Uranus, Neptune, Pluto, and the Outer Solar System Linda T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
7 Planetary Rings Matthew S
7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure ..................................................... -
Planetary Ring Systems Edited by Matthew S
Cambridge University Press 978-1-107-11382-4 — Planetary Ring Systems Edited by Matthew S. Tiscareno , Carl D. Murray Frontmatter More Information Planetary Ring Systems Properties, Structure, and Evolution Planetary rings are among the most intriguing structures of our solar system and have fas- cinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring-particle orbits is followed by a review of the known planetary ring sys- tems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties, their origins, and investigations using com- puter simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field’s future. Researchers of all levels benefit from this thorough and engaging presentation. MATTHEW S. TISCARENO is a Senior Research Scientist at the SETI Institute, California. He is a Participating Scientist and an Imaging Team Associate with the Cassini- Huygens mission. His research output includes solar system dynamics and space-based observations of the outer solar system. CARL D. MURRAYis Professor of Mathematics and Astronomy at Queen Mary Univer- sity of London. He has contributed to numerous ring and moon discoveries as an original member of the Imaging Team with the Cassini-Huygens mission and he is co-author of the textbook Solar System Dynamics (1999). -
The L3 Exhibitions Catalogue 2010-2014
The L3 Exhibitions Catalogue 2010-2014 Leonardo da Vinci overview Leonardo da Vinci is a universal genius. He What the public knows about Leonardo is bare- was, of course, an Italian, but he belongs to a ly the tip of the iceberg. His manuscripts con- past that is part of the cultural heritage of every tinue to hide secrets and are worthy of inquiry person and every nation. He is a singular exam- and presentation in new, innovative ways. L3 ple throughout history of a man who possessed explores, discovers and reveals the “unknown an enormous talent and excelled not only as a Leonardo” in order to spark the hidden genius scientist, but also as an artist. Most of the inven- that lies within us all. tions and machines that he designed can in fact be considered works of art. On the same note, Leonardo3 (L3) is the world leader in exclu- his artistic works are both the creations of a sive exhibitions and publications on da Vinci’s master artist and the products of a formidable genius. Each of our exhibitions is the result of scientific brain. work carried out by our own team of researchers who investigate and develop never-seen-before Just as his paintings deserve the kind of investi- machines for each event. gation to which only today’s technology can do justice, so the full extent of his scientific work Our exhibitions are “dynamic” rather than “stat- has yet to be revealed to the public. ic”. We make extensive use of 3D animations, physical models and interactive software to of- fer the public a unique level of interaction and a hands-on “edu-tainment” experience. -
Weighing Uranus' Moon Cressida with the Η Ring
The Astronomical Journal, 154:153 (8pp), 2017 October https://doi.org/10.3847/1538-3881/aa880e © 2017. The American Astronomical Society. All rights reserved. Weighing Uranus’ Moon Cressida with the η Ring Robert O. Chancia1 , Matthew M. Hedman1 , and Richard G. French2 1 Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA; [email protected] 2 Astronomy Department, Wellesley College, Wellesley, MA 02481, USA Received 2017 June 19; revised 2017 August 9; accepted 2017 August 21; published 2017 September 20 Abstract The η ring is one of the narrow rings of Uranus, consisting of a dense core that is 1–2 km wide and a diffuse outer sheet spanning about 40 km. Its dense core lies just exterior to the 3:2 Inner Lindblad Resonance of the small moon Cressida. We fit the η ring radius residuals and longitudes from a complete set of both ground-based and Voyager stellar and radio occultations of the Uranian rings spanning 1977–2002. We find variations in the radial position of the η ring that are likely generated by this resonance, and take the form of a 3-lobed structure rotating at an angular rate equal to the mean motion of the moon Cressida. The amplitude of these radial oscillations is 0.667±0.113 km, which is consistent with the expected shape due to the perturbations from Cressida. The magnitude of these variations provides the first measurement of the mass and density of the moon Cressida (m =´()2.5 0.4 1017 kg and r =0.86 0.16 gcm−3) or, indeed, any of Uranus’ small inner moons. -
Arxiv:1509.00872V1 [Astro-Ph.EP] 2 Sep 2015 H Bevblt Fipcso in Xpaes H Oe Matc Impact Comet the Exoplanets
Detectability of Planetesimal Impacts on Giant Exoplanets Laura Flagga,b,∗, Alycia J. Weinbergerb, Keith Matthewsc aDepartment of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011-6010, USA bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA cCaltech Optical Observatories, California Institute of Technology, MC 301-17, Pasadena, CA 91125, USA Abstract The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wavelengths from 2 - 4 µm is revealed. Jupiter’s reflected light spectrum in the near-infrared is dominated by its methane opacity including a deep band at 2.3 µm. After the impact, sunlight that would have normally been absorbed by the large amount of methane in Jupiter’s atmosphere was instead reflected by the cometary material from the impacts. As a result, at 2.3 µm, where the planet would normally have low reflectivity, it brightened substantially and stayed brighter for at least a month. Keywords: comets, debris disks, extra-solar planets, Jupiter 1. Introduction The frequencies with which giant planets and cold circumstellar debris disks encircle old (i.e. >1 Gyr) Sun-like stars are both ∼20% (Eiroa et al. 2013; Marshall et al. 2014). The debris disks are generated in the collisions and evaporation of planetesimals, analogous to the comets and asteroids of today’s Solar System. That most debris disks contain cold, ∼50 K, dust indicates that the reservoirs of parent bodies are at ∼100 AU from the parent stars, in a region analogous to our Edgeworth-Kuiper Belt. -
Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals. -
Exploring the Origins and Evolution of Ice Giant Planets
Exp Astron DOI 10.1007/s10686-011-9251-4 ORIGINAL ARTICLE Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets Christopher S. Arridge Craig B. Agnor Nicolas André Kevin H. Baines · · · · Leigh N. Fletcher Daniel Gautier Mark D. Hofstadter Geraint H. Jones · · · · Laurent Lamy Yves Langevin Olivier Mousis Nadine Nettelmann · · · · Christopher T. Russell Tom Stallard Matthew S. Tiscareno · · · Gabriel Tobie Andrew Bacon Chris Chaloner Michael Guest · · · · Steve Kemble Lisa Peacocke Nicholas Achilleos Thomas P. Andert · · · · Don Banfield Stas Barabash Mathieu Barthelemy Cesar Bertucci · · · · Pontus Brandt Baptiste Cecconi Supriya Chakrabarti Andy F. Cheng · · · · Ulrich Christensen Apostolos Christou Andrew J. Coates · · · Glyn Collinson John F. Cooper Regis Courtin Michele K. Dougherty · · · · Robert W. Ebert Marta Entradas Andrew N. Fazakerley · · · Jonathan J. Fortney Marina Galand Jaques Gustin Matthew Hedman · · · · Ravit Helled Pierre Henri Sebastien Hess Richard Holme · · · · Özgur Karatekin Norbert Krupp Jared Leisner Javier Martin-Torres · · · · Adam Masters Henrik Melin Steve Miller Ingo Müller-Wodarg · · · · Benoît Noyelles Chris Paranicas Imke de Pater Martin Pätzold · · · · Renée Prangé Eric Quémerais Elias Roussos Abigail M. Rymer · · · · Agustin Sánchez-Lavega Joachim Saur Kunio M. Sayanagi Paul Schenk · · · · Gerald Schubert Nick Sergis Frank Sohl Edward C. Sittler Jr. · · · · Nick A. Teanby Silvia Tellmann Elizabeth P. Turtle Sandrine Vinatier · · · · Jan-Erik Wahlund Philippe Zarka · Received: 26 November 2010 / Accepted: 21 July 2011 ©SpringerScience+BusinessMediaB.V.2011 N. Achilleos Department of Physics and Astronomy, University College London, London, UK C. B. Agnor School of Physics and Astronomy, Queen Mary University of London, London, UK T. P. Andert Universität der Bundeswehr, Munich, Germany N. André Centre d’Etude Spatiale des Rayonnements / CNRS, Toulouse, France C. -
Appendix 1 1311 Discoverers in Alphabetical Order
Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D. -
Introductory Astronomy Course at UMD With
Introductory Course at UMD with Remote Observing - “Astronomy in Practice” Dr. Melissa N. Hayes-Gehrke Astronomy Dept., UMD 1 2016 GROWTH Education Workshop Overarching Goal Involve non-astronomy students in real astronomical research so that they develop a better understanding of how astronomy, and thus science overall, really works. 2 Talk Outline ● Course Opportunity and Target Student Population ● Educational Goals ● Course Organization and Structure ● Project Execution ● Results: Projects and Course Success 3 Course Opportunity and Target Student Population ● New “Scholarship in Practice” courses at UMD provided the opportunity to develop this course – our department wanted one because all students are required to take two. ● Asteroids are perfect target objects for student research since the required observations and analysis are straightforward, yet new results are possible because of >100,000 unstudied asteroids. 4 Course Opportunity and Target Student Population Target student population: ● Non-astronomy major, may not be science major ● May have only algebra-level math ● May not have any astronomy background 5 Course Opportunity and Target Student Population Example population from most recent course offering (46 students): ● Mostly sophomore/junior ● 33% URMs (including women) ● 25% female ● average GPA of class: 2.9 ● 43% computer science, 13% undecided, 9% biology, 7% engineering ● Many are (or became) astronomy minors 6 Educational Goals The course satisfies learning goals at multiple levels: ● Instructor's astronomical knowledge goals ● University's goals for Scholarship in Practice courses 7 Educational Goals: Instructor's Goals Students will have: ● An understanding of our place in the solar system and how asteroids fit into the solar system. ● An understanding of how astronomers study asteroids. -
The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes. -
Jupiter's Ring-Moon System
11 Jupiter’s Ring-Moon System Joseph A. Burns Cornell University Damon P. Simonelli Jet Propulsion Laboratory Mark R. Showalter Stanford University Douglas P. Hamilton University of Maryland Carolyn C. Porco Southwest Research Institute Larry W. Esposito University of Colorado Henry Throop Southwest Research Institute 11.1 INTRODUCTION skirts within the outer stretches of the main ring, while Metis is located 1000 km closer to Jupiter in a region where the ∼ Ever since Saturn’s rings were sighted in Galileo Galilei’s ring is depleted. Each of the vertically thick gossamer rings early sky searches, they have been emblematic of the ex- is associated with a moon having a somewhat inclined orbit; otic worlds beyond Earth. Now, following discoveries made the innermost gossamer ring extends towards Jupiter from during a seven-year span a quarter-century ago (Elliot and Amalthea, and exterior gossamer ring is connected similarly Kerr 1985), the other giant planets are also recognized to be with Thebe. circumscribed by rings. Small moons are always found in the vicinity of plane- Jupiter’s diaphanous ring system was unequivocally de- tary rings. Cuzzi et al. 1984 refer to them as “ring-moons,” tected in long-exposure images obtained by Voyager 1 (Owen while Burns 1986 calls them “collisional shards.” They may et al. 1979) after charged-particle absorptions measured by act as both sources and sinks for small ring particles (Burns Pioneer 11 five years earlier (Fillius et al. 1975, Acu˜na and et al. 1984, Burns et al. 2001). Ness 1976) had hinted at its presence. The Voyager flybys also discovered three small, irregularly shaped satellites— By definition, tenuous rings are very faint, implying Metis, Adrastea and Thebe in increasing distance from that particles are so widely separated that mutual collisions Jupiter—in the same region; they joined the similar, but play little role in the evolution of such systems. -
Giant Planets
Giant Planets Mark Marley (NASA Ames) for the Planetary Decadal Survey Giant Planets Subpanel Tuesday, December 22, 2009 1 GPP Membership Reta Beebe Brigette Hesman Wayne Richie NMSU NRAO NASA Langley atmos. dynamics atm chemistry engineer John Casani William Hubbard Kunio Sayanagi JPL University of Arizona CalTech engineer, NAE interiors dynamics, theory John Clarke Mark Marley Amy Simon-Miller Boston University NASA Ames NASA Goddard aurorae, magnetos. exoplanets panel vice-chair Heidi Hammel Phil Nicholson Space Science Cornell University Institute rings panel chair Tuesday, December 22, 2009 2 Today • Some highlights of giant planet science in the past decade that impact future exploration goals (personal perspective, neglecting Cassini) • Stressing: Connection to brown dwarfs & 400+ exoplanets • Decadal process • whitepapers • mission studies • key technologies • community input Tuesday, December 22, 2009 3 Solar System Jovian Planets Serve as Waypoints in a Continuum of Objects Tuesday, December 22, 2009 4 TiO FeH K H2O H2O 6 H2O M6.5 V 10 L5 H O T.5 CO 2 Jupiter K M6 4 CIA H2 10 CH4 CH4 CH4 CH4 CH4 L5 CH4 NH3 2 10 T5 CH4 (1.30µm) x Constant ! f NH ! 3 / ! f ! 100 Jupiter CH4 1 2 3 4 5 6 7 8 9 10 Wavelength (µm) Marley & Leggett (2009) Tuesday, December 22, 2009 5 oklo.org Tuesday, December 22, 2009 6 15 ) • Transiting planets 10Earth reveal a continuum of M, R • Microlensing suggests Radius (R Neptunes are 5 common 0.1 1000 Charbonneau et al. (2009) Charbonneau et al. Mass (MEarth) Tuesday, December 22, 2009 7 Some Highlights and Questions Tuesday, December 22, 2009 8 signature of planethood? vary with mass? Owen et al.