A Guide to Brownian Motion and Related Stochastic Processes

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to Brownian Motion and Related Stochastic Processes Vol. 0 (0000) A guide to Brownian motion and related stochastic processes Jim Pitman and Marc Yor Dept. Statistics, University of California, 367 Evans Hall # 3860, Berkeley, CA 94720-3860, USA e-mail: [email protected] Abstract: This is a guide to the mathematical theory of Brownian mo- tion and related stochastic processes, with indications of how this theory is related to other branches of mathematics, most notably the classical the- ory of partial differential equations associated with the Laplace and heat operators, and various generalizations thereof. As a typical reader, we have in mind a student, familiar with the basic concepts of probability based on measure theory, at the level of the graduate texts of Billingsley [43] and Durrett [106], and who wants a broader perspective on the theory of Brow- nian motion and related stochastic processes than can be found in these texts. Keywords and phrases: Markov process, random walk, martingale, Gaus- sian process, L´evyprocess, diffusion. AMS 2000 subject classifications: Primary 60J65. Contents 1 Introduction . .3 1.1 History . .3 1.2 Definitions . .4 2 BM as a limit of random walks . .5 3 BM as a Gaussian process . .7 3.1 Elementary transformations . .8 3.2 Quadratic variation . .8 3.3 Paley-Wiener integrals . .8 3.4 Brownian bridges . 10 3.5 Fine structure of Brownian paths . 10 3.6 Generalizations . 10 3.6.1 Fractional BM . 10 3.6.2 L´evy's BM . 11 3.6.3 Brownian sheets . 11 3.7 References . 11 4 BM as a Markov process . 12 4.1 Markov processes and their semigroups . 12 4.2 The strong Markov property . 14 4.3 Generators . 15 4.4 Transformations . 16 0 J. Pitman and M. Yor/Guide to Brownian motion 1 4.4.1 Space transformations . 16 4.4.2 Bessel processes . 17 4.4.3 The Ornstein-Uhlenbeck process . 18 4.5 L´evyprocesses . 18 4.6 References for Markov processes . 20 5 BM as a martingale . 20 5.1 L´evy'scharacterization . 21 5.2 It^o'sformula . 22 5.3 Stochastic integration . 23 5.4 Construction of Markov processes . 26 5.4.1 Stochastic differential equations . 26 5.4.2 One-dimensional diffusions . 28 5.4.3 Martingale problems . 28 5.4.4 Dirichlet forms . 29 5.5 Brownian martingales . 29 5.5.1 Representation as stochastic integrals . 29 5.5.2 Wiener chaos decomposition . 30 5.6 Transformations of Brownian motion . 31 5.6.1 Change of probability . 32 5.6.2 Change of filtration . 33 5.6.3 Change of time . 35 5.6.4 Knight's theorem . 35 5.7 BM as a harness . 36 5.8 Gaussian semi-martingales . 36 5.9 Generalizations of martingale calculus . 37 5.10 References . 37 6 Brownian functionals . 38 6.1 Hitting times and extremes . 38 6.2 Occupation times and local times . 39 6.2.1 Reflecting Brownian motion . 41 6.2.2 The Ray-Knight theorems . 41 6.3 Additive functionals . 43 6.4 Quadratic functionals . 44 6.5 Exponential functionals . 45 7 Path decompositions and excursion theory . 45 7.1 Brownian bridge, meander and excursion . 45 7.2 The Brownian zero set . 48 7.3 L´evy-It^otheory of Brownian excursions . 48 8 Planar Brownian motion . 50 8.1 Conformal invariance . 50 8.2 Polarity of points, and windings . 50 8.3 Asymptotic laws . 51 8.4 Self-intersections . 52 8.5 Exponents of non-intersection . 54 9 Multidimensional BM . 55 9.1 Skew product representation . 55 J. Pitman and M. Yor/Guide to Brownian motion 2 9.2 Transience . 55 9.3 Other geometric aspects . 56 9.3.1 Self-intersections . 56 9.4 Multidimensional diffusions . 57 9.5 Matrix-valued diffusions . 57 9.6 Boundaries . 57 9.6.1 Absorbtion . 57 9.6.2 Reflection . 58 9.6.3 Other boundary conditions . 58 10 Brownian motion on manifolds . 58 10.1 Constructions . 58 10.2 Radial processes . 59 10.3 References . 59 11 Infinite dimensional diffusions . 60 11.1 Filtering theory . 60 11.2 Measure-valued diffusions and Brownian superprocesses . 60 11.3 Malliavin calculus . 61 12 Connections with analysis . 62 12.1 Partial differential equations . 62 12.1.1 Laplace's equation: harmonic functions . 62 12.1.2 The Dirichlet problem . 63 12.1.3 Parabolic equations . 64 12.1.4 The Neumann problem . 65 12.1.5 Non-linear problems . 65 12.2 Stochastic differential Equations . 66 12.2.1 Dynamic Equations . 67 12.3 Potential theory . 68 12.4 BM and harmonic functions . 68 12.5 Hypercontractive inequalities . 69 13 Connections with number theory . 69 14 Connections with enumerative combinatorics . 69 14.1 Brownian motion on fractals . 70 14.2 Analysis of fractals . 71 14.3 Free probability . 71 15 Applications . 71 15.1 Economics and finance . 71 15.2 Statistics . 72 15.3 Physics . 72 15.4 Fluid mechanics . 73 15.5 Control of diffusions . 73 References . 73 J. Pitman and M. Yor/Guide to Brownian motion 3 1. Introduction This is a guide to the mathematical theory of Brownian motion (BM) and re- lated stochastic processes, with indications of how this theory is related to other branches of mathematics, most notably the classical theory of partial differential equations associated with the Laplace and heat operators, and various general- izations thereof. As a typical reader, we have in mind a student familiar with the basic concepts of probability based on measure theory, at the level of the graduate texts of Billingsley [43] and Durrett [106], and who wants a broader perspective on the theory of BM and related stochastic processes than can be found in these texts. The difficulty facing such a student is that there are now too many advanced texts on BM and related processes. Depending on what aspects or applications are of interest, one can choose from any of the following texts, each of which contains excellent treatments of many facets of the theory, but none of which can be regarded as a definitive or complete treatment of the subject. General texts on BM and related processes [139] D. Freedman. Brownian motion and diffusion (1983). [180] K. It^oand H. P. McKean, Jr. Diffusion processes and their sample paths (1965). [179] K. It^o. Lectures on stochastic processes (1984). [201] O. Kallenberg. Foundations of modern probability (2002). [211] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus (1988). [206] G. Kallianpur and S. P. Gopinath. Stochastic analysis and diffusion pro- cesses (2014). [221] F. B. Knight. Essentials of Brownian motion and diffusion (1981). [313] P. M¨ortersand Y. Peres. Brownian motion (2010). [370] D. Revuz and M. Yor. Continuous martingales and Brownian motion (1999). [372] and [373] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, Vols. I and II (1994). This list does not include more specialized research monographs on subjects closely related to BM such as stochastic analysis, stochastic differential geom- etry, and more general theory of Gaussian and Markov processes. Lists of such monographs classified by subject can be found in following sections. 1.1. History The physical phenomenon of Brownian motion was discovered by Robert Brown, a 19th century scientist who observed through a microscope the random swarm- ing motion of pollen grains in water, now understood to be due to molecular bombardment. The theory of Brownian motion was developed by Bachelier in J. Pitman and M. Yor/Guide to Brownian motion 4 his 1900 PhD Thesis [8], and independently by Einstein in his 1905 paper [113] which used Brownian motion to estimate Avogadro's number and the size of molecules. The modern mathematical treatment of Brownian motion (abbrevi- ated to BM), also called the Wiener process is due to Wiener in 1923.
Recommended publications
  • Interpolation for Partly Hidden Diffusion Processes*
    Interpolation for partly hidden di®usion processes* Changsun Choi, Dougu Nam** Division of Applied Mathematics, KAIST, Daejeon 305-701, Republic of Korea Abstract Let Xt be n-dimensional di®usion process and S(t) be a smooth set-valued func- tion. Suppose X is invisible when X S(t), but we can see the process exactly t t 2 otherwise. Let X S(t ) and we observe the process from the beginning till the t0 2 0 signal reappears out of the obstacle after t0. With this information, we evaluate the estimators for the functionals of Xt on a time interval containing t0 where the signal is hidden. We solve related 3 PDE's in general cases. We give a generalized last exit decomposition for n-dimensional Brownian motion to evaluate its estima- tors. An alternative Monte Carlo method is also proposed for Brownian motion. We illustrate several examples and compare the solutions between those by the closed form result, ¯nite di®erence method, and Monte Carlo simulations. Key words: interpolation, di®usion process, excursions, backward boundary value problem, last exit decomposition, Monte Carlo method 1 Introduction Usually, the interpolation problem for Markov process indicates that of eval- uating the probability distribution of the process between the discretely ob- served times. One of the origin of the problem is SchrÄodinger's Gedankenex- periment where we are interested in the probability distribution of a di®usive particle in a given force ¯eld when the initial and ¯nal time density functions are given. We can obtain the desired density function at each time in a given time interval by solving the forward and backward Kolmogorov equations.
    [Show full text]
  • Markovian Bridges: Weak Continuity and Pathwise Constructions
    The Annals of Probability 2011, Vol. 39, No. 2, 609–647 DOI: 10.1214/10-AOP562 c Institute of Mathematical Statistics, 2011 MARKOVIAN BRIDGES: WEAK CONTINUITY AND PATHWISE CONSTRUCTIONS1 By Lo¨ıc Chaumont and Geronimo´ Uribe Bravo2,3 Universit´ed’Angers and Universidad Nacional Aut´onoma de M´exico A Markovian bridge is a probability measure taken from a disin- tegration of the law of an initial part of the path of a Markov process given its terminal value. As such, Markovian bridges admit a natural parameterization in terms of the state space of the process. In the context of Feller processes with continuous transition densities, we construct by weak convergence considerations the only versions of Markovian bridges which are weakly continuous with respect to their parameter. We use this weakly continuous construction to provide an extension of the strong Markov property in which the flow of time is reversed. In the context of self-similar Feller process, the last result is shown to be useful in the construction of Markovian bridges out of the trajectories of the original process. 1. Introduction and main results. 1.1. Motivation. The aim of this article is to study Markov processes on [0,t], starting at x, conditioned to arrive at y at time t. Historically, the first example of such a conditional law is given by Paul L´evy’s construction of the Brownian bridge: given a Brownian motion B starting at zero, let s s bx,y,t = x + B B + (y x) . s s − t t − t arXiv:0905.2155v3 [math.PR] 14 Mar 2011 Received May 2009; revised April 2010.
    [Show full text]
  • Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
    Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Yves-Laurent Kom Samo [email protected] Stephen Roberts [email protected] Deparment of Engineering Science and Oxford-Man Institute, University of Oxford Abstract 2. Related Work In this paper we propose an efficient, scalable Non-parametric inference on point processes has been ex- non-parametric Gaussian process model for in- tensively studied in the literature. Rathbum & Cressie ference on Poisson point processes. Our model (1994) and Moeller et al. (1998) used a finite-dimensional does not resort to gridding the domain or to intro- piecewise constant log-Gaussian for the intensity function. ducing latent thinning points. Unlike competing Such approximations are limited in that the choice of the 3 models that scale as O(n ) over n data points, grid on which to represent the intensity function is arbitrary 2 our model has a complexity O(nk ) where k and one has to trade-off precision with computational com- n. We propose a MCMC sampler and show that plexity and numerical accuracy, with the complexity being the model obtained is faster, more accurate and cubic in the precision and exponential in the dimension of generates less correlated samples than competing the input space. Kottas (2006) and Kottas & Sanso (2007) approaches on both synthetic and real-life data. used a Dirichlet process mixture of Beta distributions as Finally, we show that our model easily handles prior for the normalised intensity function of a Poisson data sizes not considered thus far by alternate ap- process. Cunningham et al.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • [Math.PR] 9 Dec 2004
    On local martingale and its supremum: harmonic functions and beyond. Dedicated to Professor A.N. Shiryaev for his 70th birthday Jan Ob l´oj1,2 and Marc Yor1 1 Laboratoire de Probabilit´es et Mod`eles Al´eatoires, Universit´eParis 6, 4 pl. Jussieu, Boˆite 188, 75252 Paris Cedex 05, France 2 Wydzia lMatematyki, Uniwersytet Warszawski Banacha 2, 02-097 Warszawa, Poland email: [email protected] Version du 8 D´ecembre 2004 We discuss certain facts involving a continuous local martingale N and its supre- mum N. A complete characterization of (N, N)-harmonic functions is proposed. This yields an important family of martingales, the usefulness of which is demonstrated, by means of examples involving the Skorokhod embedding problem, bounds on the law of the supremum, or the local time at 0, of a martingale with a fixed terminal distribution, or yet in some Brownian penalization problems. In particular we obtain new bounds on the law of the local time at 0, which involve the excess wealth order. Key words: continuous local martingale, supremum process, harmonic function, Skorokhod’s embedding problem, excess wealth order. Mathematics Subject Classification (2000): 60G44 (Primary), 60G42, 60G40, 60E15 arXiv:math/0412196v1 [math.PR] 9 Dec 2004 2 Jan Ob l´oj and Marc Yor Dedication. The first time I met Prof. A. Shiryaev was in January 1977, during a meeting dedicated to Control and Filtering theories, in Bonn. This was a time when meeting a Soviet mathematician was some event! Among the participants to that meeting, were, apart from A. Shiryaev, Prof. B. Grige- lionis, and M.
    [Show full text]
  • Birth and Death Process in Mean Field Type Interaction
    BIRTH AND DEATH PROCESS IN MEAN FIELD TYPE INTERACTION MARIE-NOÉMIE THAI ABSTRACT. Theaim ofthispaperis to study theasymptoticbehaviorofa system of birth and death processes in mean field type interaction in discrete space. We first establish the exponential convergence of the particle system to equilibrium for a suitable Wasserstein coupling distance. The approach provides an explicit quantitative estimate on the rate of convergence. We prove next a uniform propagation of chaos property. As a consequence, we show that the limit of the associated empirical distribution, which is the solution of a nonlinear differential equation, converges exponentially fast to equilibrium. This paper can be seen as a discrete version of the particle approximation of the McKean-Vlasov equations and is inspired from previous works of Malrieu and al and Caputo, Dai Pra and Posta. AMS 2000 Mathematical Subject Classification: 60K35, 60K25, 60J27, 60B10, 37A25. Keywords: Interacting particle system - mean field - coupling - Wasserstein distance - propagation of chaos. CONTENTS 1. Introduction 1 Long time behavior of the particle system 4 Propagation of chaos 5 Longtimebehaviorofthenonlinearprocess 7 2. Proof of Theorem1.1 7 3. Proof of Theorem1.2 12 4. Proof of Theorem1.5 15 5. Appendix 16 References 18 1. INTRODUCTION The concept of mean field interaction arised in statistical physics with Kac [17] and then arXiv:1510.03238v1 [math.PR] 12 Oct 2015 McKean [21] in order to describe the collisions between particles in a gas, and has later been applied in other areas such as biology or communication networks. A particle system is in mean field interaction when the system acts over one fixed particle through the em- pirical measure of the system.
    [Show full text]
  • Perturbed Bessel Processes Séminaire De Probabilités (Strasbourg), Tome 32 (1998), P
    SÉMINAIRE DE PROBABILITÉS (STRASBOURG) R.A. DONEY JONATHAN WARREN MARC YOR Perturbed Bessel processes Séminaire de probabilités (Strasbourg), tome 32 (1998), p. 237-249 <http://www.numdam.org/item?id=SPS_1998__32__237_0> © Springer-Verlag, Berlin Heidelberg New York, 1998, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Perturbed Bessel Processes R.A.DONEY, J.WARREN, and M.YOR. There has been some interest in the literature in Brownian Inotion perturbed at its maximum; that is a process (Xt ; t > 0) satisfying (0.1) , where Mf = XS and (Bt; t > 0) is Brownian motion issuing from zero. The parameter a must satisfy a 1. For example arc-sine laws and Ray-Knight theorems have been obtained for this process; see Carmona, Petit and Yor [3], Werner [16], and Doney [7]. Our initial aim was to identify a process which could be considered as the process X conditioned to stay positive. This new process behaves like the Bessel process of dimension three except when at its maximum and we call it a perturbed three-dimensional Bessel process. We establish Ray-Knight theorems for the local times of this process, up to a first passage time and up to infinity (see Theorem 2.3), and observe that these descriptions coincide with those of the local times of two processes that have been considered in Yor [18].
    [Show full text]
  • Deep Neural Networks As Gaussian Processes
    Published as a conference paper at ICLR 2018 DEEP NEURAL NETWORKS AS GAUSSIAN PROCESSES Jaehoon Lee∗y, Yasaman Bahri∗y, Roman Novak , Samuel S. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein Google Brain fjaehlee, yasamanb, romann, schsam, jpennin, [email protected] ABSTRACT It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as co- variance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep net- works and GPs. We further develop a computationally efficient pipeline to com- pute the covariance function for these GPs. We then use the resulting GPs to per- form Bayesian inference for wide deep neural networks on MNIST and CIFAR- 10. We observe that trained neural network accuracy approaches that of the corre- sponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test perfor- mance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks.
    [Show full text]
  • Arxiv:2105.15178V3 [Math-Ph] 17 Jun 2021
    Steady state of the KPZ equation on an interval and Liouville quantum mechanics Guillaume Barraquand1 and Pierre Le Doussal1 1 Laboratoire de Physique de l’Ecole´ Normale Sup´erieure, ENS, CNRS, Universit´ePSL, Sorbonne Universit´e, Uni- versit´ede Paris, 24 rue Lhomond, 75231 Paris, France. Abstract –We obtain a simple formula for the stationary measure of the height field evolving according to the Kardar-Parisi-Zhang equation on the interval [0, L] with general Neumann type boundary conditions and any interval size. This is achieved using the recent results of Corwin and Knizel (arXiv:2103.12253) together with Liouville quantum mechanics. Our formula allows to easily determine the stationary measure in various limits: KPZ fixed point on an interval, half-line KPZ equation, KPZ fixed point on a half-line, as well as the Edwards-Wilkinson equation on an interval. Introduction. – The Kardar-Parisi-Zhang (KPZ) can be described in terms of textbook stochastic processes equation [1] describes the stochastic growth of a contin- such as Brownian motions, excursions and meanders, and uum interface driven by white noise. In one dimension it they should correspond to stationary measures of the KPZ is at the center of the so-called KPZ class which contains a fixed point on an interval. number of well-studied models sharing the same universal For the KPZ equation, while the stationary measures behavior at large scale. For all these models one can define are simply Brownian in the full-line and circle case, the a height field. For example, in particle transport models situation is more complicated (not translation invariant, such as the asymmetric simple exclusion process (ASEP) not Gaussian) in the cases of the half-line and the interval.
    [Show full text]
  • A Stochastic Processes and Martingales
    A Stochastic Processes and Martingales A.1 Stochastic Processes Let I be either IINorIR+.Astochastic process on I with state space E is a family of E-valued random variables X = {Xt : t ∈ I}. We only consider examples where E is a Polish space. Suppose for the moment that I =IR+. A stochastic process is called cadlag if its paths t → Xt are right-continuous (a.s.) and its left limits exist at all points. In this book we assume that every stochastic process is cadlag. We say a process is continuous if its paths are continuous. The above conditions are meant to hold with probability 1 and not to hold pathwise. A.2 Filtration and Stopping Times The information available at time t is expressed by a σ-subalgebra Ft ⊂F.An {F ∈ } increasing family of σ-algebras t : t I is called a filtration.IfI =IR+, F F F we call a filtration right-continuous if t+ := s>t s = t. If not stated otherwise, we assume that all filtrations in this book are right-continuous. In many books it is also assumed that the filtration is complete, i.e., F0 contains all IIP-null sets. We do not assume this here because we want to be able to change the measure in Chapter 4. Because the changed measure and IIP will be singular, it would not be possible to extend the new measure to the whole σ-algebra F. A stochastic process X is called Ft-adapted if Xt is Ft-measurable for all t. If it is clear which filtration is used, we just call the process adapted.The {F X } natural filtration t is the smallest right-continuous filtration such that X is adapted.
    [Show full text]
  • Patterns in Random Walks and Brownian Motion
    Patterns in Random Walks and Brownian Motion Jim Pitman and Wenpin Tang Abstract We ask if it is possible to find some particular continuous paths of unit length in linear Brownian motion. Beginning with a discrete version of the problem, we derive the asymptotics of the expected waiting time for several interesting patterns. These suggest corresponding results on the existence/non-existence of continuous paths embedded in Brownian motion. With further effort we are able to prove some of these existence and non-existence results by various stochastic analysis arguments. A list of open problems is presented. AMS 2010 Mathematics Subject Classification: 60C05, 60G17, 60J65. 1 Introduction and Main Results We are interested in the question of embedding some continuous-time stochastic processes .Zu;0Ä u Ä 1/ into a Brownian path .BtI t 0/, without time-change or scaling, just by a random translation of origin in spacetime. More precisely, we ask the following: Question 1 Given some distribution of a process Z with continuous paths, does there exist a random time T such that .BTCu BT I 0 Ä u Ä 1/ has the same distribution as .Zu;0Ä u Ä 1/? The question of whether external randomization is allowed to construct such a random time T, is of no importance here. In fact, we can simply ignore Brownian J. Pitman ()•W.Tang Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720-3860, USA e-mail: [email protected]; [email protected] © Springer International Publishing Switzerland 2015 49 C. Donati-Martin et al.
    [Show full text]
  • Constructing a Sequence of Random Walks Strongly Converging to Brownian Motion Philippe Marchal
    Constructing a sequence of random walks strongly converging to Brownian motion Philippe Marchal To cite this version: Philippe Marchal. Constructing a sequence of random walks strongly converging to Brownian motion. Discrete Random Walks, DRW’03, 2003, Paris, France. pp.181-190. hal-01183930 HAL Id: hal-01183930 https://hal.inria.fr/hal-01183930 Submitted on 12 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science AC, 2003, 181–190 Constructing a sequence of random walks strongly converging to Brownian motion Philippe Marchal CNRS and Ecole´ normale superieur´ e, 45 rue d’Ulm, 75005 Paris, France [email protected] We give an algorithm which constructs recursively a sequence of simple random walks on converging almost surely to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging to the excursion, the bridge, the meander or the normalized pseudobridge. Keywords: strong convergence, simple random walk, Brownian motion 1 Introduction It is one of the most basic facts in probability theory that random walks, after proper rescaling, converge to Brownian motion. However, Donsker’s classical theorem [Don51] only states a convergence in law.
    [Show full text]