Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Impacts

Total Page:16

File Type:pdf, Size:1020Kb

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Impacts Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Impacts Americans rely heavily on imported petroleum-based fuels for transportation. However, concerns about tightening global supplies of oil, the need for supply diversity, and increasing evidence linking carbon dioxide emissions to climate change, have driven a search for alternatives to petroleum-based fuels. This report, one in a series of five reports from the National Academies’ America’s Energy Future initiative, assesses the potential for producing liquid fuels from coal and biomass (plants and waste), including considerations of technical readiness, costs, and environmental impacts. The report concludes that liquid fuels produced from coal and biomass could become an important part of a U.S. energy strategy. he United States The nation can increase transportation sector relies energy security and potentially almost exclusively on oil, reduce greenhouse-gas emis- T sions by developing replace- using about 14 million barrels of oil per day to fuel all U.S. ments for gasoline and diesel transportation needs, 9 million made from oil. This report of which are used in light-duty concludes that liquid fuels made vehicles (e.g., cars, sport utility from biomass (plant matter and vehicles) Americans drive every wastes) and coal hold promise. day. Domestic energy sources (e.g., They are deployable over the coal, nuclear) can supply all U.S. next 10-25 years, could become electricity needs, but the United cost-competitive with petroleum, States is unable to supply sufficient and will reduce reliance on oil. oil to satisfy its transportation demands, and Their greenhouse gas emissions could be currently imports about 60 percent of the similar to or lower than those of petroleum- petroleum it uses. based fuels. However, even with abundant Reliance on oil raises two issues. The supplies of biomass and coal, the technologies first is energy security. Global demand for needed to convert them into liquid fuels and oil continues to rise, while at the same time, to capture and store carbon dioxide from the fears have arisen that oil production could conversion process, still need to be demon- peak in the next 10-20 years and then drop strated at commercial scale. off. The second issue is that greenhouse-gas Supply of Biomass emissions that result from burning petroleum products account for one-third of total To date, the primary biofuels in the United carbon dioxide emissions in the United States have been ethanol from corn grain and States and are an important contributor to biodiesel from soybean, which accounted for global climate change. less than 3 percent of U.S. transportation-fuel consumption in 2007. These fuels have raised use about 700 million tons of coal per year, which several issues. Diverting corn and soybean crops to is a 70 percent increase in coal consumption. That biofuel production induces competition between would require major increases in coal-mining and food, feed, and fuel. In addition, growing such transportation infrastructure for moving coal to the crops requires a lot of fossil fuels (e.g., fertilizer conversion plants and moving fuels to the market. and farm vehicles), making the reductions in Increased mining has numerous environ mental greenhouse-gas emissions compared with petro- effects that will need to be dealt with in an envi- leum-based gasoline small at best. ronmentally acceptable way. A key question is the The next generation of biofuels is expected to availability of sufficient coal in the United States be made from cellulosic biomass—residues from to support such increased use while supporting the agricultural and forestry practices, crops grown coal-based power industry. only for conversion to fuel (dedicated energy Challenges in Converting Biomass and Coal crops), and municipal solid wastes—which offer to Liquid Fuel substantial reductions in greenhouse-gas emissions relative to petroleum-based fuels. The report Even with abundant quantities of biomass and concludes that approximately 550 million tons per coal, a commercially deployable set of conversion year of cellulosic biomass could be produced by technologies needs to be developed or demon- 2020 without any major impact on food production strated immediately and driven to commercial or the environment (see Table 1). readiness. There are two key conversion technolo- To attain the panel’s projected sustainable gies: (1) biochemical conversion, which uses 1 supply of cellulosic biomass, incentives would have enzymes to break down starch, cellulose, or 2 to be provided to farmers and developers to use a hemicellulose from biomass into sugars that are systems approach for growing and collecting the converted into ethanol, and (2) thermo chemical biomass and converting it to biofuel—an approach conversion, which uses heat and steam to convert that addresses soil, water, and air quality; carbon biomass and/or coal into syngas from which liquid fuels are synthesized. sequestration; wildlife habitat; and rural develop- ment in a comprehensive manner. Biochemical Conversion Supply of Coal Cellulosic feedstocks are not yet part of our energy portfolio because converting them into The United States probably has sufficient coal ethanol is more complicated than converting corn resources to meet the nation’s needs for well over grain or soybean, and, as of 2008, no commercial- 100 years at current rates of consumption. Making scale cellulosic conversion plants were yet opera- liquid fuels from coal would result in an expansion tional. Over the next decade, process improvements of the coal-mining industry. For example, a in cellulosic-ethanol technology are expected to 50,000-barrels/day plant will use about 7 million come from evolutionary developments gained tons of coal per year, and 100 such plants would through demonstration and commercial experience and from future scientific developments. Economics Table 1. Estimated Cellulosic Feedstock that are also expected to improve as scale of production Could Potentially Be Produced for Biofuel expands to optimal size. Current Available An expanded transport and distribution infra- Fuel Product Technologies by 2020 structure will also be needed because ethanol is too (millions of tons) corrosive to be transported in pipelines used for Corn stover 76 112 petroleum. Studies should be conducted to identify Wheat and grass 15 18 the infrastructure needed to accommodate increas- straw ing volumes of ethanol and integrating these Hay 15 18 volumes into the fuel system. Research on convert- Dedicated fuel crops 104 164 ing biomass to fuels more compatible with the Woody biomass 110 124 Animal manure 6 12 1 A complex carbohydrate, (C6H10O5)n, that forms cell walls of most Municipal solid waste 90 100 plants. 2 A matrix of polysaccharides present in almost all plant cell walls with Total 416 548 cellulose. current distribution infrastructure could yield new dioxide emissions from coal-and-biomass-to-liq- technologies in the next 10-15 years. uid conversion plants are similar to that of gaso- If all conversion and distribution infrastruc- line and diesel; with carbon dioxide storage, ture is in place, 550 million dry tons of biomass/yr life-cycle emissions are close to zero. If 550 could be used to produce up to 2 million bbls/day million tons of biomass are combined with coal (30 billion gallons/yr) of ethanol. Of course, (60 percent coal and 40 percent biomass on an producing the supply depends on the availability energy basis), 4 million barrels per day (60 billion of cellulosic-ethanol plants. If the rate at which gallons/yr) of gasoline equivalent could feasibly plants are built exceeds that experienced with be produced, which is about 30 percent of the corn-grain-ethanol plants by 100 percent, cellu- amount of fuel used in U.S. transportation today. losic ethanol could be added to the fuel portfolio To make coal and biomass liquid fuels com- at up to 0.5 million barrels of gasoline equivalent mercially deployable by 2020 while meeting goals per day by 2020. By 2035, up to 1.7 million barrels for reducing carbon dioxide emissions, a program per day (gasoline equivalent) could be produced, of aggressive support of first-mover commercial representing about 15% of oil use in U.S. coal-to-liquid and coal-and-biomass-liquid fuel transportation. plants with integrated geologic carbon dioxide Thermochemical Conversion storage would have to be undertaken immediately and proven viable by 2015. Coal-and-biomass-to- Technologies for converting coal through liquid plants would probably be sited in regions thermochemical conversion are commercially near coal and biomass supplies, so buildout rates deployable today, but at life-cycle greenhouse-gas will be lower than those of cellulosic-ethanol emissions about twice those of petroleum-based plants discussed above. fuels. The ability to capture the carbon dioxide The report estimates that at a 20 percent per released during coal conversion processes and store year growth rate from 2020 until 2035, 2.5 million it deep underground (geologic storage of carbon barrels of gasoline equivalent (about 20 percent dioxide) is key to producing liquid fuels from coal of oil use for U.S. transportation) would be pro- with life-cycle greenhouse-gas emissions compa- duced per day in combined coal biomass plants. rable to gasoline and diesel. However, geologic That would consume about 300 million dry tons storage of carbon dioxide has yet to be adequately of biomass—less than the projected biomass demonstrated on a large scale in the United States. avail ability—and about 250 million tons of coal Liquid fuels produced from biomass are more per year. expensive than those from coal because of the higher costs of biomass feedstocks, but they can Costs, Barriers, and Deployment have carbon dioxide life-cycle emissions close to Production of alternative liquid transportation zero without carbon dioxide storage or highly fuels from coal and biomass with technology negative with effective carbon dioxide storage.
Recommended publications
  • Paper 20Th World Energy Congress Rome 2007
    BTL: a solution to increase energy efficiency in the Brazilian alcohol business 1 Dr. Eduardo Falabella Souza-Aguiar Coordinator - GTL Cell CENPES - PETROBRAS Avenida Jequitibá, 950, Quadra 7, Ilha do Fundão, Rio de Janeiro, Brasil 2 Sirlei Sebastião Alves de Sousa Senior Consultant - GTL Cell FUJB - Universidade Federal do Rio de Janeiro, UFRJ Avenida Jequitibá, 950, Quadra 7, Ilha do Fundão, Rio de Janeiro, Brasil 3 Fernando Barbosa de Oliveira Process Engineer - GTL Cell CENPES - PETROBRAS Avenida Jequitibá, 950, Quadra 7, Ilha do Fundão, Rio de Janeiro, Brasil 1. Introduction Due to 1973 oil crisis, the Brazilian government, then run by a military junta, initiated in 1975 the ProÁlcool program. The ProÁlcool or Programa Nacional do Álcool (National Alcohol Program) was nationwide program financed by the government to phase out all automobile fuels derived from fossil fuels (such as gasoline) in favor of ethanol. It began with the anhydrous alcohol to blend with the gasoline. This mixture has been used since then and is now done with 24% of alcohol and 76% gasoline [1]. The decision to produce ethanol from fermented sugarcane was based on the low cost of sugar at the time. Other sources of fermentable carbohydrates were tested such as the manioc [1]. Sugarcane is in itself an enormously efficient production unit: every ton has an energy potential that is equivalent to 1.2 barrels of petroleum. Brazil is the largest sugarcane world producer, having the lowest production costs, followed by India and Australia. On average, 55% of Brazilian sugarcane is turned into alcohol [2]. Sugarcane is grown in Brazil’s Central-South and North-Northeast regions, with two harvest periods.
    [Show full text]
  • Biomass with CO2 Capture and Storage (Bio-CCS)
    Biomass with CO2 Capture and Storage (Bio-CCS) The way forward for Europe This document has been prepared on behalf of the Advisory Council of the European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP) and the Steering Committee of the European Biofuels Technology Platform (EBTP). The information and views contained in this document are the collective view of the ZEP Advisory Council and EBTP Steering Committee and not of individual members, or of the European Commission. Neither the ZEP Advisory Council, the EBTP Steering Committee, the European Commission, nor any person acting on their behalf, is responsible for the use that might be made of the information contained in this publication. European Technology Platform for Zero Emission Fossil Fuel Power Plants Contents KEY CONCLUSIONS........................................................... ....................................................................... 4 1 WHY EUROPE NEEDS TO GO CARBON-NEGATIVE ....................................................................... 5 1.1 More powerful technologies are now needed to keep global warming below 2°C........................5! 1.2 Bio-CCS: the only large-scale technology that can remove CO2 from the atmosphere.... ........... 5! 1.3 The EBTP/ZEP Joint Taskforce Bio-CCS: uniting high-level European stakeholders ................. 6! 2! CO2 CAPTURE AND STORAGE.......................................................................................................... 7! 2.1! CCS could provide almost 20% of global
    [Show full text]
  • Coal Biomass to Liquid Fuels
    Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis n Background Co-conversion of coal with some biomass to liquid fuels can help to reduce CO2 emissions because of the neutrality of biomass with respect to CO2 emissions. An NETL study [Affordable, low cost diesel fuel from domestic coal and biomass, DOE/NETL2009/1349, January 2009], in fact, has indicated that addition of even moderate amounts of biomass to coal for the production of liquids can potentially reduce Life Cycle Analysis (LCA) CO2 emissions relative to petroleum diesel baseline; for example, 20% less CO2 is produced with 8% biomass addition, with Carbon Capture, Storage, and Utilization (CCUS). Fischer-Tropsch synthesis (FTS) is a leading technology for converting syngas from gasification to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FT catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. Development and commercialization of a cost-effective gasification/FTS-based CBTL process to produce renewable gasoline and diesel can reduce the nation’s dependency on oil imported from foreign countries, help to stabilize the prices at the pump, and lower the emission of greenhouse gases. PLEASE CONTACT PARTICIPANTS PROJECT COST Santosh Gangwal Doe Technical Project Officer Chevron Energy DURATION Total Project Principal Investigator Arun Bose Technology Start Date Value Southern Research
    [Show full text]
  • FACT SHEET 7: Liquid Hydrogen As a Potential Low- Carbon Fuel for Aviation
    FACT SHEET 7: Liquid hydrogen as a potential low- carbon fuel for aviation This fact sheet aims to explain how current aviation fuels operate before providing descriptions of how alternative fuel options, like sustainable aviation fuels (SAF) and liquid hydrogen, could help meet the rigorous climate targets set by the aviation industry. Secondly, this document explores the limitations and opportunities of liquid hydrogen when it comes to the manufacturing, safety, current uses and outlooks. This document concludes with a discussion on policy, mandates and incentives on the topic of hydrogen as a potential fuel for aviation. Introduction – Why hydrogen? Aircraft fly thanks to a combination of air and a combustion process that occurs in the aircraft engines. The primary source of energy is the fuel. Each kilogram of fuel, which would occupy less than 1 litre of volume, contains a significant amount of energy, 42.8 MJ [1]. If we could convert the energy of a 1L bottle of fuel into electric energy to power a cell phone, the battery would last for over 2 months. This energy is extracted in the combustion chamber of the engine in the form of heat; Compressed air enters the combustion chamber and gets heated up to temperatures nearing 1,500°C. This hot high- pressure air is what ultimately moves the aircraft forward. Kerosene is composed of carbon and hydrogen (hence it’s a hydrocarbon fuel). When the fuel is completely burned, these carbon and hydrogen molecules recombine with oxygen to create water vapor (H2O) and carbon dioxide (CO2) (Fig.1). August 2019 Emissions: From Combustion: H2O + CO2 Other: NOx, nvPM SOx, soot Fuel in (C + H) Figure 1 Schematic of a turbofan engine adapted from: [2] Carbon dioxide will always be created as a by-product of burning a carbon-based fuel.
    [Show full text]
  • The Future of Liquid Biofuels for APEC Economies
    NREL/TP-6A2-43709. Posted with permission. The Future of Liquid Biofuels for APEC Economies Energy Working Group May 2008 Report prepared for the APEC Energy Working Group under EWG 01/2006A by: Anelia Milbrandt National Renewable Energy Laboratory (NREL) Golden, Colorado, USA Web site: www.nrel.gov Dr. Ralph P. Overend NREL Research Fellow (Retired) Ottawa, Ontario, Canada APEC#208-RE-01.8 Acknowledgments The authors would like to acknowledge and thank the project overseer Mr. Rangsan Sarochawikasit (Department of Alternative Energy Development and Efficiency, Thailand) for his leadership of this project. We also would like to thank Dr. Helena Chum (National Renewable Energy Laboratory, USA) for contributing materials, and providing review and feedback; and the chair of APEC Biofuels Task Force, Mr. Jeffrey Skeer, (Department of Energy, USA) for his support and guidance. The authors also greatly appreciate the time and valuable contributions of the following individuals: Ms. Naomi Ashurst and Ms. Marie Taylor, Department of Industry, Tourism and Resources, Australia Ms. Siti Hafsah, Office of the Minister of Energy, Brunei Darussalam Mr. Mark Stumborg, Agriculture and Agri-Food, Canada Ms. Corissa Petro, National Energy Commission, Chile Mr. Song Yanqin and Mr. Zhao Yongqiang, National Development and Reform Commission, China Mr. K.C. Lo, Electrical and Mechanical Service Department, Hong Kong, China Dr. Hom-Ti Lee, Industrial Technology Research Institute, Chinese Taipei Mr. Hendi Kariawan, Indonesia Biofuels Team, Indonesia Dr. Jeong-Hwan Bae, Korea Energy Economics Institute, Republic of Korea Mr. Diego Arjona-Arguelles, Secretariat for Energy (SENER), Mexico Mr. Angel Irazola and Mr. Diego de la Puente Consigliere, Agricola Del Chira S.A., Peru Mr.
    [Show full text]
  • Nebraska Liquid Fuel Carriers Information Guide
    Information Guide March 2021 Nebraska Liquid Fuel Carriers Overview Any person transporting motor fuels or aircraft fuels in a transport vehicle into, within, or out of Nebraska must obtain a liquid fuel carriers license. A copy of the license must be carried in the transport vehicle whenever motor fuels or aircraft fuels are carried in this state. In addition, a copy of the bill of lading, manifest, bill of sale, purchase order, sales invoice, delivery ticket, or similar documentation must be carried in the transport vehicle at all times when transporting motor fuels or aircraft fuels in Nebraska. This documentation must include the following information: v Date; v Type of fuel; v Amount of fuel; v Where and from whom the fuel was obtained; v Destination state or delivery location; v Name and address of the owner of the fuel; and v Name and address of the consignee or purchaser. A license is not required for persons transporting motor fuels or aircraft fuels within Nebraska for their own agricultural, quarrying, industrial, or other nonhighway use; nor is it required for the transportation of leaded racing fuels, propane, or compressed natural gas, regardless of its ownership or use. This guidance document is advisory in nature but is binding on the Nebraska Department of Revenue (DOR) until amended. A guidance document does not include internal procedural documents that only affect the internal operations of DOR and does not impose additional requirements or penalties on regulated parties or include confidential information or rules and regulations made in accordance with the Administrative Procedure Act.
    [Show full text]
  • Development of a Liquid Injection Propane System for Spark-Ignited Engines Via Fuel Temperature Control" (2007)
    Scholars' Mine Masters Theses Student Theses and Dissertations Summer 2007 Development of a liquid injection propane system for spark- ignited engines via fuel temperature control Brian Charles Applegate Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Mechanical Engineering Commons Department: Recommended Citation Applegate, Brian Charles, "Development of a liquid injection propane system for spark-ignited engines via fuel temperature control" (2007). Masters Theses. 4555. https://scholarsmine.mst.edu/masters_theses/4555 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. DEVELOPMENT OF A LIQUID INJECTION PROPANE SYSTEM FOR SPARK- IGNITED ENGINES VIA FUEL TEMPERATURE CONTROL by BRIAN CHARLES APPLEGATE A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI-ROLLA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN MECHANICAL ENGINEERING 2007 Approved by _______________________________ _______________________________ James A. Drallmeier, Advisor Virgil Flanigan _______________________________ Chris Ramsay © 2007 Brian Charles Applegate All Rights Reserved iii ABSTRACT This thesis entails the development of a liquid injected propane fuel system. Propane fuel offers opportunities in emissions reductions and lower carbon dioxide production per kilogram of fuel. However, drawbacks to the fuel include current storage in a saturated state. The storage method allows higher fuel volume density storage to minimize storage size. This method of storing the fuel presents fuel metering challenges resultant from the variable density of the two-phase flow.
    [Show full text]
  • Fire Dynamics and Forensic Analysis of Liquid Fuel Fires
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Fire Dynamics and Forensic Analysis of Liquid Fuel Fires Author: Christopher L. Mealy, Matthew E. Benfer, Daniel T. Gottuk Document No.: 238704 Date Received: May 2012 Award Number: 2008-DN-BX-K168 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. FIRE DYNAMICS AND FORENSIC ANALYSIS OF LIQUID FUEL FIRES Final Report Grant No. 2008-DN-BX-K168 Prepared by: Christopher L. Mealy, Matthew E. Benfer, and Daniel T. Gottuk Hughes Associates, Inc. 3610 Commerce Drive, Suite 817 Baltimore, MD 21227 Ph. 410-737-8677 FAX 410-737-8688 February 18, 2011 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Production of Liquid Biofuels
    ENERGY TECHNOLOGY SYSTEM ANALYSIS PROGRAMME IEA-ETSAP and IRENA © Technology-Policy Brief P10 – January 2013 - www.etsap.org, www.irena.org Production of Liquid Biofuels INSIGHTS FOR POLICY MAKERS Liquid biofuels are made from biomass and have qualities that are similar to gasoline, diesel or other petroleum derived fuels. The two dominant liquid biofuels are bioethanol and biodiesel (i.e. 80% and 20% of the market, respectively), that together meet about 3% of the global transport fuel demand and are produced using 2-3% of the global arable land. Bioethanol can be produced from sugarcane, corn, sugar beets, wheat, potatoes, sorghum and cassava. In 2011, the largest producers of bioethanol were the United States (63%) using corn, Brazil (24%) using sugarcane, and China. Biodiesel is made from vegetable oils, derived from soybeans, rapeseed, palm seeds, sunflowers, jatropha as well as from animal fat or waste oils. The largest producers of biodiesel in 2011 were the European Union (43%), the United States (15%), Brazil and Argentina (each around 13%). The advantage of biofuels is that they can substantially reduce greenhouse gas emissions in the transport sector (up to 70%-90% compared to gasoline) with only modest changes to vehicle technology and existing fuel distribution infrastructure. The disadvantage is that, apart from sugarcane ethanol, large-scale production of liquid biofuels based on today’s technology and feedstock would compete with food production for arable land and water, with limited expansion potential in certain cases. Also of concern would be the conservation of biodiversity and the risk of important land-use changes. The use of shared international standards is crucial to ensure that liquid biofuels are produced in a sustainable manner, minimising these possible negative environmental and social impacts due to land-use change and competition for food.
    [Show full text]
  • Exco66 Thermal Pre-Treatment of Biomass for Large-Scale Applications
    Thermal Pre-treatment of Biomass for Large-scale This publication provides the Applications summary and conclusions from the workshop ‘Thermal Pre-treatment Summary and Conclusions from the of Biomass for Large-scale Applications’ held in conjunction IEA Bioenergy ExCo66 Workshop with the meeting of the Executive Committee of IEA Bioenergy in York, United Kingdom, on 12 October 2010. The purpose of the workshop was to provide the Executive Committee with perspectives on how to integrate large-scale bioenergy deployment with existing fuel logistics. The aim was to stimulate discussion between the Executive Committee, Task Leaders, and invited experts and thereby enhance the policy- oriented work within IEA Bioenergy. IEA Bioenergy IEA Bioenergy:ExCo:2011:05 INTRODUCTION The main points and questions raised during discussions are summarised below. The contributions from the speakers One of the major goals of IEA Bioenergy is to facilitate can be downloaded from IEA Bioenergy’s website commercialisation and market deployment of environmentally www.ieabioenergy.com. sound, sustainable, and cost-competitive bioenergy technologies. SESSION 1 – OVERVIEW OF Sustainable growth of biomass for energy production is PROCESSES possible in large areas of the world. Despite debate over ‘food versus fuel’, there are actually no major limitations Overview of Thermal Pre-treatment Processes for to increasing energy crop cultivation. Only a little more Large-scale Biomass Application – Jaap Kiel, ECN, the than 2% of worldwide agricultural production is used for Netherlands energy plantations. Unfortunately, large biomass growing Biomass is a difficult energy source to manage logistically, areas are not usually located in the vicinity of the urban and including handling of the raw biomass, transport and storage industrial areas with the highest energy consumption.
    [Show full text]
  • Bioenergy Action Plan
    DEDICATION Loyd Henry Forrest Jr. 1940–2006 The Interagency Bioenergy Working Group dedicates this report to Loyd Forrest — the quintessential public servant. We gratefully recognize his contribution to California, as a state government executive, and as an early pioneer and advocate of biomass energy technology, and a successful and talented bioenergy consultant and entrepreneur. Over the course of his long and successful career, governors, legislators, state executives and staff called upon Loyd for his guidance and expertise. He was a person who stood for honesty, integrity and hard work — a man whose word could be trusted. Loyd was dedicated to issues and programs that mutually improved California’s environment and economy. This report honors his commitment and legacy to making California the best that it could be. Prepared By: Navigant Consulting, Inc. One Market St, Spear Tower 1200 San Francisco, CA Richard Germain Ryan Katofsky Contract No. 700-02-004 Prepared For: The Bioenergy Interagency Working Group James D. Boyd, Commissioner and Working Group Chair, California Energy Commission Air Resources Board California Environmental Protection Agency California Public Utilities Commission California Resources Agency Department of Food and Agriculture Department of Forestry and Fire Protection Department of General Services Integrated Waste Management Board State Water Resources Control Board Susan J. Brown Project Manager Pat Perez Manager SPECIAL PROJECTS OFFICE Rosella Shapiro Deputy Director FUELS AND TRANSPORTATION DIVISION B. B. Blevins EXECUTIVE DIRECTOR Joseph F. Desmond CHAIRMAN DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission and prepared by Navigant Consulting, Inc. on behalf of the Bioenergy Interagency Working Group, composed of state agencies.
    [Show full text]
  • Liquid Electric Automobile Fuels
    Bridging Renewable Electricity with Transportation Fuels Grigorii Soloveichik ARPA-E workshop August 27, Denver, CO Imperative: reducing green house gases emission while preserving energy security • Fossil fuels used for power generation emit CO2 and other GHG that leads to dramatic climate change • Burning fossil fuels in internal combustion engines for transportation is responsible for about 1/3 of GHG emission • Replacement coal for natural gas reduced GHG emissions for grid scale power generation but replacement of liquid transportation fuels with NG is currently not viable due to low energy density of methane • Market penetration of electric vehicles is lower than anticipated due to high cost of batteries, long charge time and range anxiety Solution: replace fossil fuels with zero- emission regenerable fuels • More than 95% vehicles use liquid fuels, infrastructure in place • ICEs emit CO2 and other GHGs (hard to capture) • Electricity from renewable sources is clean and can be used directly (batteries) or to generate hydrogen to power fuel cells • Batteries are expensive; recharging time and range anxiety lead to low public acceptance • Hydrogen fuel cell vehicles are considered to be ultimate solution for long range transportation and dense urban areas Vehicle energy consumption and emissions (full energy cycle) Vehicle type Energy consumption, kWh/mile CO2 emissions, g/mile Average gasoline car 1.55 411 Gasoline car (Honda Accord) 1.08 286 Diesel car (FW Jetta) 1.11 299 Hybrid car (Prius) 0.79 212 BEV (Tesla) 1.09 (0.40 battery)
    [Show full text]