e.g. hydroelectric, solar, appears to represent the only current renewable source of oil wind, tidal, geothermal) target the electricity market, while that could meet the global demand for transport fuels. The fuels make up a much larger share of the global energy main advantages of second generation microalgal systems are demand (∼66%). Biofuels are therefore rapidly being devel- that they: (1) Have a higher photon conversion efficiency (as oped. Second generation microalgal systems have the evidenced by increased biomass yields per hectare): (2) Can advantage that they can produce a wide range of feedstocks be harvested batch-wise nearly all-year-round, providing a for the production of biodiesel, bioethanol, biomethane and reliable and continuous supply of oil: (3) Can utilize salt and biohydrogen.