<<

Chromosome Numbers in Some Cacti of Western North America-V Author(s): Donald J. Pinkava, Marc A. Baker, Bruce D. Parfitt, Mark W. Mohlenbrock and Richard D. Worthington Source: Systematic Botany, Vol. 10, No. 4 (Oct. - Dec., 1985), pp. 471-483 Published by: American Society of Taxonomists Stable URL: http://www.jstor.org/stable/2419140 Accessed: 10-11-2015 17:03 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected].

American Society of Plant Taxonomists is collaborating with JSTOR to digitize, preserve and extend access to Systematic Botany. http://www.jstor.org

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions SystematicBotany (1985), 10(4): pp. 471-483 K Copyright1985 by the American Society of Plant Taxonomists

Chromosome Numbers in some Cacti of Western North America- V

DONALD J. PINKAVA, MARC A. BAKER, BRUCE D. PARFITT, and MARK W. MOHLENBROCK Department of Botany and Microbiology,Arizona State University, Tempe, Arizona 85287

RICHARD D. WORTHINGTON Department of Biological Sciences, Universityof Texas, El Paso, Texas 79968

ABSTRACT. Documentedmeiotic and mitoticchromosome numbers and behaviorare reported for62 taxarepresenting 11 generaof Cactaceae from the southwestern United States and northern Mexico.Chromosome numbers for 12 speciesand six naturalinterspecific hybrids are firstcounts. New numberswere determinedfor four additional . Chromosome counts of diploidand polyploidtaxa, including triploid and pentaploidhybrids, are all consistentwith the base number, x = 11. Translocationsare reportedfor the first time in theCactaceae.

The Cactaceae comprise a large and complex stainability was based on 500-grain samples assemblage of New World succulent perenni- stained in aniline blue in lactophenol (Mane- als. Much of the complexity,particularly in the val 1936). The mitoticcount (Pereskiopsisporteri) Opuntioideae, arises from hybridization and was obtained fromroot tips fixed,stained, and polyploidy. The base number of the Cactaceae mounted according to the method of Parfitt is x = 11 and probably paleotetraploid (Lewis (1979). Nomenclature follows that of Benson 1980). Lewis (1980) reports only 14% of the (1982), Britton and Rose (1919-1923), Bravo- known species of cacti are secondary poly- Hollis (1978), Gibson and Horak (1978), Hunt ploids. Sato (1958) noted in his list of chro- (1967), and Pilbeam (1981). mosome counts for214 species and six varieties of cacti that 17.7% of the taxa were polyploid. RESULTS In our five-partseries on chromosomenumbers Chromosome numbers were determined for and behavior in westernNorth American cacti, 183 individual cacti representing62 taxa in 11 we have determinedthat polyploidy occurs in genera (table 1). First counts are reported for 37 of 68 taxa of Opuntioideae (52.4%) and in 14 12 species and six natural,interspecific hybrids; of 72 taxa of (19.4%), including hy- new counts are determinedfor fouradditional brids and taxa representedby both diploid and species. polyploid individuals. No polyploidy is known Not previously reported in our five-partse- for the most primitive subfamily, Peres- ries are counts for 33 taxa (figs. 1-36). At vari- kioideae. This reporton chromosomenumbers, ance with these counts are a hexaploid count hybridization,and polyploidy is an attemptto for Opuntiaschottii (Yuasa et al. 1973) and dip- clarify taxonomic and evolutionary relation- loid counts for 0. fulgidavar. fulgida(Pinkava ships among the Cactaceae. et al. 1973), 0. ramosissima(Pinkava et al. 1973), and 0. stanlyi(Yuasa et al. 1973). In this five- MATERIALSAND METHODS part series as a whole, chromosome numbers Flower buds were collected in develop- have been determined for 438 individuals of mental series from growing in native 149 taxa in 98 species in 21 genera (sensu Hunt habitatsor in cultivation.Buds were killed and 1967) of cacti. fixed for 24 hours in chloroform,95% ethanol, and glacial acetic acid (6:3:1), transferredto 70% DISCUSSION ethanol, and refrigerated. Anthers were One specimen (Ruffner27) of Opuntia lepto- squashed in acetocarmine and mounted in caulis was found to possess two translocations Hoyer's medium (Beeks 1955). Percent pollen (fig. 10) coupled with only 35.4% pollen stain-

471

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 472 SYSTEMATIC BOTANY [Volume 10 ability.This is the firstreport of translocations elongate lowermosttubercles (as in 0. acantho- in the Cactaceae. Opuntia leptocaulisis a wide- carpa), but are somewhat fleshy (as in 0. spi- spread and variable taxon, thus far appearing nosior). as a tetraploid in the Chihuahuan Desert Grant and Grant (1971b) described the hy- (Fischer 1962; Conde 1975; Pinkava et al. 1977; brid, 0. spinosiorx 0. versicolor,and found per- Weedin and Powell 1978) and as a diploid in centages of morphologically good pollen for the Sonoran Desert (Pinkava et al. 1977; table four individuals froma population at Hough- 1). It is believed to hybridizewith otherspecies, ton Road (east of Tucson) to be 42%, 57%, 91%, formingtriploid hybrids with 0. kleiniaevar. and 97%. We found percentagesof pollen stain- kleiniae(Fischer 1962; Pinkava and Parfitt1982) ability for seven hybrids from a population and formingdiploid hybrids with 0. acantho- about 30 km southeast of Florence (north- carpa (table 1, fig. 2), 0. spinosior(table 1, fig. northeastof Tucson) ranged from21.0 to 90.9% 11), and 0. whippleivar. whipplei(Trushell pers. (x = 50.7%). comm.). Opuntia bigeloviivar. bigelovii,which repro- The hybrid,Opuntia acanthocarpa x 0. lepto- duces primarily from vegetative propagules caulis, is intermediate between the putative (easily detached stem segments),appears to be parents in stem diameter and branching pat- mostlya triploid(table 1; Pinkava and McLeod tern, perianth segment length and color (in 1971; Pinkava and Parfitt1982). Percentages of ours, yellow vs. yellow-orange or yellow- pollen stainabilityare low, ranging from1.0 to green), fruitsize and color (green vs. tan or 17.2% (- = 9.1% based on seven triploid indi- red), and seed size. The hybrid resembles 0. viduals) and 0.9 to 46.1% (x = 14.0% on 11 pre- acanthocarpain having slightlytuberculate and sumed triploid individuals from Maricopa wedge-shaped fruitsoften bearing 1-3 persis- County,Arizona). Surprisingly,two diploid in- tent spines and resembles 0. leptocaulisin hav- dividuals morphologically indistinguishable ing only 1-4 spines per stem areole and some- fromtriploid individuals were found growing what fleshyfruits that occasionally proliferate. togetherin Pinal County (table 1, fig. 6), each Percentage of pollen stainabilityis low (table with higher seed set (germinabilityunknown) 1). than the nearly sterile triploids but with low The hybrid,Opuntia leptocaulis x 0. spinosior, percent pollen stainability (12.4% for Baker is intermediatebetween its putative parents in 4586A). Because these diploids may be second- overall size, stem diameter,number of spines arily derived, furtherinvestigation is planned. (3-4) per stem areole, perianth segment length Opuntiafulgida var. fulgidais now known in and color (in ours, faded purple vs. yellow- apparentlyindistinguishable diploid and trip- green or brightpurple), and fruitsize and color loid forms(table 1, fig.8). We hypothesize that (yellow with red blush at base vs. red or yel- these are autotriploidsthat arose via the union low). It resembles 0. spinosiorin having an ir- of reduced and unreduced gametes. This is fur- regularlywhorled branchingpattern and mod- ther supported by the role of 0. fulgidain the eratelytuberculate fruits. origin of 0. kelvinensis.The common mode of Opuntia spinosioris another cholla that hy- polyploidy is throughthe formationand sexual bridizes with other diploid taxa: 0. acanthocar- functioning of cytologically unreduced ga- pa var. major(table 1, fig.3; Benson 1969, 1982; metes (deWet 1980). Pinkava and Parfitt1982), 0. leptocaulis(table Opuntia kelvinensis,as it is now named, has 1, fig.11), and 0. versicolor(table 1, fig.17; Grant long been considered a hybridbetween 0. ful- and Grant 1971b). gida and 0. spinosior(Peebles 1936; Benson 1940, The hybrid, Opuntia acanthocarpavar. ma- 1950, 1969, 1982; Grant and Grant 1971a). The jor x 0. spinosior,is intermediatebetween its predominantform (which includes the type of putative parents in branching patterns,width 0. kelvinensis),as we interpretit, is a triploid and length of stem tubercles,amount of uni- (table 1, fig. 9). Opuntia spinosioris a sexual formityof spine lengths in an areole, and peri- species characterizedby normal Polygonum-type anth color (brickred vs. yellow-orangeor bright gametogenesis and embryogenesis (Baker and purple). The fruits often bear 1-3 persistent Pinkava 1983), high percentpollen stainability spines and are somewhat wedge-shaped with and seed set, non-proliferatingfruits, and rig-

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 1985] PINKAVA ET AL.: CACTACEAE 473 idly attached stem segmentsthat do not, or but irregularmeiosis and a low percentage of pol- rarely, serve as vegetative propagules. The len stainability(14.5%). The other two hybrids available evidence strongly suggests that 0. are diploid, probably involving diploid forms fulgidaprovided the unreduced gamete (as it of 0. chihuahuensisand 0. lindheimeri(see table apparently did in formingautotriploid 0. ful- 1 and figs.7, 12). gida) and 0. spinosiorthe reduced gamete in the In ,seven species and eight ad- formationof 0. kelvinensis.Hence the genomic ditional taxa (37.2% of reportedtaxa) are poly- formula becomes SFF for autoallotriploid 0. ploid, all tetraploid (table 2). Included herein kelvinensis,which is morphologically closer to by Hunt (1967) is monotypic, tetraploid 0. fulgida than to 0. spinosior(Pinkava and BergerocactusBritton & Rose. Our firstcount of McGill 1979). n = 22 for E. fasciculatusvar. boyce-thompsonii Also discovered were two interspecificpen- makes it the thirdof the three varieties of that taploid hybrids (table 1, fig. 4) putatively species to be recognized as tetraploid.Similar- formedbetween hexaploid Opuntiaarbuscula and ly, our firstcount of n = 22 forE. pectinatusvar. diploid 0. spinosior(or its triploidderivative 0. minormakes it the second of five reported va- kelvinensis),with the assumption that the for- rieties to be tetraploid. mer parent provided the 3x gamete (AAA) and Our tetraploid and hexaploid counts for the latterprovided the 2x gamete (unreduced Mammillariadioica confirm both the earlier tet- SS or partially reduced 2/3 SFF). The hybrids raploid reportsby Remski(1954), Lenz in Munz resemble 0. spinosior(or 0. kelvinensis)by the and Keck (1959), and Johnson (1980), and a tuberculatefruits but resemble 0. arbusculain hexaploid report by Johnson (1980). Diploid the 1-4 spines per stemareole, and in fruitsize, individuals are not known. shape, and color. Percentage of pollen stain- ability(58.4% forBaker 4325 and 65.3% forBaker CONCLUSIONS 4310) is higher than expected forthese hybrids. The significanceof polyploidy in the evolu- Three putative prickly-pear hybrids were tion of cacti is reflectedin its frequencywithin found (but not analyzed). One, a tetraploid taxa as summarized in table 2. In the Cactaceae, similar to 0. robusta(table 1, fig. 15), has very 154 of 551 reported taxa (27.9%) are recorded

FIGS. 1-20. Camera lucida drawings of meiotic and mitotic(fig. 18 only) chromosomes of cacti. Voucher specimens are cited in table 1. Spacing of chromosome groups per cell adjusted in figs. 4, 14, and 20. 1. Opuntiaacanthocarpa var. thornberi,anaphase I, n = 11. 2. 0. acanthocarpax 0. leptocaulis,metaphase I, n = 11. 3. 0. acanthocarpax 0. spinosior,metaphase I, n = 11. 4. 0. arbusculax 0. spinosioror 0. kelvinensis, metaphase II, 2n = 5x = 55. 5. 0. arenaria,prophase II, n = 11. 6. 0. bigeloviivar. bigelovii,anaphase I, n = 11. 7. 0. aff. chihuahuensis,diakinesis, n = 11. 8. 0. fulgidavar. fulgida,anaphase I, 2n = 3x = 33. 9. 0. kelvinensis,anaphase I, 3n = 33. 10. 0. leptocaulis(translocations, solid arrows),metaphase I, 2n = 3x = 33. 11. 0. leptocaulisx 0. spinosior,diakinesis, n = 11. 12. 0. aff. lindheimeri,prophase II, n = 11. 13. 0. littoralis var. littoralis,metaphase I, n = 33. 14. 0. ramossissima,anaphase I, n = 22. 15. 0. aff.robusta, telophase I, n = 22. 16. 0. schottiivar. schottii,metaphase I, n = 11. 17. 0. spinosiorx 0. versicolor,metaphase I, n = 11. 18. 0. stanlyivar. stanlyi,metaphase I, n = 22. 19. Pereskiopsisporteri, mitosis metaphase, 2n = 110. 20. Lophocereusschottii var. tenuis,diakinesis, n = 11.

FIGS. 21-35. Camera lucida drawings of meiotic chromosomes of cacti. Voucher specimens are cited in table 1. Spacing of chromosome groups adjusted in figs. 29 and 34. 21. Echinocereusfasciculatus var. boyce- thompsonii,telophase I, n = 22. 22. E. pectinatusvar. minor,anaphase I, n = 22. 23. E. triglochidiatusvar. gurneyi,metaphase I, n = 22. 24. Neolloydiaerectrocentra var. erectrocentra,diakinesis, n = 11. 25. N. intertexta var. dasyacantha,diakinesis, n = 11. 26. Coryphanthadurangensis var. nov., ined.,diakinesis, n = 11. 27. C. organensis,metaphase II, n = 11. 28. C. sneediivar. sneedii,metaphase I, n = 11. 29. C. strobiliformisvar. orcuttii,telophase I, n = 11. 30. Mammillariaarmillata, diakinesis, n = 11. 31. M. dioica,telophase I, n = 22. 32. M. dioica,metaphase I, n = 33. 33. M. phitauiana,metaphase I, n = 11. 34. M. thornberi,diakinesis, n = 11. 35. M. viridiflora,diakinesis, n = 11. 36. M. yaquensis,metaphase I, n = 11.

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 474 SYSTEMATIC BOTANY [Volume 10

t~~~ 3 *4 + J

0 X ~~6 7 8

- ?,t *to * t^; wS"~~~~~~~~~~~~~~~FIGS.7512,15 o _ ~~~~~~~~OTHERS: io.

_ a Z*tje / X , -S

17 =18 19 ' 20

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 1985] PINKAVA ET AL.: CACTACEAE 475

21 ^; 22 *23 -24

2 ,

25 26 o v 27 ^ 28

.~~~~~~~~~~~~~~~~FG , 26N

9 '- %\ t ~~~~~~OTHERS:l

33 34 3536

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 476 SYSTEMATIC BOTANY [Volume 10

TABLE 1. Chromosome numbers determined for TABLE 1. Continued. certain cacti of western North America. Voucher specimens are on deposit at ASU unless otherwise nosior:T7S R16E S4 SE1/4,Baker 4537 noted. * = firstchromosome count fortaxon; ** = (96.5), 4538 (96.4) & Trushell;1 km *** new number for taxon; = count from mitotic N of jct. Aravaipa Creek and San material. Numbers in parentheses after collector Pedro River, T7S R16E S4 SE1/4, numbers representpercent pollen stainability. Baker4647 (81.6). Opuntiaarbuscula Engelmann OPUNTIOIDEAE n = 33 Arizona, Maricopa Co., T5S R5W S31 Opuntiaacanthocarpa Engelmann & Bigelow var. co- NE1/4,Baker 4579; Pima Co., Sagua- loradensisBenson ro Nat'l. Mon. East, T14S R16E S20 n = 11 Arizona, Pima Co., Cabeza Prieta NW1/4,Jenkins 2690; Pinal Co., 38.1 Game Refuge, 12.3 km E of Papago km ESE of Florence, Pinkava et al. Well, Daniel 2647. 14011; 40 km SE of Florence, T6S Opuntiaacanthocarpa var. ganderi(C. B. Wolf) Benson R13E S19 NW1/4,Baker 4315, 4330. n = 11 Mexico, Baja CaliforniaNorte, 19 km Opuntiaarbuscula x 0. spinosior(Engelmann) Toumey SW of Hwy 3, road to Rancho or 0. kelvinensisV. & K. Grant Mike, San Pedro Martir,Baker et al. n= 5x Arizona, Pinal Co., SE of Florence, 3699. = 55 T6S R13E S19, Baker4310 (65.3) (fig. Opuntia acanthocarpavar. major (Engelmann & Big- 4), 4325 (58.4). elow) Benson Opuntiaarenaria Engelmann n= 11 Arizona, Maricopa Co., South Mtn. n = 11 Texas, El Paso Co., I-10, 4.4 km N of Park,ca. 13 km SW of Tempe, Ruff- jct. with N. Mesa Rd., dunes, Wor- ner 2 & Baker,Pinal Co., TlS R9E thington8060 (fig. 5) (UTEP). 511, 6 km N of US 60-89 on Peralta var. Rd., Baker4260, 4261; Pinal Park- Opuntiabigelovii Engelmann bigelovii **n= 11 Arizona, Pinal Co.: Peralta Canyon, way SE of Florence, T6S R10E S32 SuperstitionMtns., TlN R10E S29, SW1/4,Baker 4253, 4254, 30 km SE, Baker4586, 4586A (12.4) (fig. 6). Baker4227, 4229, 4241; ESE of Flor- ence, T5S Rl lE S16, Baker4213, S17, 2n = 3x Arizona, Maricopa Co., Red Mtn. Baker 4216, 4250, 4251, 4252, S22, = 33 Ranch, ca. 26 km NE of Tempe, Par- Baker 4211; T5S R12E S28 NE1/4, fitt3009 (2.0), 3016 (12.3); T6N R2E Baker4263, 4264, 4308; T6S R1OES32 S36 SE?/4,Baker et al. 4548 (5.0); T5N SW14Baker 4203, 4204; TS R12E 511 R4E S3 SW?/4,Baker 4525,4527,4531, C, Baker4267, 4268, S3 NW1/4,Baker 4533 (1.0), 4535, T6N R4N S13, But- 4265; 27.3 km SE, Pinkava et al. terwick8487; Pinal Co., TlN R8E S36 14001. SE1/4,Baker 4614 (17.2); TlN R9E S31 SE1/4,Baker 4615 (9.0); T1N R8E 511, Opuntiaacanthocarpa var. thornberi(Thornber & Bon- Baker4540 & Pinkava. ker) Benson *n = 11 Arizona, Pinal Co., Oak Flat, TlS Opuntiaaff. chihuahuensis Rose R13E S33 NE1/4,Baker 4679 (93.0) n = 11 Mexico, Chihuahua, Santa Cruz Mi- (fig. 1). croonadas Sta., Rte 45 S of Chihua- hua City, Pinkava et al. 13378 (fig. Opuntia acanthocarpavar. major x 0. leptocaulisDe- 7). Candolle *n = 11 Arizona, Pinal Co., 1 km SW of Da- Opuntiaechinocarpa Engelmann & Bigelow var. echino- cite Cliffs,TiN R1OE S31, Baker carpa 4584 (63.1): TiN R9E S31 SE1/4,Bak- n = 11 Nevada, Clark Co., 20 km W of Hwy er 4616 (43.3) (fig. 2). 95, 15 km E of Charleston Peak, T19S R58E S29 Baker4398 & Trush- Opuntiaacanthocarpa var. major x 0. spinosior(Engel- ell; 10 km SE of Blue Diamond Hill, mann) Toumey T19S R60E S21 NW1/4,Trushell 83- *n = 11 Arizona, Pinal Co., SE of Florence, 33 & Baker. T6S R12E Sll C, Baker4300 (79.3), 4301 (91.7), 511 E, Baker4269 (72.1); Opuntiaerinacea Engelmann & Bigelow var. erinacea 32.2 km ESE of Florence, Pinkava n = 22 Arizona, Navajo Co., ca. 16 km N of 13810 (fig.3), McGill & Pinkava;the Snowflake, T15N R22E S32 NW1/4, following intermediate to 0. spi- Parfitt3104, 3105 & Baker.

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 1985] PINKAVA ET AL.: CACTACEAE 477

TABLE 1. Continued. TABLE 1. Continued.

Opuntiafulgida Engelmann var. fugida Opuntialittoralis (Engelmann) Cockerell var. littoralis n = 11 Arizona, Gila Co., Hwy 77, 24.1 km n = 33 Mexico, Baja California Norte, 8 km S of Globe, T3S R15E, Baker 3810 N of Colonet, Hwy 1, Gallagher82- (78.2), 3811 (92.4), 3812, 3813; Pima 30 (fig. 13). Co., 7.1 km SE of Green Valley, Opuntiaphaeacantha Engelmann var. discata(Griffiths) T18S R14E, Baker 3819, 3820, 3821 Benson & Walkington (39.2); Pinal Co., S of Dacite Cliffs, n = 33 Arizona, Pinal Co., Peralta Canyon TiN R9E S12 NE?/4,Baker 4694; TlS Rd., SuperstitionMtns., Baker4228 R9E S15 NW1/4,Peralta Canyon Rd., & Pinkava; Yavapai Co.: road to Baker465 (67.7) & Parfitt. Bloody Basin, 2 km W of Bishop **2n = 3x Arizona,Pinal Co.,2 km ENE of Black Creek, Baker 4285, Trushell& Mc- = 33 Butte,T5S R7E S34 NW?/4,Baker 4654 Gill. (fig. 8); 12.9 km N of Oracle, T9S Opuntiaphaeacantha var. majorEngelmann R13E S21, Baker 3825 (both straw- n = 33 New Mexico, Dona Ana Co., Organ colored spine forms). Mtns., mouth of Soledad Canyon, Opuntiafulgida Engelmann var. mammillata(Schott) Worthington8096 (UTEP); Texas, Coulter Brewster Co., 1.6 km S of Terlin- n = 11 Arizona, Gila Co., Hwy 77, 16.1 km gua, limestone hills, Worthington N of Mammoth, T7S R16E, Baker 9694 (UTEP); El Paso Co., 0.5 air km 3815, 3818. fromtop of S. Franklin Mtn., Wor- Opuntiaimbricata (Haworth) DeCandolle var. imbricata thington10563 (UTEP). R17E S20 n = 11 Texas, Hudspeth Co., Hueco Mtns., NW1/4,Jenkins 1905; Pinal Co., Oak 2.3 km ESE of Hueco Inn, US 62- Flat,TlS R13E S28 SW?/4,Baker 4670 180, Worthington8185. (96.8), & Pinkava;T7S R16E S4 SE?/4, Baker4646 (97.7) & Pinkava; ca. 30 Opuntiakelvinensis V. & K. Grant (= 0. fulgidaEngel- km SE of Florence,Baker 4270 (94.1), mann x 0. spinosior(Engelmann) Toumey 4271 (90.3), 4272 (97.7), 4273 (91.8), *3n = 33 Arizona, Pinal Co., 2 km E of Gila 4274, 4275 (91.7), 4277 (92.8). River, S of Cane Springs Canyon, T4S R14E S8, Baker4641 (15.0), 4642 Opuntiaphaeacentha Engelmann var. phaeacantha (25.4), 4643 (38.7) (fig. 9) & Pinkava n = 33 Arizona, Coconino Co., Ranger Pass, (type locality). T37N RlW S30, Baker4371, 4379 & Trushell;New Mexico, Dona Ana Opuntiakleiniae DeCandolle var. tetracantha(Toumey) Co., 2.6 road km W of Rio Grande Marshall Bridge (Las Cruces), I-10, Worthing- n = 11 Arizona, Pima Co., Saguaro Nat'l. ton9993. Mon. East,Jenkins 1988 (ARIZ), 1989 (ARIZ), 2695. Opuntiaramosissima Engelmann = Opuntialeptocaulis DeCandolle n 11 Arizona, Maricopa Co., N of Agua n = 11 Arizona, Maricopa Co., Red Mtn. Caliente Mtns.,T4S R1OWS32 SE?/4, Ranch, ca. 26 km NE of Tempe, Baker4566. = Ruffner27 (36.4; with transloca- n 22 Arizona, Maricopa Co., 3.9 km NW tions) (fig. 10), 28; Pinal Co., SE of of I-8 on road to Sentinel, T6S R4W Florence,T6S R12E Sll, Baker4321, S30, Baker4557, 4559 (fig. 14). S19, Baker 4328 (95.7); T6S R13E Opuntiaaff. robusta (Wendlund) Pfeiffer S34, Baker4338 (94.2). n = 22 Mexico,Sonora, 11 km SW of La Mesa Opuntia leptocaulisx 0. spinosior(Engelmann) Tou- de Companiero,road to Yecora, Leh- mey to 18675 914.5) (fig. 15) & Reeves n= 11 Arizona, Pinal Co., SE of Florence, (meiosis irregular). T6S R13E S28 SE?/4,Baker 4311 (70.3) Opuntiaschottii Engelmann var. schottii (fig. 11). n = 11 Texas, Brewster Co., Lajitas, arroyo Opuntiaaff. lindheimeri Engelmann bottoms,Worthington 9714 (fig. 16). n = 11 Mexico, Chihuahua, Santa Cruz Mi- n = 22 Texas, El Paso Co., NW El Paso, an- croondas Sta., Rte 45 S of Chi- desite hills, Worthington6910.5 (cul- huahua City, Pinkava et al. (21.1) tivated; some intermediacyto var. (fig. 12). grahamii(Engelmann) L. Benson.

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 478 SYSTEMATIC BOTANY [Volume 10

TABLE 1. Continued. TABLE 1. Continued.

Opuntiaspinosior (Engelmann) Toumey joa and 12.9 km E on road to Ala- n= 11 Arizona, Maricopa Co., TlS R7E S5 mos, Mohlenbrocket al. 1990 (root NE1/4,Baker 4649 (some intermedi- tip cell) (fig. 19). acy to 0. fulgida),4648 (89.7) & Pin- CACTOIDEAE kava;Pima Co., Saguaro Nat'l. Mon. East, T14S R17E S20 NW1/4,Jenkins Lophocereusschottii (Engelmann) Britton& Rose var. 1905; Pinal Co., Oak Flat, TlS R13E tenuisLindsay S28 SW?/4,Baker 4670 (96.8), & Par- n = 11 Mexico, Sonora, 10.2 km W of Hwy fitt;T7S R16E S4 SE?/4,Baker 4646 15 toward San Carlos, 7.1 km N to- (97.7) & Pinkava; ca. 30 km SE of ward Nacoupuli Canyon, Parfitt Florence, Baker 4270 (94.1), 4271 3037 (fig. 20), Gallagher& Forbes. (90.3), 4272 (97.7), 4273 (91.8), 4274, Stenocereusalamosensis (Coulter) Gibson & Horak 4275 (91.7), 4277 (92.8). (=Rathbuniaalamosensis Coulter) Opuntia spinosiorintrogressed by 0. imbricata(Ha- n = 11 Arizona, Maricopa Co., cultivatedon worth) DeCandolle Arizona State Univ. campus, Baker n = 11 Arizona, Gila Co., Rte 77, 3 km S of 3691. jct. Rte 30, TlS R16E S17, Trushell Stenocereusthurberi (Engelmann) Buxbaum var. thur- 82-132 (79.7), 82-133 (94.7), 82-134 beri(Lemaireocereus thurberi Engelmann) (69.6) & Baker,7 km S, TlS R16E n = 11 Mexico, Sonora, 10.2 km W of Hwy S29, Trushell82-138 (77.2), 82-139 15 toward San Carlos, 7.1 km N to- (2.6), 82-140 (16.1) & Baker; Pinal ward Nacopuli Canyon,Parfitt 3035, Co., Oak Flat, TlS R13E S28 SW?/4, 3036 Gallagher& Forbes. Baker4686 (93.7) & Parfitt. Myrtillocactuscochal (Orcutt) Britton& Rose Opuntiaspinosior x 0. versicolorEngelmann n = 11 Mexico, Baja California Norte, 8 km *n = 11 Arizona, Pinal Co., ca. 30 km SE of E of Hwy 1, along road to San Tel- Florence, Baker 4221, 4255 (30.3), mo, Bakeret al. 4023. 4256, 4257 (57.7), 4258 (74.6), 4276 Echinocereusengelmannii (Parry) Lemaire var. acicularis (21.0) (fig. 17), 4278 (24.9), 4279 Benson (90.9), 4280 (55.7); (varyingdegrees n = 22 Arizona, Maricopa Co., South Mtn. of intermediacy). Park, ca. 13 km SW of Tempe, Ruff- Opuntiastanlyi Engelmann var. stanlyi ner 15. n = 22 Arizona,Pinal Co., Aravaipa Rd., T7S Echinocereusfasciculatus (Engelmann) Benson var. bon- R16E S2 NE1/4,Baker 4645 (fig. 18) kerae(Thornber & Bonker) Benson & Pinkava. n = 22 Arizona, Pima Co., 21.4 km S of Or- Opuntiaviolacea Engelmann var. macrocentra(Engel- acle, road to Mt. Lemmon, Pinkava mann) Benson 11040,Lehto & Hensel. n = 11 Texas, Presidio Co., 2.9 km NW of Echinocereusfasciculatus var. boyce-thompsonii(Orcutt) Lajitas, Hwy 170, Worthington8015 Benson (UTEP). n= 22 Arizona, Maricopa Co., Red Mtn. Opuntiaviolacea var. violacea Ranch, ca. 26 km NE of Tempe, Par- n = 22 New Mexico, Dona Ana Co., Organ fitt3013 (intermediate to E. engel- Mtns., mouth of Soledad Canyon, manniivar. acicularis),3010, 3011 (fig. Worthington8097 (UTEP); Hidalgo 21); Pinal Co., 30 km SE of Flor- Co., Pyramid Mtns., 4.8 km S of ence, Baker 4224 (intermediate to Lordsburg, Worthington 10201 var. fasciculatus),4222 & Pinkava; (UTEP); Luna Co., Florida Mtns., Yavapai Co., Bloody Basin Rd., 2 km T25S R8W S27 SE1/4,Worthington W of Bishop Creek, T1ON R3E S23, 19364 (atypical) (UTEP); Texas, El Baker4295, Trushell& McGill (inter- Paso Co.: Franklin Mtns., mediate to var. fasciculatus). 31052'04"N,106030'24"W, Worthing- Echinocereusfendleri (Engelmann) Engelmann ex ton8093 (UTEP). Ri.implervar. rectispinus(Peebles) L. Benson Pereskiopsisporteri (Brandegee) Britton& Rose n = 11 New Mexico, Hidalgo Co., Pyramid ***2n = 110 Mexico, Sonora, 66.6 km S of Nava- Mtns., Worthington9929 (UTEP).

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 1985] PINKAVA ET AL.: CACTACEAE 479

TABLE 1. Continued. TABLE 1. Continued.

Echinocereuspectinatus (Scheidweiler) Engelmann var. T26S R4E S36 C, Worthington8084 minor(Engelmann) Benson (=7011) (fig. 28) (UTEP); Texas, El *n = 22 Texas, El Paso Co., Franklin Mtns., Paso Co., Franklin Mtns. slopes at Worthington10290 (fig. 22) (UTEP). E end of Coronado Country Club, Echinocereustriglochidatus Engelmann var. gurneyiL. Worthington8164 (UTEP). Benson Coryphanthastrobiliformis (Poselger) Moran var. orcut- n = 22 Mexico, Chihuahua, Sierra San Ig- tii (B6deker) Benson nacio, 31?16'N, 106?00'W,Worthing- n = 11 New Mexico, Grant Co., Little ton 9741 & Corral(intermediate to Hatchet Mtns.,ca. 1.6 km SE of Old var. neomexicanus (Standley) Hachita, Worthington9963 (very ro- Standley ex Marshall) (fig. 23) bust specimen) (fig. 29) (UTEP); (UTEP). Hidalgo Co., Peloncillo Mtns.,Hwy Echinocereusviridiflorus Engelmann var. cylindricus 80 at GraniteGap, Worthington9781 (Engelmann) Engelmann ex Riumpler (UTEP); Luna Co., Florida Mtns., n = 11 Texas, El Paso Co., Franklin Mtns., Mahoney Park, Worthington8085, 31054'15"N,106023'30"W, Worthing- 8103 (UTEP). ton8001 (UTEP). Coryphanthavivipara (Nuttall) Britton& Rose var. ari- Ancistrocactusuncinatus (Galeotti) Benson var. wrightii zonica(Engelmann) Marshall (Englemann) Benson n = 11 Arizona, Pinal Co., 8 km N of Falcon n = 11 Mexico, Chihuahua, Sierra San Ig- Ranch,S of Florence,T9S R13E S27, nacio, 31016'N, 106000'W,Worthing- Baker4208; Yavapai Co., Bloody Ba- ton9761 & Corral(UTEP). sin Rd., 2 km W of Bishop Creek, T1ON R3E S23, Trushell82-104 & Ferocactusgracilis Gates var. gracilis Baker. n = 11 Mexico, Baja California Norte, Hwy 1, ca. 12.5 km N of Rosarito,Reeves Mammillariaarmillata K. Brandegee 443 & Pinkava (counted by Tim n = 11 Mexico, Baja California Sur, Hwy 1, Reeves). 11.3 km S of Los Barriles,then 3.2 km E on dirt road, Mohlenbrocket Neolloydiaerectrocentra (Coulter) Benson var. erectro- al. 1980 (fig. 30). centra n = 11 Arizona, Cochise Co., 9.7 km S of Mammillariadioica K. Brandegee I-10, on AZ 80, Clark1491 & Parfitt n = 22 Mexico, Baja California Sur, Rte 22, (fig. 24). 25.6 km W of Ciudad Constitucion, Mohlenbrocket al. 1962 (fig. 31). Neolloydiaintertexta (Engelmann) Benson var. dasy- acantha(Engelmann) Benson n = 33 Mexico, Baja California Norte, 53.4 n = 11 Texas, El Paso Co., Franklin Mtns., km S of El Rosario, Bakeret al. 4025 31054'15"N,106023'30"W, Worthing- (fig. 32); Baja California Sur, Hwy ton 7990, 7991 (fig. 25) (both flow- 1, 15.3 km S of Santa Rosalia, Moh- ering juvenile forms)(UTEP). lenbrocket al. 1953. California, San Diego Co., Hwy S-2, 54 km NW of Coryphanthadurangensis Runge var. nov. A. Zimmer- Ocotillo, Parfitt3006 & Jansen. man ined. n = 11 Mexico, Coahuila, 16.5 km S of Ran- Mammillariaheyderi Miihlenpfordt var. macdougalii cho Los Charcos and 12.6 km N of (Rose) Benson jct. Coah. 2, Keil 8169A (fig. 26) & n = 11 Arizona, Pima Co., E of Box Canyon, McGill. N end of Santa Rita Mtns., Parfitt 2977 & Knox. Coryphanthaorganensis D. Zimmerman *n = 11 New Mexico, Dona Ana Co., Organ Mammillariaheyderi var. meiacantha(Engelmann) Ben- Mtns., above Pine Tree Trail, T22S son R4E S32, Worthington8083 (fig. 27) n = 11 New Mexico, Dona Ana Co., Organ (UTEP). Mtns., T23S R3E S23 NE1/4,Wor- thington8056 (UTEP). Coryphanthasneedii (Britton & Rose) Bergervar. sneedii *n = 11 New Mexico, Dona Ana Co., Frank- Mammillariaphitauiana (Baxter) Werdermann lin Mtns., SE side of AnthonyGap, n= 11 Mexico, Baja California Sur, gravel

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 480 SYSTEMATIC BOTANY [Volume 10

TABLE 1. Continued. are polyploid: 75 of 125 taxa (60%) in North America and 32 of 44 taxa (72.7%) in South road to San BartoloMicroondas Sta., America. In its largest , Opuntia,the fre- W just of Hwy 1, Mohlenbrocket al. quency of polyploidy in morphological coun- 1981 (fig. 33). terpartsin the two hemispheres is higher in Mammillariathornberi Orcutt South America than in North America: chollas n = 11 Arizona, Pima Co., near Sells, Knox (87.5% in Austrocylindropuntiaversus 44.1% in 112 (fig. 34). Cylindropuntia);club chollas (64.3% in Tephro- Mammillariaviridiflora (Britton & Rose) B6deker cactusversus 42.9% in Corynopuntia);and prick- n = 11 Arizona, Gila Co., Hwy 60, 22.3 km ly-pears of subgenus Opuntia (73.7% versus E of jct. Hwy 177 (Superior), Parfitt 67.5%). Also, the highest levels of polyploidy 3106 & Baker; Maricopa Co., 0.8 km occur in South American taxa. SSW of Seven Springs Camp- In Cactoideae, the largestand most advanced ground, Mohlenbrock2015 (fig. 35) & Baker(robust specimen). subfamily,only 47 of 377 reportedtaxa (12.5%) are polyploid. Except forMammillaria and Echi- Mammillariayaquensis Craig nocereus,polyploids occur in one or two taxa *n = 11 Mexico, Sonora, Rte 15, 66.6 km S of per genus and mostlyat the tetraploidlevel. Navajoa, then 12.9 km E on road to Alamos, Mohlenbrocket al. 1989 (fig. The differencesin frequency of polyploidy 36). among the subfamiliesmay be partlyexplained by the theoryof Stebbins (1950) that polyploi- CORRECTIONS dy is more likely to be established in self-fertile Opuntiabigelovii Engelmann var. bigelovii or apomictictaxa than in self-sterileor panmic- 2n = 3x Arizona, Maricopa Co., 0.5 km N or tic taxa. Ross (1981) found polyploidy to be cor- = 33 Morning Star, Dodge s.n. (17.0). related with self-fertility,adventive embryony, Originallyreported by Pinkava and profuse branching, and vegetative reproduc- McLeod (1971) as n = 11, misinter- tion in his study of 55 taxa of Cactaceae. Opun- preting fig.4 as 11II instead of cor- which has a rectlyas 11MII. tia, high frequency of vegetative propagation, apomixis, and self-fertility(Phil- Opuntialittoralis (Engelmann) Cockerell var. littoralis brick 1963; Ross 1981), has extensive polyploi- n = 33 Mexico, Baja California Norte, Rte 1, 30 km S of San Vincente,McGill & dy (table 2). Pereskioideae and Cactoideae ap- PinkavaP8773; ca. 9.7 km W of Ro- parently have few of the reproductive sario toward Punta Baja, McGill, charactersfavoring polyploids (Craig 1945; Ross Nash & Pinkava P9161. Originally 1981). published as 0. oricolaPhilbrick in- Polyploidy, particularlyat the triploid and termediate to 0. phaeacanthacom- tetraploidlevels, is believed to originate most plex (Pinkava et al. 1977). often from the fertilizationof unreduced ga- Opuntia phaeacantha Engelmann var. major Engel- metes (Lewis 1980; deWet 1980). We postulated mann that fertilization of unreduced gametes ac- n = 33 Mexico, Coahuila, Sierra de la Ma- counts forseveral interspecificand intraspecif- dera, Pinkava 13658, 13659, McGill, ic, polyploid Opuntia hybrids (Pinkava et al. Reeves & Nash. Originally pub- 1977; Pinkava and Parfitt1982). Ross (1981) lished as aff. var. nigricansEngel- proposed that polyploidy in Cactaceae might mann (Pinkava and Parfitt1982). originate through such premeiotic abnormali- ties as he found in Pereskiadiaz-romeriana or by somaticdoubling in meristemsas hypothesized by Remski (1954). Since mitoticeuploid counts as polyploid. Pereskioideae consists of two at differentploidal levels have been reported genera, amphitropical Pereskia and South fromthe same root tip (e.g., Remski 1954; Wee- American Maihuenia. Only in five of the per- din and Powell 1978), we have preferredto haps 20 species of Pereskia are chromosome work with meiotic materials. numbers known; all are diploid. Aneuploidy plays no role in the modern evo- In Opuntioideae, however, most taxa (63.3%) lution of cacti. Of the 11 aneuploid counts pub-

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 1985] PINKAVA ET AL.: CACTACEAE 481

TABLE 2. Taxonomic and geographic distributionof polyploid taxa in the Cactaceae. Data tabulated from published reportscompiled and edited by Pinkava (unpubl.). Generic delimitationaccording to Hunt (1967) excepting forour inclusion of Escobariain Coryphantha.Genera of Cactoideae with only diploid membersare excluded fromthe table. Symbols: Px = polyploid state at any level (>2x), including taxa with diploid and polyploid individuals; N = North American; S = South American; T = North and South American; * = monotypictaxa.

Infraspecific Geographic taxa + Taxon distribution Total taxa Species (Px) hybrids(Px) Percent Px Levels Px

PERESKIOIDEAE T 5 0 0 0.0 Pereskia T 5 0 0 0.0 - OPUNTIOIDEAE T 169 83 24 63.3 Opuntia T 163 78 24 62.6 Austrocylindropuntia S 8 7 0 87.5 6, 10-11, ca. 20 Corynopuntia N 7 3 0 42.9 4, 6 Cylindropuntia N 34 15 0 44.1 3-6 Grusonia* N 1 0 0 0.0 - Opuntia T 99 44 24 63.7 (N) (80) (31) (23) (67.5) 3-8 (S) (19) (13) (1) (73.7) 3-4, 6, 8 Tephrocactus S 14 9 0 64.3 3-6, 8, 13 ca. 19, ca. 30 Pereskiopsis N 3 3 0 100.00 10 Pterocactus S 1 1 0 100.00 4 Quiabentia S 1 1 0 100.00 10 Tacinga* S 1 0 0 0.0 - CACTOIDEAE T 377 35 12 12.5 Ariacarpus N 3 1 0 33.3 ca. 4 Blossfeldia* S 1 1 0 100.00 6 Cephalocereus T 3 2 0 66.7 4 Coryphantha N 24 2 0 8.3 4 Echinocereus N 43 7 8 37.2 4 Gymnocalycium S 7 1 0 14.4 4 Lobivia S 2 1 0 50.0 4 Mammillaria N 110 10 3 11.8 4, 6, 8, 24 Melocactus T 2 1 0 50.0 4 x Myrtgerocactus* N 1 0 1 100.00 3 Notocactus S 3 2 0 66.7 4 N 3 1 0 33.3 4 Rebutia S 5 2 0 40.0 4 Rhipsalis T 42 1 0 2.4 4, 8 T 8 1 0 12.5 4 Thelocactus N 0 1 0 11.1 4 Trichocereus S 3 1 0 33.3 4 CACTACEAE T 551 118 36 27.9

lished, ten were made before 1939 and nine of (1937) and in Opuntiaby Pinkava and McLeod these have been recounted at euploid levels. (1971) and Pinkava et al. (1973). The one exception that cannot be discounted Numerous reportsof hybridizationat inter- as yet is a count of n = 12 for Deamia testudo generic, interspecific,and infraspecificlevels (Karw.) Britt.and Rose by Bhattacharyya(1970). have been published forthe Cactaceae (Hawkes There are also reports of non-disjunction in 1982-1983). Hybridization,often coupled with certain meiotic cells in Mammillariaby Beard polyploidization and/or apomixis, forms im-

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 482 SYSTEMATIC BOTANY [Volume 10 portantevolutionary mechanism in the Cacta- GIBSON, A. C. and K. E. HORAK. 1978. Systematic ceae, particularlyin Opuntiaand certaincactoid anatomy and phylogeny of Mexican columnar genera such as Mammillariaand Echinocereus. cacti. Ann. Missouri Bot. Gard. 65:999-1057. GRANT, V. and K. A. GRANT. 1971a. Dynamics of ACKNOWLEDGMENTS. Appreciationis expressedto clonal microspecies in cholla . Evolution Mary Butterwick,R. D. Corral, Carole Jenkins,M. L. 25:144-155. Gallagher, Elinor Lehto, Lyle McGill, Tim Reeves, and . 1971b. Natural hybridization George Ruffner,and Nichole Trushell foraid in field between the cholla cactus species Opuntiaspino- collections of specimens and buds. We thank Drs. siorand Opuntiaversicolor. Proc. Natl. Acad. Sci. Lyman Benson and Allan D. Zimmerman for aid in USA 68:1993-1995. identificationof certain specimens but final deter- HAWKES, M. W. 1982-1983. Hybridization in the minationsare our responsibility.We thank Drs. Tom Cactaceae. Cact. & Succ. Jour.(U.S.) 54:223-225, Daniel, Melinda Denton, Doug Henderson,and Verne 243-246; 55:31-36. Grant for criticallyreviewing the manuscript.Field HUNT, D. R. 1967. Cactaceae. Pp. 427-467 in Genera work was supported in part by National Science of floweringplants (Angiospermae).Dicotyledones, Foundation grants BMS 7501417 to Dr. Thomas H. vol. II, J.Hutchinson. Oxford: Clarendon Press. Nash III and DEB 77-00182 to D. J.Pinkava and Tim JOHNSON,M. A. T. 1980. Furthercytological inves- Reeves, Departmentof Botanyand Microbiology,Ar- tigationsin Mammillariaprolifera and otherMam- izona State University. millariaspecies. Cact. Succ. J. (Gt. Britain) 42:43- 47. LITERATURECITED LEWIS, W. H. 1980. Polyploidy in angiosperms: Di- BAKER,M. A. and D. J. PINKAVA.1983. Megasporo- cotyledons. Pp. 241-268 in Polyploidy,biological genesis and microsporogenesisin Opuntiafulgi- relevance,ed. W. H. Lewis. New York: Plenum da, 0. spinosiorand their triploid hybrids.Amer. Press. J.Bot. (5 pt. 2):104. MANEVAL, W. E. 1936. Lacto-phenol preparations. BEARD,E. C. 1937. Some chromosomecomplements Stain Tech. 11:9-11. in the Cactaceae and a study of meiosis in Echi- MUNZ,P. A. and D. D. KECK. 1959. A Californiaflora. nocereuspapillosus. Bot. Gaz. 99:1-20, plate 1. Berkeley and Los Angeles: Univ. of California BEEKS,R. M. 1955. Improvements in the squash Press. technique for plant chromosomes. Aliso 3:131- PARFITT, B. D. 1979. Acacia glandulifera(Legumino- 134. sae): distributionand chromosomenumber. Ma- BENSON,L. 1940. The cactiof Arizona. Biol. Sci. Bull. dronio26:103. 4. Tucson: Univ. of Arizona. PEEBLES, R. H. 1936. A natural hybrid in the genus . 1950. The cacti of Arizona,2nd ed. Tucson: Opuntia.J. Cact. Succ. Soc. Amer. 7:99-101. Univ. of Arizona Press. PHILBRICK,R. N. 1963. Biosystematicsof two Pacific . 1969. The cacti of Arizona,3rd ed. Tucson: Coast opuntias. Ph.D. dissertation,Cornell Univ., Univ. of Arizona Press. Ithaca. . 1982. The cacti of the UnitedStates and Can- PILBEAM,J. 1981. Mammillaria,a collector'sguide. Lon- ada. Stanford:Stanford Univ. Press. don: B. T. Batsford,Ltd. BHATTACHARYYA,P. K. 1970. Cytological study of PINKAVA, D. J.and L. A. McGILL. 1979. Preliminary Deamia testudo(Karw.) Britt.& Rose: A cactus studies of cholla (Cactaceae) hybridization. J. growing wild in West Bengal. Sci. & Culture 36: Ariz.-Nev. Acad. Sci. 14(Proc. Supl.):14-15. 108. and M. G. McLEoD. 1971. Chromosome BRAvo-HOLLIs,H. 1978. Las CactAceas de Mexico, numbers in some cacti of western North Amer- 2nd ed., vol. 1, in collaborationwith H. Sanchez- ica. Brittonia23:171-176. Mejorada R. Mexico: Univ. Nacional Aut6noma and B. D. PARFITT. 1982. Chromosome num- Mexico. bers in some cacti of western North America- BRITTON, N. L. and J. N. ROSE. 1919-1923. The Cac- IV. Bull. TorreyBot. Club 109:121-128. taceae,4 vols. Washington, D.C.: Carnegie Inst. , L. A. McGILL, T. REEVES, and M. G. McLEoD. of Washington Publ. 248. 1977. Chromosome numbers in some cacti of CONDE,L. F. 1975. Anatomical comparisons of five western North America-III. Bull. Torrey Bot. species of Opuntia(Cactaceae). Ann. Missouri Bot. Club 104:105-110. Gard. 62:425-473. , M. G. McLEoD, L. A. McGILL,and R. C. BROWN. CRAIG,R. T. 1945. The Mammillariahandbook. Pasa- 1973. Chromosome numbers in some cacti of dena, California: Abbey Garden Press. western North America-II. Brittonia25:2-9. FISCHER,P. 1962. Taxonomic relationshipsof Opun- REMSKI, M. F. 1954. Cytological investigations in tia kleiniaeDeCandolle and Opuntia tetracantha Mammillariaand some associatedgenera. Bot. Gaz. Toumey. M.S. thesis, Univ. of Arizona, Tucson. 116:163-171.

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions 1985] PINKAVA ET AL.: CACTACEAE 483

Ross, R. 1981. Chromosome counts, cytology,and DEWET, J. M. J. 1980. Origins of polyploids. Pp. 3- reproductionin the Cactaceae. Amer. J. Bot. 68: 15 in Polyploidy,biological relevance, ed. W. H. 463-470. Lewis. New York: Plenum Press. SATO,D. 1958. Chromosome of the Cactaceae. Succ. YUASA, H., H. SHIMIZU, S. KASHIWAI, and N. KONDO. Jap. 3:88-91. 1973. Chromosome numbers and their bearing STEBBINS,G. L., JR. 1950. Variation and evolution in on the geographic distributionin the subfamily plants. New York: Columbia Univ. Press. Opuntioideae (Cactaceae). Rep. Inst. Breed. Re- WEEDIN, J.F. and A. M. POWELL. 1978. Chromosome search, Tokyo Univ. Agric. 4:1-10. numbersin Chihuahuan Desert Cactaceae. Trans- Pecos Texas. Amer. J.Bot. 65:531-537.

This content downloaded from 156.40.216.1 on Tue, 10 Nov 2015 17:03:23 UTC All use subject to JSTOR Terms and Conditions