36 Surprising Facts About Pi

Total Page:16

File Type:pdf, Size:1020Kb

36 Surprising Facts About Pi 36 Surprising Facts About Pi piday.org/pi-facts Pi is the most studied number in mathematics. And that is for a good reason. The number pi is an integral part of many incredible creations including the Pyramids of Giza. Yes, that’s right. Here are 36 facts you will love about pi. 1. The symbol for Pi has been in use for over 250 years. The symbol was introduced by William Jones, an Anglo-Welsh philologist in 1706 and made popular by the mathematician Leonhard Euler. 2. Since the exact value of pi can never be calculated, we can never find the accurate area or circumference of a circle. 3. March 14 or 3/14 is celebrated as pi day because of the first 3.14 are the first digits of pi. Many math nerds around the world love celebrating this infinitely long, never-ending number. 1/8 4. The record for reciting the most number of decimal places of Pi was achieved by Rajveer Meena at VIT University, Vellore, India on 21 March 2015. He was able to recite 70,000 decimal places. To maintain the sanctity of the record, Rajveer wore a blindfold throughout the duration of his recall, which took an astonishing 10 hours! Can’t believe it? Well, here is the evidence: https://twitter.com/GWR/status/973859428880535552 5. If you aren’t a math geek, you would be surprised to know that we can’t find the true value of pi. This is because it is an irrational number. But this makes it an interesting number as mathematicians can express π as sequences and algorithms. 6. Pi is just another weird or boring mathematical number. It is a part of Egyptian mythology. People in Egypt believed that the pyramids of Giza were built on the principles of pi. The vertical height of the pyramids have the same relationship with the perimeter of their base as is the relationship between a circle’s radius and its circumference. The pyramids are phenomenal structures in themselves being one of the seven wonders of the world and attract tourists. So having π as the core principle makes it really special for architects. 7. Although Pi day is celebrated on March 14 (3/14), the exact time for celebration is 1:59 pm so that the exact number 3.1459 can be reached. 2/8 8. Physicist Larry Shaw started 14 March as Pi day at San Francisco’s Exploratorium. There he is known as the Prince of Pi. 9. There is an entire language made on the number Pi. But how is that possible? Well, some people love pi enough to invent a dialect in which the number of letters in the successive words are the same as the digits of pi. But it is not just another nerd quirk that nobody knows about. Mike Keith wrote an entire book, called ‘Not a Wake’ in this language. 10. There are many records that show that pi was discovered a long time ago in the The Babylonians knew of pi approximately 4000 years ago. Evidence shows that Babylonians calculated pi as 3.125. King James Bible also gives an approx value of pi as the length of the forearm from the elbow to the middle finger tip. 11. There is an interesting reason why the name ‘pi’ was coined. Before the name pi came, mathematicians had to say a mouthful. The only descriptive phrase they could use was “the quantity which when the diameter is multiplied by it, yields the circumference”. Pi was named pi by William Jones, a not-so- popular mathematician. 3/8 12. The number of digits in the number pi is a phenomenon in itself. Humans can never find all the digits of number pi because of its very definition. Babylonian civilization used the fraction 3 ⅛, the Chinese used the integer 3. By 1665, Isaac Newton calculated pi to 16 decimal places. This was before the computers were invented, so determining 16 digits was a big deal. It was in the early 1700s that Thomas Lagney calculated 127 decimal places of pi reaching a new record. In the second half of the twentieth century, the number of digits of pi increased from about 2000 to 500,000 on the CDC 600. But this record was broken to a whole new level in 2017 when a Swiss scientist computed more than 22 trillion digits of pi which took more than a hundred days. 13. Pi is considered divine. No, not in the literal sense. The number is ‘transcendental’ in mathematical terms. A mathematician, Johann Lambert, gave proof that pi is irrational by giving the tangent of x using continued fraction. 14. Usefulness of pi has been a matter of debate although it is loved by a lot of math lovers. Some believe that tau (which amounts to 2π) is a better suited and intuitive irrational number. For instance, you can multiply tau with radius and calculate the circumference of a circle more intuitively. Tau/4 also represents the angle of a quarter of a circle. Hence its intuitiveness makes it more appealing to some math enthusiasts. 15. In the Exploratorium science museum, a circular parade happens every year on pi day. Each person participating holds one of the digits in the number pi. It wasn’t celebrated around the United States like it is done now until the Congress passed Resolution 224. The purpose of celebrating Pi day was to cultivate a higher level of enthusiasm for math and science. 16. In Carl Sagan’s novel Contact, scientists manage to dig deep into the mystery of the number pi to uncover the hidden messages from the creator of the human race. This new wisdom is capable of bringing depth to our consciousness. 17. The film Pi: Finding Faith in Chaos depicts the efforts of the protagonist in searching for answers about pi and, in turn, the universe. This search drives him nuts. But the good part is that this movie won the Director’s Award at the Sundance film festival. 18. A crop circle was found in 2008 that showed a coded image containing the first ten digits of pi. 4/8 19. The calculation of pi is a stress test for a computer. It works just like a digital cardiogram since it indicates the level of activity within the computer’s processor. 20. Givenchy sells a men’s cologne with the name ‘Pi’. The company markets this product as capable of enhancing sexual appeal of intelligent and visionary men. 21. The number Pi is not just an important part of conversations among mathematicians or students. In the famous O.J. Simpson trial, the defense attorney and FBI agent’s argument revolved around the value of pi. This argument over pi showed that the FBI agent’s findings in the case weren’t accurate because he used pi inaccurately. 22. The number pi was so mysterious that a Dutch-German mathematician, Ludolph van Ceulen, spent most of his life calculating the first 36 digits of pi. It is said that the first 36 numbers were engraved on his tombstone, which is now lost. 5/8 23. William Shanks, a British mathematician, worked manually to find the digits of pi. He spent many years trying to calculate the pi digits by hand and found the first 707 digits. Unfortunately, the 527th digit he found was wrong, which made his efforts of finding the remaining digits useless because they were all wrong by default. 24. Pi has a sacred bond with the circle. A circle’s angle spans 360 degrees around its centre and it is a coincidence that the number 360 is at the 359th digit position of pi. 25. In the year 1888, an Indiana country doctor claimed that he learnt the exact measure of a circle through supernatural means. He believed in his “supernatural” knowledge so much that he filed a proposal to pass a bill in the Indiana legislature so that he could copyright his genius findings. However, there was a math professor in the legislature who showed the fellow how his proposed bill will result in a wrong value of pi. 26. Even comedians use pi to make people crack at their jokes. John Evans, a comedian, once said in his performances, “What do you get if you divide the circumference of a jack-o’-lantern by its diameter? Pumpkin π.” 27. The number pi is literally infinitely long. But the number 123456 doesn’t appear anywhere in the first million digits of pi. It is a bit shocking because if a million digits of pi don’t have the sequence 12456, it definitely is the most unique number. 6/8 28. Why are we so obsessed about pi? Because we are looking for a pattern. Human beings love to find analogies and patterns in everything. And the number pi is so long and mysterious that mathematicians love to find patterns in this number. 29. Chinese people were far ahead of the West in finding the digits of pi. Why? As many mathematicians believe, the Chinese language is more conducive to mathematical computations. Chinese mathematicians were ahead in the pi game because of two reasons: they had decimal notations and they had a symbol for the number zero. It wasn’t until the late middle ages that European mathematicians started using the number zero. At that time, European mathematicians partnered with Arab and Indian minds to bring the symbol of zero into their system. 30. In the ancient times, mathematicians used a unique method to calculate pi.
Recommended publications
  • Finding Pi Project
    Name: ________________________ Finding Pi - Activity Objective: You may already know that pi (π) is a number that is approximately equal to 3.14. But do you know where the number comes from? Let's measure some round objects and find out. Materials: • 6 circular objects Some examples include a bicycle wheel, kiddie pool, trash can lid, DVD, steering wheel, or clock face. Be sure each object you choose is shaped like a perfect circle. • metric tape measure Be sure your tape measure has centimeters on it. • calculator It will save you some time because dividing with decimals can be tricky. • “Finding Pi - Table” worksheet It may be attached to this page, or on the back. What to do: Step 1: Choose one of your circular objects. Write the name of the object on the “Finding Pi” table. Step 2: With the centimeter side of your tape measure, accurately measure the distance around the outside of the circle (the circumference). Record your measurement on the table. Step 3: Next, measure the distance across the middle of the object (the diameter). Record your measurement on the table. Step 4: Use your calculator to divide the circumference by the diameter. Write the answer on the table. If you measured carefully, the answer should be about 3.14, or π. Repeat steps 1 through 4 for each object. Super Teacher Worksheets - www.superteacherworksheets.com Name: ________________________ “Finding Pi” Table Measure circular objects and complete the table below. If your measurements are accurate, you should be able to calculate the number pi (3.14). Is your answer name of circumference diameter circumference ÷ approximately circular object measurement (cm) measurement (cm) diameter equal to π? 1.
    [Show full text]
  • Evaluating Fourier Transforms with MATLAB
    ECE 460 – Introduction to Communication Systems MATLAB Tutorial #2 Evaluating Fourier Transforms with MATLAB In class we study the analytic approach for determining the Fourier transform of a continuous time signal. In this tutorial numerical methods are used for finding the Fourier transform of continuous time signals with MATLAB are presented. Using MATLAB to Plot the Fourier Transform of a Time Function The aperiodic pulse shown below: x(t) 1 t -2 2 has a Fourier transform: X ( jf ) = 4sinc(4π f ) This can be found using the Table of Fourier Transforms. We can use MATLAB to plot this transform. MATLAB has a built-in sinc function. However, the definition of the MATLAB sinc function is slightly different than the one used in class and on the Fourier transform table. In MATLAB: sin(π x) sinc(x) = π x Thus, in MATLAB we write the transform, X, using sinc(4f), since the π factor is built in to the function. The following MATLAB commands will plot this Fourier Transform: >> f=-5:.01:5; >> X=4*sinc(4*f); >> plot(f,X) In this case, the Fourier transform is a purely real function. Thus, we can plot it as shown above. In general, Fourier transforms are complex functions and we need to plot the amplitude and phase spectrum separately. This can be done using the following commands: >> plot(f,abs(X)) >> plot(f,angle(X)) Note that the angle is either zero or π. This reflects the positive and negative values of the transform function. Performing the Fourier Integral Numerically For the pulse presented above, the Fourier transform can be found easily using the table.
    [Show full text]
  • MATLAB Examples Mathematics
    MATLAB Examples Mathematics Hans-Petter Halvorsen, M.Sc. Mathematics with MATLAB • MATLAB is a powerful tool for mathematical calculations. • Type “help elfun” (elementary math functions) in the Command window for more information about basic mathematical functions. Mathematics Topics • Basic Math Functions and Expressions � = 3�% + ) �% + �% + �+,(.) • Statistics – mean, median, standard deviation, minimum, maximum and variance • Trigonometric Functions sin() , cos() , tan() • Complex Numbers � = � + �� • Polynomials = =>< � � = �<� + �%� + ⋯ + �=� + �=@< Basic Math Functions Create a function that calculates the following mathematical expression: � = 3�% + ) �% + �% + �+,(.) We will test with different values for � and � We create the function: function z=calcexpression(x,y) z=3*x^2 + sqrt(x^2+y^2)+exp(log(x)); Testing the function gives: >> x=2; >> y=2; >> calcexpression(x,y) ans = 16.8284 Statistics Functions • MATLAB has lots of built-in functions for Statistics • Create a vector with random numbers between 0 and 100. Find the following statistics: mean, median, standard deviation, minimum, maximum and the variance. >> x=rand(100,1)*100; >> mean(x) >> median(x) >> std(x) >> mean(x) >> min(x) >> max(x) >> var(x) Trigonometric functions sin(�) cos(�) tan(�) Trigonometric functions It is quite easy to convert from radians to degrees or from degrees to radians. We have that: 2� ������� = 360 ������� This gives: 180 � ������� = �[�������] M � � �[�������] = �[�������] M 180 → Create two functions that convert from radians to degrees (r2d(x)) and from degrees to radians (d2r(x)) respectively. Test the functions to make sure that they work as expected. The functions are as follows: function d = r2d(r) d=r*180/pi; function r = d2r(d) r=d*pi/180; Testing the functions: >> r2d(2*pi) ans = 360 >> d2r(180) ans = 3.1416 Trigonometric functions Given right triangle: • Create a function that finds the angle A (in degrees) based on input arguments (a,c), (b,c) and (a,b) respectively.
    [Show full text]
  • Double Factorial Binomial Coefficients Mitsuki Hanada Submitted in Partial Fulfillment of the Prerequisite for Honors in The
    Double Factorial Binomial Coefficients Mitsuki Hanada Submitted in Partial Fulfillment of the Prerequisite for Honors in the Wellesley College Department of Mathematics under the advisement of Alexander Diesl May 2021 c 2021 Mitsuki Hanada ii Double Factorial Binomial Coefficients Abstract Binomial coefficients are a concept familiar to most mathematics students. In particular, n the binomial coefficient k is most often used when counting the number of ways of choosing k out of n distinct objects. These binomial coefficients are well studied in mathematics due to the many interesting properties they have. For example, they make up the entries of Pascal's Triangle, which has many recursive and combinatorial properties regarding different columns of the triangle. Binomial coefficients are defined using factorials, where n! for n 2 Z>0 is defined to be the product of all the positive integers up to n. One interesting variation of the factorial is the double factorial (n!!), which is defined to be the product of every other positive integer up to n. We can use double factorials in the place of factorials to define double factorial binomial coefficients (DFBCs). Though factorials and double factorials look very similar, when we use double factorials to define binomial coefficients, we lose many important properties that traditional binomial coefficients have. For example, though binomial coefficients are always defined to be integers, we can easily determine that this is not the case for DFBCs. In this thesis, we will discuss the different forms that these coefficients can take. We will also focus on different properties that binomial coefficients have, such as the Chu-Vandermonde Identity and the recursive relation illustrated by Pascal's Triangle, and determine whether there exists analogous results for DFBCs.
    [Show full text]
  • Numerous Proofs of Ζ(2) = 6
    π2 Numerous Proofs of ζ(2) = 6 Brendan W. Sullivan April 15, 2013 Abstract In this talk, we will investigate how the late, great Leonhard Euler P1 2 2 originally proved the identity ζ(2) = n=1 1=n = π =6 way back in 1735. This will briefly lead us astray into the bewildering forest of com- plex analysis where we will point to some important theorems and lemmas whose proofs are, alas, too far off the beaten path. On our journey out of said forest, we will visit the temple of the Riemann zeta function and marvel at its significance in number theory and its relation to the prob- lem at hand, and we will bow to the uber-famously-unsolved Riemann hypothesis. From there, we will travel far and wide through the kingdom of analysis, whizzing through a number N of proofs of the same original fact in this talk's title, where N is not to exceed 5 but is no less than 3. Nothing beyond a familiarity with standard calculus and the notion of imaginary numbers will be presumed. Note: These were notes I typed up for myself to give this seminar talk. I only got through a portion of the material written down here in the actual presentation, so I figured I'd just share my notes and let you read through them. Many of these proofs were discovered in a survey article by Robin Chapman (linked below). I chose particular ones to work through based on the intended audience; I also added a section about justifying the sin(x) \factoring" as an infinite product (a fact upon which two of Euler's proofs depend) and one about the Riemann Zeta function and its use in number theory.
    [Show full text]
  • Pi, Fourier Transform and Ludolph Van Ceulen
    3rd TEMPUS-INTCOM Symposium, September 9-14, 2000, Veszprém, Hungary. 1 PI, FOURIER TRANSFORM AND LUDOLPH VAN CEULEN M.Vajta Department of Mathematical Sciences University of Twente P.O.Box 217, 7500 AE Enschede The Netherlands e-mail: [email protected] ABSTRACT The paper describes an interesting (and unexpected) application of the Fast Fourier transform in number theory. Calculating more and more decimals of p (first by hand and then from the mid-20th century, by digital computers) not only fascinated mathematicians from ancient times but kept them busy as well. They invented and applied hundreds of methods in the process but the known number of decimals remained only a couple of hundred as of the late 19th century. All that changed with the advent of the digital computers. And although digital computers made possible to calculate thousands of decimals, the underlying methods hardly changed and their convergence remained slow (linear). Until the 1970's. Then, in 1976, an innovative quadratic convergent formula (based on the method of algebraic-geometric mean) for the calculation of p was published independently by Brent [10] and Salamin [14]. After their breakthrough, the Borwein brothers soon developed cubically and quartically convergent algorithms [8,9]. In spite of the incredible fast convergence of these algorithms, it was the application of the Fast Fourier transform (for multiplication) which enhanced their efficiency and reduced computer time [2,12,15]. The author would like to dedicate this paper to the memory of Ludolph van Ceulen (1540-1610), who spent almost his whole life to calculate the first 35 decimals of p.
    [Show full text]
  • Proportional Integral (PI) Control the PI Controller “Ideal” Form of the PI Controller Kc CO=CO + Kc E(T) + E(T)Dt Bias  I  Where: CO = Controller Output Signal
    Proportional Integral (PI) Control The PI Controller “Ideal” form of the PI Controller Kc CO=CO + Kc e(t) + e(t)dt bias I where: CO = controller output signal CObias = controller bias or null value PV = measured process variable SP = set point e(t) = controller error = SP – PV Kc = controller gain (a tuning parameter) = controller reset time (a tuning parameter) • is in denominator so smaller values provide a larger weighting to the integral term • has units of time, and therefore is always positive Function of the Proportional Term Proportional term acts on e(t) = SP – PV e(25) = 4 e(40) = – 2 PV SP Copyright © 2007 by Control Station, Inc. All Rights Reserved 25 40 Time (minutes) • The proportional term, Kce(t), immediately impacts CO based on the size of e(t) at a particular time t • The past history and current trajectory of the controller error have no influence on the proportional term computation Class Exercise – Calculate Error and Integral Control Calculation is Based on Error, e(t) Proportional term acts on Same data plotted as e(t) = SP – PV e(t) controller error, e(t) e(25) = 4 e(40) = –2 PV SP e(40) = –2 0 e(25) = 4 Copyright © 2007 by Control Station, Inc. All Rights Reserved Copyright © 2007 by Control Station, Inc. All Rights Reserved 25 40 25 40 Time (minutes) Time (minutes) • Here is identical data plotted two ways • To the right is a plot of error, where: e(t) = SP – PV • Error e(t) continually changes size and sign with time Function of the Integral Term • The integral term continually sums up error, e(t) • Through constant summing, integral action accumulates influence based on how long and how far the measured PV has been from SP over time.
    [Show full text]
  • A Brief Survey of the Theory of the Pi-Calculus. Daniel Hirschkoff
    A brief survey of the theory of the Pi-calculus. Daniel Hirschkoff To cite this version: Daniel Hirschkoff. A brief survey of the theory of the Pi-calculus.. [Research Report] LIP RR-2003-13, Laboratoire de l’informatique du parallélisme. 2003, 2+15p. hal-02101985 HAL Id: hal-02101985 https://hal-lara.archives-ouvertes.fr/hal-02101985 Submitted on 17 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laboratoire de l’Informatique du Parallelisme´ Ecole´ Normale Sup´erieure de Lyon Unit´e Mixte de Recherche CNRS-INRIA-ENS LYON no 5668 A brief survey of the theory of the π-calculus Daniel Hirschkoff February 2003 Research Report No 2003-13 Ecole´ Normale Superieure´ de Lyon 46 All´ee d’Italie, 69364 Lyon Cedex 07, France T´el´ephone : +33(0)4.72.72.80.37 T´el´ecopieur : +33(0)4.72.72.80.80 Adresseelectronique ´ : [email protected] A brief survey of the theory of the π-calculus Daniel Hirschkoff February 2003 Abstract This document collects some important results about the theory of Milner’s π-calculus and related formalisms. We present the syntax and semantics of a monadic calculus, and discuss type systems and the most commonly used notions of behavioural equivalences.
    [Show full text]
  • Appendix I: on the Early History of Pi
    Appendix I: On the Early History of Pi Our earliest source on 7r is a problem from the Rhind mathematical papyrus, one of the few major sources we have for the mathematics of ancient Egypt. Although the material on the papyrus in its present form comes from about 1550 B.C. during the Middle Kingdom, scholars believe that the mathematics of the document originated in the Old Kingdom, which would date it perhaps to 1900 B.C. The Egyptian source does not state an explicit value for 7r, but tells, instead, how to compute the area of a circle as the square of eight-ninths of the diameter. (One is reminded of the 'classical' problem of squaring the circle.) Quite different is the passage in I Kings 7, 23 (repeated in II Chronicles 4, 21), which clearly implies that one should multiply the diameter of a circle by 3 to find its circumference. It is worth noting, however, that the Egyptian and the Biblical texts talk about what are, a priori, different concepts: the diameter being regarded as known in both cases, the first text gives a factor used to produce the area of the circle and the other gives (by implication) a factor used to produce the circumference.1 Also from the early second millenium are Babylonian texts from Susa. In the mathematical cuneiform texts the standard factor for multiplying the diameter to produce the circumference is 3, but, according to some interpre­ tations, the Susa texts give a value of 31.2 Another source of ancient values of 7r is the class of Indian works known as the Sulba Sfitras, of which the four most important, and oldest are Baudhayana, .Apastamba, Katyayana and Manava (resp.
    [Show full text]
  • Applied Pi Calculus∗
    Applied pi calculus∗ Mark D. Ryan and Ben Smyth School of Computer Science, University of Birmingham, United Kingdom July 2010 Revised: November 2010, March 2011 Abstract The applied pi calculus is a language for modelling security protocols. It is an extension of the pi calculus, a language for studying concurrency and process interaction. This chapter presents the applied pi calculus in a tutorial style. It describes reachability, correspondence, and observational equivalence properties, with examples showing how to model secrecy, au- thentication, and privacy aspects of protocols. Keywords: Cryptographic protocols, protocol verification, formal methods, reachability, cor- respondence properties, observational equivalence, tutorial. 1 Introduction The applied pi calculus [AF01] is a language for describing and analysing security protocols. It provides an intuitive process syntax for detailing the actions of the participants in a protocol, em- phasising their communication. The syntax is coupled with a formal semantics to allow reasoning about protocols. The language is based on the pi calculus with the addition of a rich term algebra to enable modelling of the cryptographic operations used by security protocols. A wide variety of cryptographic primitives can be abstractly modelled by means of an equational theory. The calculus allows one to express several types of security goal, and to analyse whether the protocol meets its goal or not. This analysis can sometimes be performed automatically, using the ProVerif software tool [BAF08,
    [Show full text]
  • Mathematical Amazements and Surprises on Pi-Day [Mathematik - - -Mag Man Eben!] O
    Mathematical Amazements and Surprises on Pi-Day [Mathematik - - -mag man eben!] o. Univ. Prof. Dr. Alfred S. Posamentier Executive Director for Internationalization and Sponsored Programs Long Island University, New York Former Dean, School of Education Professor Emeritus of Mathematics Education The City College of The City University of New York This Is the ultimate special -Day 3.14-15 9:26:53 3.1415926535897932384626433832... George Washington was born on February 22, 1732. The string 02221732 occurs at position 9,039,149. This string occurs 3 times in the first 200M digits of , counting from the first digit after the decimal point. (The 3. is not counted. ) The string and surrounding digits: 3.14159265... 478149013493242974180222173249756451826 61284136 Where the symbol came from: • In 1706 William Jones (1675 – 1749) published his book, Synopsis Palmariorum Matheseos, where he used to represent the ratio of the circumference of a circle to its diameter. • In 1736, Leonhard Euler began using to represent the ratio of the circumference of a circle to its diameter. But not until he used the symbol in 1748 in his famous book Introductio in analysin infinitorum did the use of to represent the ratio of the circumference of a circle to its diameter become widespread. Diameter of circumcircle = 1 A A B C E B C B A D D C A F A B A B a L C 1/2 K x K D F C E B O J E E D I F 1 360 180 H G x D C 2 nn a The perimeter of the n-sided regular polygon sinxa 2 1 is then n times the side length, which makes 2 this perimeter 180 180 180 One
    [Show full text]
  • Edray H Goins: Indiana Pi Bill.Html 1/6/14, 4:33 PM
    Edray H Goins: Indiana Pi Bill.html 1/6/14, 4:33 PM Department of Mathematics search About Us Academic Programs Courses Resources Research Calendar and Events > Home Edray H Goins Home Dessins d'Enfants Indiana Pi Bill Notes and Publications Number Theory Seminar PRiME 2013 SUMSRI In Celebration of Pi Day: The History of the Indiana Pi Bill During the Spring of 2012, I taught an experimental course in the mathematics department at Purdue University called "Great Issues in Mathematics." Purdue established the Great Issues courses in the 1950's as "[having] the general purpose of serving as a 'bridge' between formal college courses and the continuing study and consideration of major issues by responsible college graduates." My class served nearly 100 students majoring in mathematics, physics, chemistry, and biology. In celebration of Pi Day, I'd like to present to you, as I did to my students a year ago, one of the Indiana legislature's most embarrassing moments: the year we nearly made the rationality of π a state law. What is π? The number π is defined as the ratio of the circumference of a circle to its diameter. The Old Testament of the Bible even discusses the number π. For example, I Kings 7:23 reads: "[King Solomon] made the Sea of cast metal, circular in shape, measuring ten cubits from rim to rim and five cubits high. It took a line of thirty cubits to measure around it." Solomon's Molten Sea Since a cubit is about 1.50 feet (about 0.46 meters), it's easy to see that π is approximately 3.
    [Show full text]