Double Factorial Binomial Coefficients Mitsuki Hanada Submitted in Partial Fulfillment of the Prerequisite for Honors in The

Total Page:16

File Type:pdf, Size:1020Kb

Double Factorial Binomial Coefficients Mitsuki Hanada Submitted in Partial Fulfillment of the Prerequisite for Honors in The Double Factorial Binomial Coefficients Mitsuki Hanada Submitted in Partial Fulfillment of the Prerequisite for Honors in the Wellesley College Department of Mathematics under the advisement of Alexander Diesl May 2021 c 2021 Mitsuki Hanada ii Double Factorial Binomial Coefficients Abstract Binomial coefficients are a concept familiar to most mathematics students. In particular, n the binomial coefficient k is most often used when counting the number of ways of choosing k out of n distinct objects. These binomial coefficients are well studied in mathematics due to the many interesting properties they have. For example, they make up the entries of Pascal's Triangle, which has many recursive and combinatorial properties regarding different columns of the triangle. Binomial coefficients are defined using factorials, where n! for n 2 Z>0 is defined to be the product of all the positive integers up to n. One interesting variation of the factorial is the double factorial (n!!), which is defined to be the product of every other positive integer up to n. We can use double factorials in the place of factorials to define double factorial binomial coefficients (DFBCs). Though factorials and double factorials look very similar, when we use double factorials to define binomial coefficients, we lose many important properties that traditional binomial coefficients have. For example, though binomial coefficients are always defined to be integers, we can easily determine that this is not the case for DFBCs. In this thesis, we will discuss the different forms that these coefficients can take. We will also focus on different properties that binomial coefficients have, such as the Chu-Vandermonde Identity and the recursive relation illustrated by Pascal's Triangle, and determine whether there exists analogous results for DFBCs. Finally, we will generalize some of our results regarding the form of DFBCs to m-factorial binomial coefficients for arbitrary m 2 Z>0. Mitsuki Hanada iii Acknowledgements I would like to thank my advisor, Professor Diesl, for guiding me through this journey of a thesis, as well as all the wonderful professors I have had at Wellesley who have shaped me into the mathematician I am today. In particular, I thank Professor Hirschhorn, who has supported me from Math 120 in my first semester to my first graduate level course, Professor Lange and her Math 309 class which helped me discover new mathematical interests, and Professor McAskill of the Physics Department for helping me explore mathematics through the lense of physics. I would also like to thank Professor Chan, Professor Voli´c,and Professor Battat for being a part of my thesis committee and reading through this thesis. I thank my parents who have always let me pursue my intellectual interests and my sisters who let me ramble about math and pretend to understand. I am so lucky to have such a supportive and loving family. I also thank my quarantine roommate Woo Young, for helping me work through many of the proofs and mathematical arguments in this thesis, as well as dealing with my general thesis/grad school application stress. Finally, I would like to thank all of the friends I have made throughout my years at Wellesley. I will always cherish our late night problem set sessions in Clapp and Freeman 4th floor kitchen. iv Double Factorial Binomial Coefficients Contents Abstract ii Acknowledgements iii 1. Background1 1.1. Binomial Coefficients1 1.2. Double Factorials and Double Factorial Binomial Coefficients (DFBCs)2 2. Different forms of DFBCs3 2.1. n even, k odd6 2.2. n odd7 3. Combinatorial Interpretation of DFBCs (Chu-Vandermonde identity)9 4. Pascal's Triangle 13 4.1. Introducing Pascal's Triangle and its properties 13 4.2. Finding similar triangles for certain DFBCs 15 5. Generalization to m-Factorial Binomial Coefficients 19 References 26 Mitsuki Hanada 1 1. Background We will start this thesis by introducing our topic of interest: double factorial binomial coefficients. However, before we do this we must define some basic concepts that help us build the definition of double factorial binomial coefficients. 1.1. Binomial Coefficients. We will first define binomial coefficients and some of their interesting properties. The factorial is a well-known concept in mathematics, where the factorial of a positive integer n denoted (n!) is defined: n! := n(n − 1)(n − 2) ··· (2)(1) and 0! := 1 for n = 0. Recall that these factorials carry some combinatorial meaning: for a nonnegative integer n, it follows that n! denotes the number of permutations of n distinct objects. Though there are many different ways of defining binomial coefficients, the definition we give below involves factorials. n Definition 1.1. For n; k 2 Z≥0 such that 0 ≤ k ≤ n, the binomial coefficient (denoted k ) is defined n n! := : k k!(n − k)! Most people who have taken an introductory combinatorics course will be familiar with binomial coefficients. The binomial coefficient has many inherent combinatorial properties, some that are apparent through alternative definitions. We will give one alternative definition that highlights some of these properties. Definition 1.2. For n; k 2 Z≥0 such that 0 ≤ k ≤ n, the binomial coefficient is defined to be the coefficient of the term xkyn−k in the polynomial expansion n X n (x + y)n = xkyn−k: k k=0 When we choose k many of the (x + y) terms on the left hand side to take the x value from and take the y value from the remaining n − k terms, the resulting product is xkyn−k. n k n−k Therefore the coefficient k of x y must denote the number of ways we can choose k many of the n total (x + y) terms. This is one of the most well known combinatorial properties of the binomial coefficients: n Lemma 1.3. The binomial coefficient k denotes the number of ways to choose k many of the n total distinct objects. n Since we have that k counts the number of cases, this implies that these binomial coef- ficients will always be integer values. This is in fact true and another well known property of binomial coefficients. n Lemma 1.4. For any n; k 2 Z≥0 such that 0 ≤ k ≤ n, it follows that k 2 Z>0: 2 Double Factorial Binomial Coefficients There are many different ways of proving this statement using combinatorial, algebraic, or number theory properties. (Many of them are mentioned in [2].) We will mention one method of proving this in Section2. We can see another well known property of binomial coefficients from both of these defi- nitions. Lemma 1.5. Binomial coefficients are symmetric: for n; k such that 0 ≤ k ≤ n, the equation n n k = n−k always holds. Proof. This follows from the fact that both definitions we have given depend symmetrically on both k and n − k. Using Definition 1.1, we can observe the following: n n! n! n = = = : k k!(n − k)! (n − (n − k))!(n − k)! n − k 1.2. Double Factorials and Double Factorial Binomial Coefficients (DFBCs). Now that we have discussed different properties of binomial coefficients, we will define our topic of interest: double factorial binomial coefficients. The definition of double factorial binomial coefficients utilizes double factorials instead of the standard factorial. Definition 1.6. The double factorial of a non-negative integer n (denoted n!!) is defined 8 n(n − 2)(n − 4) ··· (4)(2) for n even, n > 0 <> n!! := n(n − 2)(n − 4) ··· (3)(1) for n odd :>1 for n = 0: These double factorials have many interesting properties. In [3], the authors discuss how certain double factorials have an enumerative combinatorial meaning. For example, the two colored permutation of the set [n] = f1; 2; : : : ; ng for positive integer n is defined to be a permutation of [n] where each of the entries are colored by one of two colors. The even double factorial (2n)!! = 2n(n)! denotes the number of possible two colored permutations of [n]. Another example mentioned is for the odd double factorials (2n − 1)!!, which represents the number of matchings in the set [2n] = f1; 2;:::; 2ng, where a matching of [2n] is defined to be a partition of [2n] into n unordered pairs. There are also other combinatorial interpretations of double factorials, like those mentioned in [1]. We can also simplify the double factorial n!! using a \standard" factorial for certain choices of n: Lemma 1.7. For an even positive integer 2m, we have (2m)!! = 2m(m)!. Proof. This comes from simple manipulation of the the terms. Note that we can write (2m)!! = (2m)(2m − 2)(2m − 4) ··· (2): Mitsuki Hanada 3 Note that there are m many terms on the right hand side. If we factor out a factor of 2 from each of them, we get (2m)!! = (2m)(2(m − 1))(2(m − 2)) ··· (2) = 2m(m)(m − 1)(m − 2) ··· 1 = 2m(m!): Lemma 1.7 will be useful to us later when we are trying to prove results about prime factors of certain double factorials. Now using these double factorials and the definition of the binomial coefficients, we can finally define double factorial binomial coefficients. Definition 1.8. For n; k 2 Z≥0 such that 0 ≤ k ≤ n, the double factorial binomial coefficient n (DFBC) (denoted k ) is defined n n!! := : k k!!(n − k)!! n n Recall from Lemma 1.5 that binomial coefficients are symmetric: that is, k = n−k . By definition it is evident that this property also holds for DFBCs. Lemma 1.9. Double factorial binomial coefficients are symmetric: for any n; k such that n n 0 ≤ k ≤ n, the equation k = n−k always holds.
Recommended publications
  • Finding Pi Project
    Name: ________________________ Finding Pi - Activity Objective: You may already know that pi (π) is a number that is approximately equal to 3.14. But do you know where the number comes from? Let's measure some round objects and find out. Materials: • 6 circular objects Some examples include a bicycle wheel, kiddie pool, trash can lid, DVD, steering wheel, or clock face. Be sure each object you choose is shaped like a perfect circle. • metric tape measure Be sure your tape measure has centimeters on it. • calculator It will save you some time because dividing with decimals can be tricky. • “Finding Pi - Table” worksheet It may be attached to this page, or on the back. What to do: Step 1: Choose one of your circular objects. Write the name of the object on the “Finding Pi” table. Step 2: With the centimeter side of your tape measure, accurately measure the distance around the outside of the circle (the circumference). Record your measurement on the table. Step 3: Next, measure the distance across the middle of the object (the diameter). Record your measurement on the table. Step 4: Use your calculator to divide the circumference by the diameter. Write the answer on the table. If you measured carefully, the answer should be about 3.14, or π. Repeat steps 1 through 4 for each object. Super Teacher Worksheets - www.superteacherworksheets.com Name: ________________________ “Finding Pi” Table Measure circular objects and complete the table below. If your measurements are accurate, you should be able to calculate the number pi (3.14). Is your answer name of circumference diameter circumference ÷ approximately circular object measurement (cm) measurement (cm) diameter equal to π? 1.
    [Show full text]
  • Square Series Generating Function Transformations 127
    Journal of Inequalities and Special Functions ISSN: 2217-4303, URL: www.ilirias.com/jiasf Volume 8 Issue 2(2017), Pages 125-156. SQUARE SERIES GENERATING FUNCTION TRANSFORMATIONS MAXIE D. SCHMIDT Abstract. We construct new integral representations for transformations of the ordinary generating function for a sequence, hfni, into the form of a gen- erating function that enumerates the corresponding \square series" generating n2 function for the sequence, hq fni, at an initially fixed non-zero q 2 C. The new results proved in the article are given by integral{based transformations of ordinary generating function series expanded in terms of the Stirling num- bers of the second kind. We then employ known integral representations for the gamma and double factorial functions in the construction of these square series transformation integrals. The results proved in the article lead to new applications and integral representations for special function series, sequence generating functions, and other related applications. A summary Mathemat- ica notebook providing derivations of key results and applications to specific series is provided online as a supplemental reference to readers. 1. Notation and conventions Most of the notational conventions within the article are consistent with those employed in the references [11, 15]. Additional notation for special parameterized classes of the square series expansions studied in the article is defined in Table 1 on page 129. We utilize this notation for these generalized classes of square series functions throughout the article. The following list provides a description of the other primary notations and related conventions employed throughout the article specific to the handling of sequences and the coefficients of formal power series: I Sequences and Generating Functions: The notation hfni ≡ ff0; f1; f2;:::g is used to specify an infinite sequence over the natural numbers, n 2 N, where we define N = f0; 1; 2;:::g and Z+ = f1; 2; 3;:::g.
    [Show full text]
  • Convolution on the N-Sphere with Application to PDF Modeling Ivan Dokmanic´, Student Member, IEEE, and Davor Petrinovic´, Member, IEEE
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1157 Convolution on the n-Sphere With Application to PDF Modeling Ivan Dokmanic´, Student Member, IEEE, and Davor Petrinovic´, Member, IEEE Abstract—In this paper, we derive an explicit form of the convo- emphasis on wavelet transform in [8]–[12]. Computation of the lution theorem for functions on an -sphere. Our motivation comes Fourier transform and convolution on groups is studied within from the design of a probability density estimator for -dimen- the theory of noncommutative harmonic analysis. Examples sional random vectors. We propose a probability density function (pdf) estimation method that uses the derived convolution result of applications of noncommutative harmonic analysis in engi- on . Random samples are mapped onto the -sphere and esti- neering are analysis of the motion of a rigid body, workspace mation is performed in the new domain by convolving the samples generation in robotics, template matching in image processing, with the smoothing kernel density. The convolution is carried out tomography, etc. A comprehensive list with accompanying in the spectral domain. Samples are mapped between the -sphere theory and explanations is given in [13]. and the -dimensional Euclidean space by the generalized stereo- graphic projection. We apply the proposed model to several syn- Statistics of random vectors whose realizations are observed thetic and real-world data sets and discuss the results. along manifolds embedded in Euclidean spaces are commonly termed directional statistics. An excellent review may be found Index Terms—Convolution, density estimation, hypersphere, hy- perspherical harmonics, -sphere, rotations, spherical harmonics. in [14]. It is of interest to develop tools for the directional sta- tistics in analogy with the ordinary Euclidean.
    [Show full text]
  • Evaluating Fourier Transforms with MATLAB
    ECE 460 – Introduction to Communication Systems MATLAB Tutorial #2 Evaluating Fourier Transforms with MATLAB In class we study the analytic approach for determining the Fourier transform of a continuous time signal. In this tutorial numerical methods are used for finding the Fourier transform of continuous time signals with MATLAB are presented. Using MATLAB to Plot the Fourier Transform of a Time Function The aperiodic pulse shown below: x(t) 1 t -2 2 has a Fourier transform: X ( jf ) = 4sinc(4π f ) This can be found using the Table of Fourier Transforms. We can use MATLAB to plot this transform. MATLAB has a built-in sinc function. However, the definition of the MATLAB sinc function is slightly different than the one used in class and on the Fourier transform table. In MATLAB: sin(π x) sinc(x) = π x Thus, in MATLAB we write the transform, X, using sinc(4f), since the π factor is built in to the function. The following MATLAB commands will plot this Fourier Transform: >> f=-5:.01:5; >> X=4*sinc(4*f); >> plot(f,X) In this case, the Fourier transform is a purely real function. Thus, we can plot it as shown above. In general, Fourier transforms are complex functions and we need to plot the amplitude and phase spectrum separately. This can be done using the following commands: >> plot(f,abs(X)) >> plot(f,angle(X)) Note that the angle is either zero or π. This reflects the positive and negative values of the transform function. Performing the Fourier Integral Numerically For the pulse presented above, the Fourier transform can be found easily using the table.
    [Show full text]
  • MATLAB Examples Mathematics
    MATLAB Examples Mathematics Hans-Petter Halvorsen, M.Sc. Mathematics with MATLAB • MATLAB is a powerful tool for mathematical calculations. • Type “help elfun” (elementary math functions) in the Command window for more information about basic mathematical functions. Mathematics Topics • Basic Math Functions and Expressions � = 3�% + ) �% + �% + �+,(.) • Statistics – mean, median, standard deviation, minimum, maximum and variance • Trigonometric Functions sin() , cos() , tan() • Complex Numbers � = � + �� • Polynomials = =>< � � = �<� + �%� + ⋯ + �=� + �=@< Basic Math Functions Create a function that calculates the following mathematical expression: � = 3�% + ) �% + �% + �+,(.) We will test with different values for � and � We create the function: function z=calcexpression(x,y) z=3*x^2 + sqrt(x^2+y^2)+exp(log(x)); Testing the function gives: >> x=2; >> y=2; >> calcexpression(x,y) ans = 16.8284 Statistics Functions • MATLAB has lots of built-in functions for Statistics • Create a vector with random numbers between 0 and 100. Find the following statistics: mean, median, standard deviation, minimum, maximum and the variance. >> x=rand(100,1)*100; >> mean(x) >> median(x) >> std(x) >> mean(x) >> min(x) >> max(x) >> var(x) Trigonometric functions sin(�) cos(�) tan(�) Trigonometric functions It is quite easy to convert from radians to degrees or from degrees to radians. We have that: 2� ������� = 360 ������� This gives: 180 � ������� = �[�������] M � � �[�������] = �[�������] M 180 → Create two functions that convert from radians to degrees (r2d(x)) and from degrees to radians (d2r(x)) respectively. Test the functions to make sure that they work as expected. The functions are as follows: function d = r2d(r) d=r*180/pi; function r = d2r(d) r=d*pi/180; Testing the functions: >> r2d(2*pi) ans = 360 >> d2r(180) ans = 3.1416 Trigonometric functions Given right triangle: • Create a function that finds the angle A (in degrees) based on input arguments (a,c), (b,c) and (a,b) respectively.
    [Show full text]
  • A5730107.Pdf
    International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Applications of Bipartite Graph in diverse fields including cloud computing 1Arunkumar B R, 2Komala R Prof. and Head, Dept. of MCA, BMSIT, Bengaluru-560064 and Ph.D. Research supervisor, VTU RRC, Belagavi Asst. Professor, Dept. of MCA, Sir MVIT, Bengaluru and Ph.D. Research Scholar,VTU RRC, Belagavi ABSTRACT: Graph theory finds its enormous applications in various diverse fields. Its applications are evolving as it is perfect natural model and able to solve the problems in a unique way.Several disciplines even though speak about graph theory that is only in wider context. This paper pinpoints the applications of Bipartite graph in diverse field with a more points stressed on cloud computing. KEY WORDS: Graph theory, Bipartite graph cloud computing, perfect matching applications I. INTRODUCTION Graph theory has emerged as most approachable for all most problems in any field. In recent years, graph theory has emerged as one of the most sociable and fruitful methods for analyzing chemical reaction networks (CRNs). Graph theory can deal with models for which other techniques fail, for example, models where there is incomplete information about the parameters or that are of high dimension. Models with such issues are common in CRN theory [16]. Graph theory can find its applications in all most all disciplines of science, engineering, technology and including medical fields. Both in the view point of theory and practical bipartite graphs are perhaps the most basic of entities in graph theory. Until now, several graph theory structures including Bipartite graph have been considered only as a special class in some wider context in the discipline such as chemistry and computer science [1].
    [Show full text]
  • H:\My Documents\AAOF\Front and End Material\AAOF2-Preface
    The factorial function occurs widely in function theory; especially in the denominators of power series expansions of many transcendental functions. It also plays an important role in combinatorics [Section 2:14]. Because they too arise in the context of combinatorics, Stirling numbers of the second kind are discussed in Section 2:14 [those of the first kind find a home in Chapter 18]. Double and triple factorial functions are described in Section 2:14. 2:1 NOTATION The factorial function of n, also spoken of as “n factorial”, is generally given the symbol n!. It is represented byn in older literature. The symbol (n) is occasionally encountered. 2:2 BEHAVIOR The factorial function is defined only for nonnegative integer argument and is itself a positive integer. Because of its explosive increase, a plot of n!versusn is not very informative. Figure 2-1 is a graph of the logarithm (to base 10) of n!versusn. Note that 70! 10100. 2:3 DEFINITIONS The factorial function of the positive integer n equals the product of all positive integers up to and including n: n 2:3:1 nnnjn!123 u u uu ( 1) u 1,2,3, j 1 This definition is supplemented by the value 2:3:2 0! 1 conventionally accorded to zero factorial. K.B. Oldham et al., An Atlas of Functions, Second Edition, 21 DOI 10.1007/978-0-387-48807-3_3, © Springer Science+Business Media, LLC 2009 22 THE FACTORIAL FUNCTION n!2:4 The exponential function [Chapter 26] is a generating function [Section 0:3] for the reciprocal of the factorial function f 1 2:3:3 exp(tt ) ¦ n n 0 n! 2:4 SPECIAL CASES There are none.
    [Show full text]
  • 36 Surprising Facts About Pi
    36 Surprising Facts About Pi piday.org/pi-facts Pi is the most studied number in mathematics. And that is for a good reason. The number pi is an integral part of many incredible creations including the Pyramids of Giza. Yes, that’s right. Here are 36 facts you will love about pi. 1. The symbol for Pi has been in use for over 250 years. The symbol was introduced by William Jones, an Anglo-Welsh philologist in 1706 and made popular by the mathematician Leonhard Euler. 2. Since the exact value of pi can never be calculated, we can never find the accurate area or circumference of a circle. 3. March 14 or 3/14 is celebrated as pi day because of the first 3.14 are the first digits of pi. Many math nerds around the world love celebrating this infinitely long, never-ending number. 1/8 4. The record for reciting the most number of decimal places of Pi was achieved by Rajveer Meena at VIT University, Vellore, India on 21 March 2015. He was able to recite 70,000 decimal places. To maintain the sanctity of the record, Rajveer wore a blindfold throughout the duration of his recall, which took an astonishing 10 hours! Can’t believe it? Well, here is the evidence: https://twitter.com/GWR/status/973859428880535552 5. If you aren’t a math geek, you would be surprised to know that we can’t find the true value of pi. This is because it is an irrational number. But this makes it an interesting number as mathematicians can express π as sequences and algorithms.
    [Show full text]
  • Numerous Proofs of Ζ(2) = 6
    π2 Numerous Proofs of ζ(2) = 6 Brendan W. Sullivan April 15, 2013 Abstract In this talk, we will investigate how the late, great Leonhard Euler P1 2 2 originally proved the identity ζ(2) = n=1 1=n = π =6 way back in 1735. This will briefly lead us astray into the bewildering forest of com- plex analysis where we will point to some important theorems and lemmas whose proofs are, alas, too far off the beaten path. On our journey out of said forest, we will visit the temple of the Riemann zeta function and marvel at its significance in number theory and its relation to the prob- lem at hand, and we will bow to the uber-famously-unsolved Riemann hypothesis. From there, we will travel far and wide through the kingdom of analysis, whizzing through a number N of proofs of the same original fact in this talk's title, where N is not to exceed 5 but is no less than 3. Nothing beyond a familiarity with standard calculus and the notion of imaginary numbers will be presumed. Note: These were notes I typed up for myself to give this seminar talk. I only got through a portion of the material written down here in the actual presentation, so I figured I'd just share my notes and let you read through them. Many of these proofs were discovered in a survey article by Robin Chapman (linked below). I chose particular ones to work through based on the intended audience; I also added a section about justifying the sin(x) \factoring" as an infinite product (a fact upon which two of Euler's proofs depend) and one about the Riemann Zeta function and its use in number theory.
    [Show full text]
  • Pi, Fourier Transform and Ludolph Van Ceulen
    3rd TEMPUS-INTCOM Symposium, September 9-14, 2000, Veszprém, Hungary. 1 PI, FOURIER TRANSFORM AND LUDOLPH VAN CEULEN M.Vajta Department of Mathematical Sciences University of Twente P.O.Box 217, 7500 AE Enschede The Netherlands e-mail: [email protected] ABSTRACT The paper describes an interesting (and unexpected) application of the Fast Fourier transform in number theory. Calculating more and more decimals of p (first by hand and then from the mid-20th century, by digital computers) not only fascinated mathematicians from ancient times but kept them busy as well. They invented and applied hundreds of methods in the process but the known number of decimals remained only a couple of hundred as of the late 19th century. All that changed with the advent of the digital computers. And although digital computers made possible to calculate thousands of decimals, the underlying methods hardly changed and their convergence remained slow (linear). Until the 1970's. Then, in 1976, an innovative quadratic convergent formula (based on the method of algebraic-geometric mean) for the calculation of p was published independently by Brent [10] and Salamin [14]. After their breakthrough, the Borwein brothers soon developed cubically and quartically convergent algorithms [8,9]. In spite of the incredible fast convergence of these algorithms, it was the application of the Fast Fourier transform (for multiplication) which enhanced their efficiency and reduced computer time [2,12,15]. The author would like to dedicate this paper to the memory of Ludolph van Ceulen (1540-1610), who spent almost his whole life to calculate the first 35 decimals of p.
    [Show full text]
  • List of Mathematical Symbols by Subject from Wikipedia, the Free Encyclopedia
    List of mathematical symbols by subject From Wikipedia, the free encyclopedia This list of mathematical symbols by subject shows a selection of the most common symbols that are used in modern mathematical notation within formulas, grouped by mathematical topic. As it is virtually impossible to list all the symbols ever used in mathematics, only those symbols which occur often in mathematics or mathematics education are included. Many of the characters are standardized, for example in DIN 1302 General mathematical symbols or DIN EN ISO 80000-2 Quantities and units – Part 2: Mathematical signs for science and technology. The following list is largely limited to non-alphanumeric characters. It is divided by areas of mathematics and grouped within sub-regions. Some symbols have a different meaning depending on the context and appear accordingly several times in the list. Further information on the symbols and their meaning can be found in the respective linked articles. Contents 1 Guide 2 Set theory 2.1 Definition symbols 2.2 Set construction 2.3 Set operations 2.4 Set relations 2.5 Number sets 2.6 Cardinality 3 Arithmetic 3.1 Arithmetic operators 3.2 Equality signs 3.3 Comparison 3.4 Divisibility 3.5 Intervals 3.6 Elementary functions 3.7 Complex numbers 3.8 Mathematical constants 4 Calculus 4.1 Sequences and series 4.2 Functions 4.3 Limits 4.4 Asymptotic behaviour 4.5 Differential calculus 4.6 Integral calculus 4.7 Vector calculus 4.8 Topology 4.9 Functional analysis 5 Linear algebra and geometry 5.1 Elementary geometry 5.2 Vectors and matrices 5.3 Vector calculus 5.4 Matrix calculus 5.5 Vector spaces 6 Algebra 6.1 Relations 6.2 Group theory 6.3 Field theory 6.4 Ring theory 7 Combinatorics 8 Stochastics 8.1 Probability theory 8.2 Statistics 9 Logic 9.1 Operators 9.2 Quantifiers 9.3 Deduction symbols 10 See also 11 References 12 External links Guide The following information is provided for each mathematical symbol: Symbol: The symbol as it is represented by LaTeX.
    [Show full text]
  • Proportional Integral (PI) Control the PI Controller “Ideal” Form of the PI Controller Kc CO=CO + Kc E(T) + E(T)Dt Bias  I  Where: CO = Controller Output Signal
    Proportional Integral (PI) Control The PI Controller “Ideal” form of the PI Controller Kc CO=CO + Kc e(t) + e(t)dt bias I where: CO = controller output signal CObias = controller bias or null value PV = measured process variable SP = set point e(t) = controller error = SP – PV Kc = controller gain (a tuning parameter) = controller reset time (a tuning parameter) • is in denominator so smaller values provide a larger weighting to the integral term • has units of time, and therefore is always positive Function of the Proportional Term Proportional term acts on e(t) = SP – PV e(25) = 4 e(40) = – 2 PV SP Copyright © 2007 by Control Station, Inc. All Rights Reserved 25 40 Time (minutes) • The proportional term, Kce(t), immediately impacts CO based on the size of e(t) at a particular time t • The past history and current trajectory of the controller error have no influence on the proportional term computation Class Exercise – Calculate Error and Integral Control Calculation is Based on Error, e(t) Proportional term acts on Same data plotted as e(t) = SP – PV e(t) controller error, e(t) e(25) = 4 e(40) = –2 PV SP e(40) = –2 0 e(25) = 4 Copyright © 2007 by Control Station, Inc. All Rights Reserved Copyright © 2007 by Control Station, Inc. All Rights Reserved 25 40 25 40 Time (minutes) Time (minutes) • Here is identical data plotted two ways • To the right is a plot of error, where: e(t) = SP – PV • Error e(t) continually changes size and sign with time Function of the Integral Term • The integral term continually sums up error, e(t) • Through constant summing, integral action accumulates influence based on how long and how far the measured PV has been from SP over time.
    [Show full text]