Giant Planets

Total Page:16

File Type:pdf, Size:1020Kb

Giant Planets Giant Planets Mark Marley (NASA Ames) for the Planetary Decadal Survey Giant Planets Subpanel Tuesday, December 22, 2009 1 GPP Membership Reta Beebe Brigette Hesman Wayne Richie NMSU NRAO NASA Langley atmos. dynamics atm chemistry engineer John Casani William Hubbard Kunio Sayanagi JPL University of Arizona CalTech engineer, NAE interiors dynamics, theory John Clarke Mark Marley Amy Simon-Miller Boston University NASA Ames NASA Goddard aurorae, magnetos. exoplanets panel vice-chair Heidi Hammel Phil Nicholson Space Science Cornell University Institute rings panel chair Tuesday, December 22, 2009 2 Today • Some highlights of giant planet science in the past decade that impact future exploration goals (personal perspective, neglecting Cassini) • Stressing: Connection to brown dwarfs & 400+ exoplanets • Decadal process • whitepapers • mission studies • key technologies • community input Tuesday, December 22, 2009 3 Solar System Jovian Planets Serve as Waypoints in a Continuum of Objects Tuesday, December 22, 2009 4 TiO FeH K H2O H2O 6 H2O M6.5 V 10 L5 H O T.5 CO 2 Jupiter K M6 4 CIA H2 10 CH4 CH4 CH4 CH4 CH4 L5 CH4 NH3 2 10 T5 CH4 (1.30µm) x Constant ! f NH ! 3 / ! f ! 100 Jupiter CH4 1 2 3 4 5 6 7 8 9 10 Wavelength (µm) Marley & Leggett (2009) Tuesday, December 22, 2009 5 oklo.org Tuesday, December 22, 2009 6 15 ) • Transiting planets 10Earth reveal a continuum of M, R • Microlensing suggests Radius (R Neptunes are 5 common 0.1 1000 Charbonneau et al. (2009) Charbonneau et al. Mass (MEarth) Tuesday, December 22, 2009 7 Some Highlights and Questions Tuesday, December 22, 2009 8 signature of planethood? vary with mass? Owen et al. (1999) Tuesday, December 22, 2009 9 What are Saturn’s noble gas abundances and isotope ratios? Marty et al. (2009) Tuesday, December 22, 2009 10 Saturn’s Evolution He phase separation Fortney et al. (2006) Tuesday, December 22, 2009 11 How well do we understand thermal evolution? • Young hot planets? • Role of clouds? • Compositional gradients? • Soon hundreds of directly images young planets. HR8799 b, c, d Marois et al. (2008) Tuesday, December 22, 2009 12 Solar System Stratospheres Earth Titan Photochemistry is important in every case. Tuesday, December 22, 2009 13 Neptune’s Stratosphere mid-IR Gemini/Michelle at 11.7 µm Ethane Emission from the stratosphere All 3 images taken within a few minutes on 5 July 2005 Gemini/Michelle at 7.7 µm Methane Emission from the stratosphere Keck/NIRC2+AO at 1.6 µm Sunlight Scattering from tropospheric Clouds Hammel et al. (2007) Can we achieve a better understanding of the energetics of giant planet stratospheres? Tuesday, December 22, 2009 14 Fortney et al. (2008) Tuesday, December 22, 2009 15 Tuesday, December 22, 2009 16 Strong downdrafts at Jovian hotspots (Showman & Dowling 2000) Hot Jupiter GCM (Showman et al. 2008) Tuesday, December 22, 2009 17 Core Masses? Fortney et al. (2009) oklo.org Tuesday, December 22, 2009 18 Ice Giant Magnetospheres Earth Jupiter Saturn Uranus Neptune Stably- Solid stratified Stanley & Bloxham (2006) Tuesday, December 22, 2009 19 Ring-Plane Crossing of Uranus 2001 2002 2003 2004 2005 2006 2007 Keck images of Uranus in 2007 show a rare view of the unlit side of the rings Such ring-plane crossings occur every 42 years; the last—in 1965—was prior to the rings' discovery in 1977! Tuesday, December 22, 2009 20 New Rings of Uranus Two new rings discovered with HST and Voyager by Showalter and Lissauer (2005) Keck images (de Pater et al. 2006) reveal ringsʼ colors and striking similarity with Saturnʼs rings Photo-Illustration compares the Saturn and Uranus ring systems Red = Saturn G ring, Uranus R2 Blue = Saturn E ring, Uranus R1 Tuesday, December 22, 2009 21 Nearly all aspects of the Neptune system detectable from Earth have changed significantly since Voyager fly-by in 1989 • The ring system has changed – Arcs evolved within <8 yrs The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage de Pater, Imke; Gibbard, Seran G.; Chiang, Eugene; Hammel, Heidi B.; Macintosh, Bruce; Marchis, Franck; Martin, Shuleen C.; Roe, Henry G.; Showalter, Mark Icarus, Volume 174, Issue 1, p. 263-272 Both the location and intensity of all arcs changed drastically relative to trailing arc Fraternité... Our data suggest that all arcs may have decayed over the last decade, while Liberté, in 2003, may be on the verge of disappearing completely. The observed changes in the relative intensities and locations of all arcs further indicate that material is migrating between resonance sites; leading arc Courage, for example, has jumped ˜8° (one full corotation potential maximum). Overall, our observations reveal a system that is surprisingly dynamic, and no comprehensive theory exists as of yet that can explain all the observed intricacies. Tuesday, December 22, 2009 22 Kalas et al. (2008) Tuesday, December 22, 2009 23 Decadal Process Tuesday, December 22, 2009 24 White Papers • ~ 100 white papers submitted • mission concepts • technologies • existing facilities • laboratory and theory work • other topics • All read and discussed and important basis for ongoing activities Tuesday, December 22, 2009 25 Selected Three Targets for RMA Studies • Neptune/Triton/KBO • Uranus • Saturn Tuesday, December 22, 2009 26 Mission Studies • Neptune-Triton-KBO flyby or Neptune orbiter • entry probe • free flying nanosats • meetings complete, report in preparation • Saturn entry probe(s) - ongoing • Uranus orbiter - ongoing • May choose some for point designs Tuesday, December 22, 2009 27 Technology Issues • Power • Plutonium supply • ASRG lifetime • Communications (DSN) • Aerocapture/Aerobraking • Entry probes, daughter probes • Nanosats • Instrumentation Tuesday, December 22, 2009 28 GPP Outreach Activities Date Meeting Location Plan 13 July 2009 OPAG Columbia, MD Attend/Follow-up 27-31 July 2009 Mag. Outer Planets Cologne Attend/Follow-up Aug-Sep 2009 - - GPP Web survey Aug-Sep 2009 - - GPP Phone campaign 24-26 Aug 2009 PANEL MEETING Washington, DC - 4-9 Oct 2009 DPS Puerto Rico Workshop 26-28 Oct 2009 PANEL MEETING Irvine, CA - 14-18 Dec 2009 AGU San Francisco Attend/Follow-up 1-5 March 2010 LPSC Houston Attend/Follow-up 4-6 May 2010 PANEL MEETING Boston, MA - Tuesday, December 22, 2009 29 Your Input Tuesday, December 22, 2009 30.
Recommended publications
  • 7 Planetary Rings Matthew S
    7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure .....................................................
    [Show full text]
  • From the Hubble Space Telescope
    Teacher’s Guide From the Hubble Space Telescope Exploring Space and Cyberspace An electronic field trip via interactive television and on-line networks into America’s classrooms Project Notes Programs and Initial Air Dates and Times Contingency Announcement Program 2 Making YOUR Observations Field research on a scientific frontier is March 14, 1996, 13:00-14:00 Eastern inherently unpredictable. Even traditional school trips are subject to weather and dis- Program 3 Announcing YOUR Results ruptions. An electronic field trip is no dif- Live from the Hubble Space April 23, 1996, 13:00-14:00 Eastern ferent: the Telescope programs are dependent on the Please Note: HST operating normally, NASA’s Tracking and Data Relay Satellites being available, Program 1 The Great Planet Debate and all domestic satellite links holding (see first aired November 9, 1995, as an introduction Activity 2D, page 24 below, for more to the entire project. (For videotapes, see below) background on how the electronic images get from Pluto to you!) The production Primary Satellite Coordinates team has put in place contingency plans for most eventualities. In the event of tempo- Ku-band: PBS K-12 Learning Services:Telstar 401, 97 degrees rary loss of signal, live programming will West, transponder 8, horizontal, 11915 Mhz, audio on 6.2 and 6.8 continue from ground sites, interspersed Please note: this refers to carriage on the primary satellite used by PBS. Carriage on with pre-taped segments. the satellite itself does not guarantee broadcast by any individual PBS station. Please Register for on-line Live from the check local listings well in advance of air time to verify local arrangements! An on-line Hubble Space Telescope updates or check listing of confirmed carriage by local stations and educational networks will be acces- our Web site: sible between March 1, 1996 and April 23, 1996.
    [Show full text]
  • Planetary Ring Systems Edited by Matthew S
    Cambridge University Press 978-1-107-11382-4 — Planetary Ring Systems Edited by Matthew S. Tiscareno , Carl D. Murray Frontmatter More Information Planetary Ring Systems Properties, Structure, and Evolution Planetary rings are among the most intriguing structures of our solar system and have fas- cinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring-particle orbits is followed by a review of the known planetary ring sys- tems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties, their origins, and investigations using com- puter simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field’s future. Researchers of all levels benefit from this thorough and engaging presentation. MATTHEW S. TISCARENO is a Senior Research Scientist at the SETI Institute, California. He is a Participating Scientist and an Imaging Team Associate with the Cassini- Huygens mission. His research output includes solar system dynamics and space-based observations of the outer solar system. CARL D. MURRAYis Professor of Mathematics and Astronomy at Queen Mary Univer- sity of London. He has contributed to numerous ring and moon discoveries as an original member of the Imaging Team with the Cassini-Huygens mission and he is co-author of the textbook Solar System Dynamics (1999).
    [Show full text]
  • Newsletter 110 ª June 2002 NEWSLETTER
    Newsletter 110 ª June 2002 NEWSLETTER The American Astronomical Societys2000 Florida Avenue, NW, Suite 400sWashington, DC [email protected] AAS NEWS PRESIDENT’S COLUMN Wallerstein is Anneila I. Sargent, Caltech, [email protected] My term as President of the American Astronomical Society Russell Lecturer will end with our meeting in Albuquerque in June 2002. Usually This year, the AAS this letter would be the appropriate place to consider my bestows its highest honor, expectations and goals when I took up the gavel and compare the Henry Norris Russell these with what actually happened. Lectureship on George The events of 11 September 2001 caused me to write that kind Wallerstein, Professor of reflective letter in the December issue of this Newsletter.I Emeritus of Astronomy at won’t repeat myself here except to note that at that time there the University of seemed to be less enthusiasm to fund research in the physical Washington. Wallerstein is sciences than we had grown to expect when I took office. recognized in the award citation for “...his As I write this column, the prospects look much less bleak. In contributions to our another part of this Newsletter, Kevin Marvel discusses how understanding of the astronomy fared in the President’s FY ’03 budget request. George Wallerstein of the University of NASA’s Office of Space Science is doing very well indeed. In Washington will deliver his Russell Lecture abundances of the at the Seattle Meeting in January 2003. elements in stars and fact, the OSS budget has been increasing steadily since 1996 and clusters.
    [Show full text]
  • Weighing Uranus' Moon Cressida with the Η Ring
    The Astronomical Journal, 154:153 (8pp), 2017 October https://doi.org/10.3847/1538-3881/aa880e © 2017. The American Astronomical Society. All rights reserved. Weighing Uranus’ Moon Cressida with the η Ring Robert O. Chancia1 , Matthew M. Hedman1 , and Richard G. French2 1 Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA; [email protected] 2 Astronomy Department, Wellesley College, Wellesley, MA 02481, USA Received 2017 June 19; revised 2017 August 9; accepted 2017 August 21; published 2017 September 20 Abstract The η ring is one of the narrow rings of Uranus, consisting of a dense core that is 1–2 km wide and a diffuse outer sheet spanning about 40 km. Its dense core lies just exterior to the 3:2 Inner Lindblad Resonance of the small moon Cressida. We fit the η ring radius residuals and longitudes from a complete set of both ground-based and Voyager stellar and radio occultations of the Uranian rings spanning 1977–2002. We find variations in the radial position of the η ring that are likely generated by this resonance, and take the form of a 3-lobed structure rotating at an angular rate equal to the mean motion of the moon Cressida. The amplitude of these radial oscillations is 0.667±0.113 km, which is consistent with the expected shape due to the perturbations from Cressida. The magnitude of these variations provides the first measurement of the mass and density of the moon Cressida (m =´()2.5 0.4 1017 kg and r =0.86 0.16 gcm−3) or, indeed, any of Uranus’ small inner moons.
    [Show full text]
  • The Future of Space Imaging
    The FutureofSpaceImaging The Future of Space Imaging Report of a Community-Based Study of an Advanced Camera for the Hubble Space Telescope hen Lyman Spitzer first proposed a great, W earth-orbiting telescope in , the nuclear energy source of stars had been known for just six years. Knowledge of galaxies beyond our own and the understanding that our universe is expanding were only about twenty years of age in the human consciousness. The planet Pluto was seventeen. Quasars, black holes, gravitational lenses, and detection of the Big Bang were still in the future—together with much of what constitutes our current understanding of the solar system and the cos- mos beyond it. In , forty-seven years after it was conceived in a for- gotten milieu of thought, the Hubble Space Telescope is a reality. Today, the science of the Hubble attests to the forward momentum of astronomical exploration from ancient times. The qualities of motion and drive for knowledge it exemplifies are not fixed in an epoch or a gen- eration: most of the astronomers using Hubble today were not born when the idea of it was first advanced, and many were in the early stages of their education when the glass for its mirror was cast. The commitments we make today to the fu- ture of the Hubble observatory will equip a new generation of young men and women to explore the astronomical frontier at the start of the st century. 1 2 3 4 5 6 7 8 9 FRONT & BACK COVER 1.Globular clusters containing young stars at the core of elliptical galaxy NGC 1275.
    [Show full text]
  • Arxiv:1509.00872V1 [Astro-Ph.EP] 2 Sep 2015 H Bevblt Fipcso in Xpaes H Oe Matc Impact Comet the Exoplanets
    Detectability of Planetesimal Impacts on Giant Exoplanets Laura Flagga,b,∗, Alycia J. Weinbergerb, Keith Matthewsc aDepartment of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011-6010, USA bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA cCaltech Optical Observatories, California Institute of Technology, MC 301-17, Pasadena, CA 91125, USA Abstract The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wavelengths from 2 - 4 µm is revealed. Jupiter’s reflected light spectrum in the near-infrared is dominated by its methane opacity including a deep band at 2.3 µm. After the impact, sunlight that would have normally been absorbed by the large amount of methane in Jupiter’s atmosphere was instead reflected by the cometary material from the impacts. As a result, at 2.3 µm, where the planet would normally have low reflectivity, it brightened substantially and stayed brighter for at least a month. Keywords: comets, debris disks, extra-solar planets, Jupiter 1. Introduction The frequencies with which giant planets and cold circumstellar debris disks encircle old (i.e. >1 Gyr) Sun-like stars are both ∼20% (Eiroa et al. 2013; Marshall et al. 2014). The debris disks are generated in the collisions and evaporation of planetesimals, analogous to the comets and asteroids of today’s Solar System. That most debris disks contain cold, ∼50 K, dust indicates that the reservoirs of parent bodies are at ∼100 AU from the parent stars, in a region analogous to our Edgeworth-Kuiper Belt.
    [Show full text]
  • Exploring the Origins and Evolution of Ice Giant Planets
    Exp Astron DOI 10.1007/s10686-011-9251-4 ORIGINAL ARTICLE Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets Christopher S. Arridge Craig B. Agnor Nicolas André Kevin H. Baines · · · · Leigh N. Fletcher Daniel Gautier Mark D. Hofstadter Geraint H. Jones · · · · Laurent Lamy Yves Langevin Olivier Mousis Nadine Nettelmann · · · · Christopher T. Russell Tom Stallard Matthew S. Tiscareno · · · Gabriel Tobie Andrew Bacon Chris Chaloner Michael Guest · · · · Steve Kemble Lisa Peacocke Nicholas Achilleos Thomas P. Andert · · · · Don Banfield Stas Barabash Mathieu Barthelemy Cesar Bertucci · · · · Pontus Brandt Baptiste Cecconi Supriya Chakrabarti Andy F. Cheng · · · · Ulrich Christensen Apostolos Christou Andrew J. Coates · · · Glyn Collinson John F. Cooper Regis Courtin Michele K. Dougherty · · · · Robert W. Ebert Marta Entradas Andrew N. Fazakerley · · · Jonathan J. Fortney Marina Galand Jaques Gustin Matthew Hedman · · · · Ravit Helled Pierre Henri Sebastien Hess Richard Holme · · · · Özgur Karatekin Norbert Krupp Jared Leisner Javier Martin-Torres · · · · Adam Masters Henrik Melin Steve Miller Ingo Müller-Wodarg · · · · Benoît Noyelles Chris Paranicas Imke de Pater Martin Pätzold · · · · Renée Prangé Eric Quémerais Elias Roussos Abigail M. Rymer · · · · Agustin Sánchez-Lavega Joachim Saur Kunio M. Sayanagi Paul Schenk · · · · Gerald Schubert Nick Sergis Frank Sohl Edward C. Sittler Jr. · · · · Nick A. Teanby Silvia Tellmann Elizabeth P. Turtle Sandrine Vinatier · · · · Jan-Erik Wahlund Philippe Zarka · Received: 26 November 2010 / Accepted: 21 July 2011 ©SpringerScience+BusinessMediaB.V.2011 N. Achilleos Department of Physics and Astronomy, University College London, London, UK C. B. Agnor School of Physics and Astronomy, Queen Mary University of London, London, UK T. P. Andert Universität der Bundeswehr, Munich, Germany N. André Centre d’Etude Spatiale des Rayonnements / CNRS, Toulouse, France C.
    [Show full text]
  • Uranus, Neptune, Pluto, and the Outer Solar System Linda T
    Uranus, Neptune, Pluto, and the Outer Solar System Linda T. Elkins-Tanton Uranus, Neptune, Pluto, and the Outer Solar System Copyright © 2006 by Linda T.Elkins-Tanton All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechani- cal, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Chelsea House An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Elkins-Tanton, Linda T. Uranus, Neptune, Pluto, and the outer solar system / Linda T.Elkins-Tanton. p. cm. — (The Solar system) Includes bibliographical references and index. ISBN 0-8160-5197-6 (acid-free paper) 1. Uranus (Planet)—Popular works. 2. Neptune (Planet)—Popular works. 3. Pluto (Planet)—Popular works. 4. Solar system—Popular works. I.Title. QB681.E45 2006 523.47—dc22 2005014801 Chelsea House books are available at special discounts when purchased in bulk quantities for businesses, associations, institu- tions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com Text and cover design by Dorothy M. Preston Illustrations by Richard Garratt Printed in the United States of America VB Hermitage 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper. In memory of my brother Thomas Turner Elkins, who, when I was 10 years old, taught me about the Oort cloud, and together we named our pet mouse Oort.
    [Show full text]
  • Planetary Science Decadal Survey 2009-2011
    PlanetaryPlanetary ScienceScience DecadalDecadal SurveySurvey 2009-20112009-2011 David H. Smith Space Studies Board, National Research Council Curation and Analysis Planning Team for Extraterrestrial Materials Houston, Texas, 6 October, 2009 OrganizationOrganization ofof thethe DecadalDecadal SurveySurvey SteeringSteering GroupGroup SteveSteve Squyres,Squyres, ChairChair LarryLarry SoderblomSoderblom,, ViceVice ChairChair ViceVice ChairsChairs ofof PanelsPanels 99 othersothers InnerInner PlanetsPlanets GiantGiant PlanetsPlanets PrimitivePrimitive BodiesBodies PanelPanel PanelPanel PanelPanel EllenEllen StofanStofan,, ChairChair HeidiHeidi Hammel,Hammel, ChairChair JosephJoseph VeverkaVeverka,, ChairChair StephenStephen MackwellMackwell,, ViceVice ChairChair AmyAmy Simon-Miller,Simon-Miller, ViceVice ChairChair HarryHarry Y.Y. McSweenMcSween,, ViceVice ChairChair 1010 othersothers 99 othersothers 1010 othersothers MarsMars GiantGiant PlanetPlanet SatellitesSatellites PanelPanel PanelPanel PhilipPhilip Christensen,Christensen, ChairChair JohnJohn Spencer,Spencer, ChairChair WendyWendy Calvin,Calvin, ViceVice ChairChair DavidDavid Stevenson,Stevenson, ViceVice ChairChair 1111 othersothers 1010 othersothers 2 OverallOverall ScheduleSchedule 2008-20112008-2011 2008 4th Quarter Informal request received, NRC approves initiation, Formal request received, Proposal to NASA. 2009 1st Quarter Funding received, Chair identified, Chair and vice chair appointed 2nd Quarter Steering Group appointed, Panels Appointed 3rd Quarter Meetings of the Steering
    [Show full text]
  • Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC
    DOCUMENT RESUME ED 312 131 SE 050 900 AUTHOR Morrison, David; Samz, Jane TITLE Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch. REPORT NO NASA-SP-439 PUB DATE 80 NOTE 208p.; Colored photographs and drawings may not reproduce well. AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 ($9.00). PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PC09 Plus Postage. DESCRIPTORS Aerospace Technology; *Astronomy; Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; Scientists; *Space Exploration; *Space Sciences IDENTIFIERS *Jupiter; National Aeronautics and Space Administration; *Voyager Mission ABSTRACT This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are:(1) "The Jovian System" (describing the history of astronomy);(2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4) "Science and Scientsts" (listing 11 science investigations and the scientists in the Voyager Mission);.(5) "The Voyage to Jupiter--Cetting There" (describing the launch and encounter phase);(6) 'The First Encounter" (showing pictures of Io and Callisto); (7) "The Second Encounter: More Surprises from the 'Land' of the Giant" (including pictures of Ganymede and Europa); (8) "Jupiter--King of the Planets" (describing the weather, magnetosphere, and rings of Jupiter); (9) "Four New Worlds" (discussing the nature of the four satellites); and (10) "Return to Jupiter" (providing future plans for Jupiter exploration). Pictorial maps of the Galilean satellites, a list of Voyager science teams, and a list of the Voyager management team are appended. Eight technical and 12 non-technical references are provided as additional readings.
    [Show full text]
  • Was Jupiter Born Beyond the Current Orbits of Neptune and Pluto?
    INNER WORKINGS INNER WORKINGS Was Jupiter born beyond the current orbits of Neptune and Pluto? Ken Croswell, Science Writer Ancient people named the planet Jupiter well. Both gravity stunted the growth of newborn Mars, sculpts its brilliance and its slow, regal movement across the the asteroid belt today, and may even help protect sky evoked a king among gods. Today we know much Earth from catastrophic comet impacts. more about the influence of Jupiter, a planet boasting But how did such a behemoth arise? Conventional more than twice as much mass as the solar system’s theory says that Jupiter formed more or less where it other planets put together. Jupiter’s tremendous is now, about five times farther from the Sun than A new theory suggests that Jupiter formed its core far from the Sun, then moved inward. Image credit: Hubble Space Telescope – NASA, ESA, and Amy Simon (NASA Goddard). Published under the PNAS license. First published July 1, 2020. 16716–16719 | PNAS | July 21, 2020 | vol. 117 | no. 29 www.pnas.org/cgi/doi/10.1073/pnas.2011609117 Downloaded by guest on September 29, 2021 Earth is. At that distance, the disk of gas and dust that swirled around the young Sun was dense enough to give birth to the planetary goliath. In 2019, however, two groups of researchers un- aware of each other’s work—one in America (1), the other in Europe (2)—proposed a literally far-out alter- native: Jupiter got its start in the solar system’s hinter- lands, probably beyond the current orbits of Neptune and Pluto, and then moved inward.
    [Show full text]