<<

Photochemistry in the Early Solar system: Summary of Observations and Explanations

E. D. Young

Department of Earth and Space Sciences UCLA

ÉCOLE DE PHYSIQUE Les Houches

UCLA fractionation

C16O

Reduced mass 17 controls frequency C O

Harold Maria Goeppert-Mayer

Harold Urey, J. Chem. Soc. (London) (1947)

J. Bigeleisen and M. G. Mayer, J. Chem. Phys. (1947)

UCLA Isotope fractionation

2 3N 3 3N 3 103 ⎛ h ⎞ ⎛ 1 1 ⎞ ⎡ a − K b − K ⎤ 17O 17O 103 ln 17/16 f , j,a f , j,b δ a − δ b ≅ α a−b = ⎜ ⎟ ⎜ − ⎟ ⎢ ∑ 2 − ∑ 2 ⎥ 24 ⎝ k T ⎠ ⎝ m m ⎠ j=1 4π j=1 4π b 16 17 ⎣⎢ ⎦⎥

2 3N 3 3N 3 103 ⎛ h ⎞ ⎛ 1 1 ⎞ ⎡ a − K b − K ⎤ 18O 18O 103 ln 18/16 f , j,a f , j,b δ a − δ b ≅ α a−b = ⎜ ⎟ ⎜ − ⎟ ⎢ ∑ 2 − ∑ 2 ⎥ 24 ⎝ k T ⎠ ⎝ m m ⎠ j=1 4π j=1 4π b 16 18 ⎣⎢ ⎦⎥

⎛ 1 1 ⎞ − 17O 17O ⎜ m m ⎟ δ a − δ b ⎝ 16 17 ⎠ Mass-dependent 18 18 = = 0.531 δ Oa − δ Ob ⎛ 1 1 ⎞ fractionation ⎜ − ⎟ ⎝ m16 m18 ⎠

UCLA Isotope fractionation

Oxygen Earth  " 

 " "  ! ! 

, % $! )!!&.'' !+ $ #!"$!) ', & " *(, !$ *#&" $! '$#-#&!



UCLA Robert N. Clayton

1973: oxygen isotope anomaly in meteorites (CAIs)

UCLA Slope = 1.0

UCLA Magnetite + Pentlandite ( Fe O + (Fe,Ni) S ) Slope = 1.0 3 4 9 8

Sun

Chondrule

UCLA Magnetite + Pentlandite ( Fe O + (Fe,Ni) S ) Slope = 1.0 3 4 9 8

Sun

Chondrule

UCLA Fluorination data for the solar system

Slope = 1.0

UCLA Fluorination data for the solar system

Slope = 1.0

UCLA Orgueil

UCLA Planetesimal hydrology:

Halley’s

UCLA 26Al (half life = 0.7 Myr) = heat source in the early solar system

26Al  26Mg* 3 26 27 Q = 6 x10 ( Al/ Al)! exp( λt) W/kg

Water ice melts, water flows

Hydrology not unlike terrestrial water-rock systems

UCLA Kinetic models for fluid flow Temperature

Palguta (UCLA, PhD)

Δ17O

After Young et al. (1999)

UCLA Kinetic models for fluid flow

After Young et al. (1999)

UCLA Explanations:

UCLA Galactic Chemical Evolution Preserved in Dust and Gas (e.g., D.D. Clayton 1988; Jacobsen et al. 2007)

Relative to gas, i.e. the Sun!

UCLA Galactic Chemical Evolution Preserved in Dust and Gas (e.g., D.D. Clayton 1988; Jacobsen et al. 2007)

Relative to gas, i.e. the Sun!

Inconsistent with Genesis result!

UCLA Galactic Chemical Evolution Preserved in Dust and Gas (Krot et al., 2010)

Differentiated asteroids formed early but are 16O poor.

Young (2011, MetSoc)

UCLA Galactic Chemical Evolution Preserved in Dust and Gas: Dust was 16O poor? (Krot et al., 2010)

1 Original dust

?

3

2

UCLA Two-stage alternative:

3

Aqueous alteration

2

Original dust 1

UCLA Galactic Chemical Evolution or Simply Aqueous Alteration?

UCLA Intramolecular disequilibrium (Non-RRKM) effects

Mass-independent fractionation (MIF) Thiemens and others, since 1983

UCLA Intramolecular disequilibrium (Non-RRKM) effects

Thiemens (2006)

UCLA Intramolecular disequilibrium (Non-RRKM) effects

Rudolph A. Marcus proposes, with coworkers (1999 to 2004): -A mechanism for the ozone mass independent fractionation (MIF) effect -Departure from intramolecular equilibrium in the vibrationally excited state of the symmetrical isotopologue -The so-called η effect…(non RRKM) 16 16 symmetric 16 O2 16 16 16 O3*

O17 2 17 asymmetric 16 O2 16 16 O 16 O3* 3

UCLA Intramolecular disequilibrium (Non-RRKM) effects

Marcus (2004) – analogous to ozone but mediated by grain surfaces…

rock rock

k4 k4 Si16O+16O Si17,18O+16O

ksym kasym

k1 k1 16 16 16 16 17,18 17,18 16 O + Si O Si O2* O + Si O Si O O* k2 Dusty disk environment grain surfaces

UCLA Intramolecular disequilibrium (Non-RRKM) effects

Marcus (2004) – analogous to ozone but mediated by grain surfaces…

rock rock

k4 k4 Si16O+16O Si17,18O+16O

ksym kasym

k1 k1 16 16 16 16 17,18 17,18 16 O + Si O Si O2* O + Si O Si O O* k2 Dusty disk environment grain surfaces

No experimental confirmation as of yet!

UCLA UCLA z N = n (Z)dz i ∫ i 0

UCLA π e2 σν = φν fν mec

UCLA I λ (N ) o = ∏Θi i Iλ i

= ∏ exp(−τ i ) i

= ∏ exp(−σ i Ni ) i

UCLA  k = J ∏ exp(−τ i ) i exp(−σ N′) k′ ∏ i i α = = i k ∏ exp(−σ i Ni′) i

UCLA UCLA CO photodissociation self shielding

o − τ Iν / Iν = e

τ C16O = 1 CO column

UV (C16O) C16O + hν  C + 16O C16O

UCLA CO photodissociation self shielding

o − τ Iν / Iν = e

τ C16O = 1 τ C18O = 1 CO column

UV (C16O) C16O + hν  C + 16O C16O C16O

18 18 18 18 18 18 18 18 UV (C O) C O + hν  C + O C + O, O + H2  OH + H  H2 O C O

No fractionation 18O enriched O ~opaque

UCLA CO photodissociation self shielding

o − τ Iν / Iν = e

τ C16O = 1 τ C18O = 1 τ C17O = 1 CO column

UV (C16O) C16O + hν  C + 16O C16O C16O

18 18 18 18 18 18 18 18 UV (C O) C O + hν  C + O C + O, O + H2  OH + H  H2 O C O

17 17 17 17 17 17 17 17 UV (C O) C O + hν  C + O C + O, O + H2  OH + H  H2 O C O

No fractionation 18O, 17O enriched O ~opaque

UCLA Yurimoto and Kuramoto (2004) Lyons and Young (2005)

Clayton (2002)

Young ( 2007) UCLA Chakraborty et al. (2009)

UCLA UCLA UCLA Infamous band 31 160K

100K

UCLA Inner Edge of Disk Clayton (2002)

UCLA Inner Edge of Disk Clayton (2002)

Depletion of CO is very rapid!

UCLA ~ solar-mass star formation Molecular Cloud Yurimoto and Kuramoto (2004)

UV Dense 5 -3 cores, nH~ 10 cm Massive stars UV, CQ

UV, CO

-3 -3 nH< 10 cm Self shielding UV, CQ

UV, CO

Ionization front

Molecular cloud

UCLA Molecular Cloud

Lee et al. (2008)

UCLA Disk Surfaces

Young (2007)

UCLA Disk Surfaces

UCLA Disk Surfaces

UCLA Disk Surfaces Young (2007)

UCLA Disk Surfaces Reaction network – oxygen isotopologues 7603 reactions, 546 species, oxygen isotopologues, gas-grain reactions

UCLA Disk Surfaces Young (2007)

UCLA Calculated H2O evolution in the early solar system

Young (2007)

UCLA UCLA CO → C + O

O + H2 → OH + H OH + H → H2O

UCLA CO → C + O

O + H2 → OH + H OH + H → H2O

Equations Input transport rate constants

-7 -1 6 1 k4-1= 10 yr (10 yr OK, disk drains faster)

-5 -1 k3-4 = 10 yr (R/100 AU) (Hartmann, 2000) k4-3 = k3-4/10 (radial mixing) k3-4(H2O) > k3-4 (Cuzzi and Zahnle, 2004)

k3-2 = k2-3 ~ 1/(Ωα) (Ω = angular velocity)

2 1 -4 -1 R = 20 AU, α = 10 , (τv ) = 1x10 yr

UCLA Steady-state surface layer

Young (2007)

UCLA O 18 O = δ 17 δ

UCLA Is there a D/H signature of inward H2O migration?

Bergin (2009) Aikawa et al. (2002)

UCLA H2O gas – dust grain collision frequency Timescale for oxygen isotopic equilibration of dust

H2O gas "coll

"Diff

18 O 16O Self diffusion of O in dust grain dust grain

UCLA Timescale for oxygen isotopic equilibration of dust

H2O gas "coll

"Diff

18 O 16O τ Diff (yrs) dust grain

UCLA Timescale for oxygen isotopic equilibration of melt

-3 -4 1 mm chondrule, 10 bar total pressure, P H2O /PH2 = 2x10

H2O gas 25 "coll t total 20 Self diffusion Collisional limit "Diff (hrs) t 15 18 O 16O τ Diff (hrs) 10 dust grain O resetting timescale 5

1400 1500 1600 1700 1800 1900 2000

T (K)

UCLA CR CC EC IDP CM amino acids CM insoluble org.

Hashizumet et al. (2004)

UCLA Marty et al. (2011)

UCLA Marty et al. (2011)

UCLA Comet CN, HCN Solar wind Jupiter IDPs Earth CM organics ISM Solar Photosphere

UCLA CR CC EC IDP CM amino acids Parent body CM insoluble org.

Photochemistry

Hashizumet et al. (2004)

UCLA