Southern Spread of Moths in New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Southern Spread of Moths in New Zealand 32 The Weta 40: 32-38 (2010) Southern spread of moths in New Zealand Brian Patrick Central Stories Museum & Art Gallery, Box 308, Alexandra. ([email protected]) Introduction and Results Dugdale (1988) notes 73 moth and butterfly species, particularly Australian, that have become established in New Zealand since European settlement as the result of human assistance. Hoare (2001) recorded and illustrated a further 27 species that had become established in the intervening years to 2001. While most of these 100 species have not yet become established in southern New Zealand, here I note six species of these exotic moths that have, in recent years, spread south to Otago and Southland joining earlier invasions that have generally gone unrecorded. All specimens cited are either stored pinned and dry in the Otago Museum, Dunedin or since 2006, in the Central Stories Museum, Alexandra. Figure 1. Adults of the casemoth Lepidoscia heliocharis (left) and Achrya affinitalis (right). Photo B. Patrick. Inevitably only a fragment of information is available on the southward spread of these species. What I present here is indicative only. The six species in question and my observations of a southern spread are as follows: Achyra affinitalis (Lederer, 1863) Dugdale (1988) lists the adventive Australian moth Achyra affinitalis (Lederer, Southern spread of moths 33 1863), (Crambidae: Pyraustinae) as being established in the Hawkes Bay and Auckland areas since 1970. Since then it has spread south to the northern South Island and continues that spread further south to southern Canterbury and Otago in more recent years. I found the species in 1990 at Kaitorete Spit, Mid Canterbury and in 1998 at Farewell Spit, Northwest Nelson. More recently it has moved south to southern Canterbury and Otago particularly the dry interior of the Mackenzie Country and Central Otago. Interestingly it was not collected by White (2002) during his intensive 1991-2000 light-trapping programme at 43 sites in the Mackenzie Country. Many of these trapping sites were within the altitudinal range the species now occupies. My first Otago record is 19 March 2008 at Conroys Road, 300m., near Alexandra CO, captured at light; followed by 7 November 2008 with two adults to light as above. In the Mackenzie Basin the first records are 28 March 2009, Haldon Arm, 380m., Lake Benmore, Mackenzie Basin MK, three at light. I think we can be reasonably certain that in the years 2001 to 2009 the species entered the Mackenzie Basin for the first time based on the exhaustive work of White (2002), who did not find it. Since then it has increased in range and numbers so that by April and May 2010, at several sites, it was the commonest moth species found at light. Latest records point to its increasing population and range: 1 November 2009 one by day Conroys Road 300m., near Alexandra CO 3 December 2009 one by day Chapman Road Scientific Reserve - saline area, near Alexandra CO 11 April 2010 32 adults at light Conroys Road, 300m., near Alexandra CO 11 April 2010 three adults at Gorge Creek, 300m., Alexandra-Roxburgh HighwayCO 22 April six at light Conroys Road, 300m., near AlexandrCO 6 May 2010 four adults at light 340m., Little Valley Road, Knobby Range CO In Australia the species is found throughout mainland Australia (Common, 1990) and is considered likely to be involved in long-distance movements. Common also notes that larval outbreaks occur at irregular intervals and are mostly in drier areas when “native and introduced weeds and crop plants belonging to many families are webbed and defoliated”. These plant families include Fabaceae, Malvaceae and Asteraceae. This information provides an insight into what has been observed in New Zealand regarding movement, fondness for dry areas and its probable life history here. It signals the possible pest status of this species in New Zealand. Research is required to confirm what its life history is here in its new homeland. Barea aff. confusella (Walker, 1864) 34 Brian Patrick Another species of Australian origin, Barea aff. confusella (Oecophoridae) (Dugdale, 1988) was first detected in the south on 24 November 2000 at Osbourne, eastern Otago, on 4 November 2005 further south in Dunedin and 20 November 2005 in Alexandra, Central Otago. The species does not appear to be established in Central Otago yet, but is more common in eastern Otago although by no means commonly found there yet. Its wing pattern is distinct from that of Barea codrella as illustrated by Hoare (2001). Dialectica scalariella (Zeller, 1850) The tiny adults and distinctive feeding damage of the southern European Dialectica scalariella (Gracillariidae) were first identified at Atawhai near Nelson, New Zealand in February 1997 from reared adults (Hoare, 2001). Larvae are leaf miners in various Boraginaceae particularly Echium species. Hoare (2001) notes its discovery in the Auckland area in 1998-2000 and also notes my discoveries south to Rangitata Island, South Canterbury in November 1999. Given its small size and inconspicuousness it is impossible to know where it first became established. My records for the South Island date from November 1999 when I found adults at the mouth of the Ashburton River, Mid Canterbury within rosettes of Echium. Later that same year I found adults at Kaitorete Spit and then further south at Rangitata River mouth in South Canterbury. Adults were also found in 2005 in Cloudy Bay, Waima Mouth and Acheron River - 750m, Marlborough. Since then I kept a special lookout for the adults or larval damage in Otago suspecting that it may spread that far south given the hot dry summers, similar to its new found habitat in Marlborough. It took till 5 March 2005 for larval damage, and 13 March 2005 for adults to appear in Central Otago. Since then adults have become common in the period March-May each year, flying by day in calm weather or found within the host plant‟s foliage. It is now common and widespread in Central Otago with larvae or adults known from Kawarau Gorge, Dunstan Gorge, Old Man Range (1500m), Alexandra township and surrounding localities such as Airport Terrace, Molyneaux Estate and Conroys Road. Lepidoscia heliochares (Meyrick, 1893) The casemoth species Lepidoscia heliochares (Pyschidae) has been known from New Zealand for several decades, particularly in its northern parts. The species is naturally endemic to Australia being described from Sydney and Melbourne, where it was recorded as common in July and August, with adults flying “freely in sunshine”. Southern spread of moths 35 From 1987 to 2000, I recorded adults of the species several times from various parts of Christchurch with a record in 1996 from Kaitorete Spit south of Christchurch from late July to mid September. In 1994 and 1995 I found one female and three males in the Waitaki Valley, in Kurow township and at Fettercairn, much further to the south on the border between Canterbury and Otago. These adults were found between 14 and 21 September. The first Central Otago adults were detected on the 16 August 2006, with over 100 males and females found by the winter of 2009. Maybe the species had made Alexandra its home slightly earlier than 2006, but that was my first winter there as a resident. Previous to that I had intensively surveyed for moths for the past 20 years at all seasons as a holiday-maker and visitor (Patrick, 1994; Patrick, unpublished data). Results for Alexandra are: 2006; 41 males - 16 August to 25 September; most at light with many found on windows where they had come to light the previous night. 2007; 41 males and one female – 30 July to 10 October; as above most at light. Female was active in the late afternoon on a shop window on a 16⁰C day on 7 September. 2008; 6 males as above. Collecting season curtailed by overseas trip. 2009; 30 males and females, mostly at light but some bred from cases. 2010; males found from 15 August onwards on shop windows and walls close to lights. One male active on wet morning on shop window. Larvae feed on leaf litter from within a larval case. Observations in Alexandra suggest that lavender and other dense plants provide an ideal habitat for larvae. Adults emerge from late July through to the end of September, with peak emergence from late August to mid September based on over 200 individuals found in Alexandra. Mature larvae wander from larval feeding sites onto fences, house walls, under pot plants and paths to fix their cases to hard surface in a sheltered place, where they pupate. Pupal cases were found under window ledges and pot plants. Although many more males are found at light, from breeding records females emerge in about equal numbers to males. Females have slightly reduced wings, but can fly. It is interesting that the species appears to be nocturnal in New Zealand but was described as diurnal in its original description in Australia. Further observations in Australia are necessary to clear up this obvious behavioural difference Opogona comptella Walker, 1864 The pretty Australian tineid Opogona comptella (Tineidae) has been in New Zealand at least 100 years (Dugdale, 1988). I did not find in the southern South Island in the late 1960s or early to mid 1970s, but it was common in North Otago by 1978, Dunedin by 1983, further south at Milton by 1987, Invercargill by 1990, while my 36 Brian Patrick first records for Central Otago were not till 1991. Since then it has established throughout the South and is reasonably commonly found in human- induced habitats where larvae have been found feeding on dead wood. Tachystola acroxantha (Meyrick, 1885) The dull orange-coloured Tachystola acroxantha (Oecophoridae) is a species of Australian origin that was first found in New Zealand in 1886 (Dugdale, 1988).
Recommended publications
  • The Biology of Casmara Subagronoma (Lepidoptera
    insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
    Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • Nota Lepidopterologica
    ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid 10 (3) : 175-182 ; 31.X.1987 ISSN 0342-7536 Revisionary notes on the genus Achyra Guenée with a new synonym and the description of Achyra takowensis sp. n. (Lepidoptera : Pyralidae, Pyraustinae) (Studies on Pyralidae I) K. V. N. Maes Museum voor Dierkunde, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium Abstract The nomenclature and the diagnostic characters of the genus Achyra Guenée are discussed. Besides the known synonyms Eurycreon Lederer and Tritaea Meyrick, Dosara Waeker is also considered as a new synonym for the genus. The following species are placed under Achyra : afflm talis (Lederer) with its synonym us talis (Walker) ; bifidalis (Fabricius) with its synonyms evanidalis (Berg), inornatalis (Walker), obsoletalis (Berg) and stolidalis (Schaus) ; brasiliensis (Capps) ; coela- talis (Walker) comb. n. ; eneanalis (Schaus) ; llaguenalis Munroe ; massalis (Walker) comb. n. ; nudalis (Hübner) with its synonym interpunctalis (Hübner) ; occidentalis piuralis (Capps) ; protealis (Warren) ; rantalis (Guenée) (Packard) ; with its synonyms caffrei (Flint & Mallock), collucidalis (Möschler), communis (Grote), crinisalis (Walker), crinitalis (Lederer), diotimetalis (Walker), intrac- tella (Walker), licealis (Walker), murcialis (Walker), nestusalis (Walker), posticata (Grote & Robinson), similalis auct., nee Guenée siriusalis (Walker) and subfulvalis (Herrich-Schaffer) -, similalis (Guenée) with its synonyms ferruginea (Warren) and garalis (Schaus). A new species from Taiwan A. takowensis sp. n. is described. Foreword This paper is the first in a series on the systematics of the Pyralidae, especially the Pyraustinae, of the world. Previously, a study was made on the usefulness of different morphological structures including tympanal organs. The des- cription, preparation technique and a list of references of the latter are given in Maes, 1985.
    [Show full text]
  • Assessing the Invertebrate Fauna Trajectories in Remediation Sites of Winstone Aggregates Hunua Quarry in Auckland
    ISSN: 1179-7738 ISBN: 978-0-86476-417-1 Lincoln University Wildlife Management Report No. 59 Assessing the invertebrate fauna trajectories in remediation sites of Winstone Aggregates Hunua quarry in Auckland by Kate Curtis1, Mike Bowie1, Keith Barber2, Stephane Boyer3 , John Marris4 & Brian Patrick5 1Department of Ecology, Lincoln University, PO Box 85084, Lincoln 7647 2Winstone Aggregates, Hunua Gorge Road, Red Hill 2110, Auckland 3Department of Nature Sciences, Unitec Institute of Technology, PO Box 92025, Auckland 1142. 4Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647. 5Consultant Ecologist, Wildlands, PO Box 33499, Christchurch. Prepared for: Winstone Aggregates April 2016 Table of Contents Abstract……………………………………………………………………………………....................... 2 Introduction…………………………………………………………………………………………………… 2 Methodology…………………………………………………………………………………………………. 4 Results…………………………………………………………………………………………………………… 8 Discussion……………………………………………………………………………………………………. 31 Conclusion…………………………………………………………………………………………………… 37 Recommendations………………………………………………………………………………………. 38 Acknowlegdements……………………………………………………………………………………… 38 References…………………………………………………………………………………………………… 39 Appendix……………………………………………………………………………………………………… 43 1 Abstract This study monitored the invertebrates in restoration plantings in the Winstone Aggregates Hunua Quarry. This was to assess the re-establishment of invertebrates in the restoration planting sites and compare them with unplanted control and mature sites. This study follows on from
    [Show full text]
  • Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
    Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst.
    [Show full text]
  • Keystone Ancient Forest Preserve Resource Management Plan 2011
    Keystone Ancient Forest Preserve Resource Management Plan 2011 Osage County & Tulsa County, Oklahoma Lowell Caneday, Ph.D. With Kaowen (Grace) Chang, Ph.D., Debra Jordan, Re.D., Michael J. Bradley, and Diane S. Hassell This page intentionally left blank. 2 Acknowledgements The authors acknowledge the assistance of numerous individuals in the preparation of this Resource Management Plan. On behalf of the Oklahoma Tourism and Recreation Department’s Division of State Parks, staff members were extremely helpful in providing access to information and in sharing of their time. In particular, this assistance was provided by Deby Snodgrass, Kris Marek, and Doug Hawthorne – all from the Oklahoma City office of the Oklahoma Tourism and Recreation Department. However, it was particularly the assistance provided by Grant Gerondale, Director of Parks and Recreation for the City of Sand Springs, Oklahoma, that initiated the work associated with this RMP. Grant provided a number of documents, hosted an on-site tour of the Ancient Forest, and shared his passion for this property. It is the purpose of the Resource Management Plan to be a living document to assist with decisions related to the resources within the park and the management of those resources. The authors’ desire is to assist decision-makers in providing high quality outdoor recreation experiences and resources for current visitors, while protecting the experiences and the resources for future generations. Lowell Caneday, Ph.D., Professor Leisure Studies Oklahoma State University Stillwater,
    [Show full text]
  • Southeast Farallon Island Arthropod Survey Jeffrey Honda San Jose State University
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2017 Southeast Farallon Island arthropod survey Jeffrey Honda San Jose State University Bret Robinson San Jose State University Michael Valainis San Jose State University Rick Vetter University of California Riverside Jaime Jahncke Point Blue Conservation Science Petaluma, CA Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Honda, Jeffrey; Robinson, Bret; Valainis, Michael; Vetter, Rick; and Jahncke, Jaime, "Southeast Farallon Island arthropod survey" (2017). Insecta Mundi. 1037. http://digitalcommons.unl.edu/insectamundi/1037 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0532 Southeast Farallon Island arthropod survey Jeffrey Honda San Jose State University, Department of Entomology San Jose, CA 95192 USA Bret Robinson San Jose State University, Department of Entomology San Jose, CA 95192 USA Michael Valainis San Jose State University, Department of Entomology San Jose, CA 95192 USA Rick Vetter University of California Riverside, Department of Entomology Riverside, CA 92521 USA Jaime Jahncke Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma, CA 94954 USA Date of Issue: March 31, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Jeffrey Honda, Bret Robinson, Michael Valainis, Rick Vetter, and Jaime Jahncke Southeast Farallon Island arthropod survey Insecta Mundi 0532: 1–15 ZooBank Registered: urn:lsid:zoobank.org:pub:516A503A-78B9-4D2A-9B16-477DD2D6A58E Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Opogona Sacchari
    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 7/71 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Diagnostics1 Diagnostic Opogona sacchari Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Opogona Approved in 2005-09. sacchari. Introduction Detection Opogona sacchari originates in the humid tropical and O. sacchari larvae are highly versatile pests, exploiting a wide subtropical regions of Africa, where it is not a significant pest. range of live and dead plant material. The symptoms displayed It first attracted attention as a serious pest on bananas in Spain largely depend on the type of host the larvae are infesting. In (Islas Canarias) in the 1920s. In the 1970s, it was introduced European glasshouses, they can infest various tropical or into Brazil and Central America, and also started to appear in subtropical ornamentals, including mainly Cactaceae, Dracaena, the EPPO region. O. sacchari has a wide host range, and is Strelizia and Yucca (Billen, 1987), but also occasionally Alpinia, found mainly in the tropics on banana, pineapple, bamboos, Begonia, Bougainvillea, Bromeliaceae, Chamaedorea and other maize and sugarcane in the field, and on various stored Arecaceae, Cordyline, Dieffenbachia, Euphorbia pulcherrima, tubers. More recently, O. sacchari has been introduced into the Ficus, Heliconia, Hippeastrum, Maranta, Philodendron, USA (Florida) (Heppner et al., 1987) and China (Kun & Fang, Saintpaulia, Sansevieria and Sinningia speciosa. Vegetable 1997). crops are also attacked: capsicum and aubergine (Billen, 1987). In import inspections, it is mainly Dracaena and Yucca which have been found to be infested (EPPO, 1997). In banana, Identity normally the fruiting head is infested, but in ornamental plants Name: Opogona sacchari (Bojer).
    [Show full text]
  • Getting the Best from Old Man Saltbush
    AGFACTS Getting the best AGFACTS from old man AGFACTS saltbush Agfact P2.5.43, First edition Brett M Honeysett, Research Agronomist, Peter L Milthorpe, Senior Research Agronomist, Margaret J Wynne, Clerical Officer, Agricultural Research & Advisory Station, Condobolin INTRODUCTION Conflicting perceptions about the value of OMSB to the pastoral and farming industries have developed in Awareness is growing of the need for perennials to be recent times and these need resolution. Disappointing re-introduced into the landscape, to stem, or reverse, experiences with OMSB usually stem from unrealistic the rate of land degradation. However, reintroduction expectations of the potential of OMSB or the level of perennials into agriculture will not occur unless they of management that prevailed. have the potential to provide positive financial returns or demonstrate significant positive environmental This Agfact outlines the potential of OMSB for each benefits. Forage shrubs are a group of plants that of the different functions that it can fulfil in its offer this potential, particularly old man saltbush capacity as an environmental or productive plant. It is (OMSB). important that the reader is focussed on their reason (or reasons) for wanting to establish plantings well before commencing operations, particularly if cost recovery is important. ORDER NO. P2.5.43 AGDEX 136/10 requires an addition of a high-energy feed source to the diet if maximum production is to be achieved, especially if the leaf has a high salt content. This can be in the form of good quality grass pasture or grain. ABOUT OMSB Suitable growing areas OMSB appears highly suited to a broad region through central NSW (Figure 2).
    [Show full text]