Bovine host genome acts on specic metabolism, communication and genetic processes of rumen microbes host-genomically linked to methane emissions Marina Martínez-Álvaro SRUC https://orcid.org/0000-0003-2295-5839 Marc Auffret SRUC Carol-Anne Duthie SRUC Richard Dewhurst SRUC Matthew Cleveland Genus plc Mick Watson Roslin Institute https://orcid.org/0000-0003-4211-0358 Rainer Roehe (
[email protected] ) SRUC https://orcid.org/0000-0002-4880-3756 Article Keywords: bovine host genome, rumen, CH4 Posted Date: May 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-290150/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Bovine host genome acts on specific metabolism, communication and 2 genetic processes of rumen microbes host-genomically linked to methane 3 emissions 4 Marina Martínez-Álvaro1, Marc D. Auffret1, Carol-Anne Duthie1, Richard J. Dewhurst1, 5 Matthew A. Cleveland2, Mick Watson3 and Rainer Roehe*1 6 1Scotland’s Rural College, Edinburgh, UK 7 2Genus plc, DeForest, WI, USA 8 3The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of 9 Edinburgh, UK 10 11 *Corresponding author. Email:
[email protected] 12 13 14 Introductory paragraph 15 Whereas recent studies in different species showed that the host genome shapes the microbial 16 community profile, our new research strategy revealed substantial host genomic control of 17 comprehensive functional microbial processes in the rumen of bovines by utilising microbial 18 gene profiles from whole metagenomic sequencing. Of 1,107/225/1,141 rumen microbial 19 genera/metagenome assembled uncultured genomes (RUGs)/genes identified, 203/16/352 20 were significantly (P<2.02 x10-5) heritable (0.13 to 0.61), revealing substantial variation in 21 host genomic control.