Microbiology (2009), 155, 3799–3809 DOI 10.1099/mic.0.035238-0 Review Fungal physiology and the origins of molecular biology Robert Brambl Correspondence Department of Plant Biology, The University of Minnesota, 250 Biological Sciences Center, Saint Robert Brambl Paul, MN 55108, USA
[email protected] Molecular biology has several distinct origins, but especially important are those contributed by fungal and yeast physiology, biochemistry and genetics. From the first gene action studies that became the basis of our understanding of the relationship between genes and proteins, through chromosome structure, mitochondrial genetics and membrane biogenesis, gene silencing and circadian clocks, studies with these organisms have yielded basic insight into these processes applicable to all eukaryotes. Examples are cited of pioneering studies with fungi that have stimulated new research in clinical medicine and agriculture; these studies include sexual interactions, cell stress responses, the cytoskeleton and pathogenesis. Studies with the yeasts and fungi have been effective in applying the techniques and insights gained from other types of experimental systems to research in fungal cell signalling, cell development and hyphal morphogenesis. The early years of biochemical genetics Neurospora crassa, as Norman Horowitz reminded us, this experimental approach and its reductionist interpretation In the late 1940s Jackson W. Foster published a treatise on were not widely accepted at the time (Horowitz, 1991). fungal physiology in which he marvelled at the progress Geneticists and biologists in general were uncomfortable that had been made in the most recent years, in the decade with simple interpretations of complex phenomena; the following his graduate study in S. A. Waksman’s labor- idea that a mutant phenotype was anything more than a atory.