Q–Chem User's Manual

Total Page:16

File Type:pdf, Size:1020Kb

Q–Chem User's Manual Q{Chem User's Manual Version 3.0 March 2006 Version 3.0 April 2006 Q-Chem User's Guide This edition edited by: Dr Andrew Gilbert Contributions from: Greg Beran (Coupled{cluster active space methods) Prof. Dan Chipman and Dr Shawn T. Brown (SS(V)PE solvation model) Dr Laszlo Fusti{Molnar (Fourier Transform Coulomb Method) Prof. Martin Head{Gordon (Auxiliary bases, SOS MP2, perfect and imperfect pairing) Dr John Herbert (Ab initio dynamics, Born{Oppenheimer dynamics) Dr Jing Kong (Fast XC calculations) Prof. Anna Krylov (EOM methods) Dr Joerg Kussman and Prof. Dr Christian Ochsenfeld (Linear scaling NMR and optical properties) Dr Ching Yeh Lin (Anharmonic Corrections) Rohini Lochan (SOS and MOS{MP2) Prof. Vitaly Rassolov (Geminal Models) Ryan Steele (Dual basis methods) Dr Yihan Shao (Integral algorithm improvements, QM{MM and improved TS finder) This is a revised and expanded version of the previous (2.1) edition, written by: Dr Jeremy Dombroski Prof. Martin Head-Gordon Dr Andrew Gilbert Published by: Customer Support: Q-Chem, Inc. Telephone: (724) 325-9969 5001 Baum Blvd Facsimile: (724) 325-9560 Suite 690 email: [email protected] Pittsburgh, PA 15213 website: http://www.q{chem.com Q-Chem is a trademark of Q{Chem, Inc. All rights reserved. The information in this document applies to version 3.0 of Q-Chem. This document version generated on October 9, 2006. Copyright 2006 Q-Chem, Inc. This document is protected under the U.S. Copyright Act of 1976 and state trade secret laws. Unauthorized disclosure, reproduction, distribution, or use is prohibited and may violate federal and state laws. Contents 1 Introduction 1 1.1 About this Manual . 1 1.2 Chapter Summaries . 1 1.3 Contact Information . 2 1.3.1 Customer Support . 2 1.4 Q-Chem, Inc. 2 1.5 Company Mission . 2 1.6 Q-Chem Features . 3 1.6.1 New Features in Q-Chem 3.0 . 3 1.6.2 Summary of Existing Methods and Features . 5 1.7 Highlighted Features . 7 1.7.1 COLD PRISM . 7 1.7.2 Continuous Fast Multipole Method (CFMM) . 7 1.7.3 Parallel Computing . 7 1.7.4 Local MP2 . 7 1.7.5 High Level Coupled Cluster Methods . 8 1.7.6 Continuum Solvation Models . 8 1.7.7 Optimize . 8 1.7.8 Spartan . 8 1.8 Current Development and Future Releases . 8 1.9 Citing Q-Chem . 9 2 Installation 10 2.1 Q-Chem Installation Requirements . 10 2.1.1 Execution Environment . 10 2.1.2 Hardware Platforms and Operating Systems . 10 2.1.3 Memory and Hard Disk . 10 2.2 Installing Q-Chem . 11 CONTENTS iv 2.3 Environment Variables . 12 2.4 User Account Adjustments . 12 2.4.1 Example .login File Modifications . 12 2.5 The qchem.setup File . 13 2.6 Running Q-Chem . 13 2.6.1 Serial Q-Chem . 14 2.6.2 Parallel Q-Chem . 14 2.7 Testing and Exploring Q-Chem . 15 3 Q-Chem Inputs 16 3.1 General Form . 16 3.2 Molecular Coordinate Input ( ¡ molecule) . 17 3.2.1 Reading Molecular Coordinates From a Previous Calculation . 18 3.2.2 Reading molecular Coordinates from another file . 19 3.3 Cartesian Coordinates . 19 3.3.1 Examples . 19 3.4 Z {matrix Coordinates . 20 3.4.1 Dummy atoms . 22 3.5 Job Specification: The ¡ rem Array Concept . 22 3.6 ¡ rem Array Format in Q-Chem Input . 23 3.7 Minimum ¡ rem Array Requirements . 23 3.8 User–defined basis set ( ¡ basis) . 24 3.9 Comments ( ¡ comment) . 24 3.10 User–defined Pseudopotentials ( ¡ ecp) . 24 3.11 Addition of External Charges ( ¡ external charges) . 24 3.12 Intracules ( ¡ intracule) . 24 3.13 Isotopic substitutions ( ¡ isotopes) . 24 3.14 Applying a Multipole Field ( ¡ multipole field) . 25 3.15 Natural Bond Orbital Package ( ¡ nbo) . 25 3.16 User–defined occupied guess orbitals ( ¡ occupied) . 25 3.17 Geometry Optimization with General Constraints ( ¡ opt) . 25 ¡ 3.18 SS(V)PE Solvation Modeling ( ¡ svp and svpirf ) . 25 3.19 Orbitals, Densities and ESPs On a Mesh ( ¡ plots) . 26 3.20 User–defined Van der Waals Radii ( ¡ van der waals) . 26 3.21 User–defined exchange{correlation Density Functionals ( ¡ xc functional) . 26 3.22 Multiple Jobs in a Single File: Q-Chem Batch Job Files . 26 CONTENTS v 3.23 Q-Chem Output File . 28 3.24 Q-Chem Scratch Files . 29 4 Self{Consistent Field Ground State Methods 30 4.1 Introduction . 30 4.1.1 Overview of Chapter . 30 4.1.2 Theoretical Background . 31 4.2 Hartree{Fock Calculations . 33 4.2.1 The Hartree{Fock Equations . 33 4.2.2 Wavefunction Stability Analysis . 35 4.2.3 Basic Hartree{Fock Job Control . 36 4.2.4 Additional Hartree{Fock Job Control Options . 39 4.2.5 Examples . 41 4.2.6 Symmetry . 42 4.3 Density Functional Theory . 43 4.3.1 Introduction . 43 4.3.2 Kohn{Sham Density Functional Theory . 44 4.3.3 Exchange{Correlation Functionals . 45 4.3.4 DFT Numerical Quadrature . 47 4.3.5 Angular Grids . 47 4.3.6 Standard Quadrature Grids . 48 4.3.7 Consistency Check and Cutoffs for Numerical Integration . 49 4.3.8 Basic DFT Job Control . 49 4.3.9 User–Defined Density Functionals . 51 4.3.10 Example . 52 4.4 Large Molecules and Linear Scaling Methods . 52 4.4.1 Introduction . 52 4.4.2 Continuous Fast Multipole Method (CFMM) . 53 4.4.3 Linear Scaling Exchange (LinK) Matrix Evaluation . 55 4.4.4 Incremental and Variable Thresh Fock Matrix Building . 56 4.4.5 Incremental DFT . 57 4.4.6 Fourier Transform Coulomb Method . 59 4.4.7 Examples . 60 4.5 SCF Initial Guess . 61 4.5.1 Introduction . 61 4.5.2 Simple Initial Guesses . 62 CONTENTS vi 4.5.3 Reading MOs from Disk . 63 4.5.4 Modifying the Occupied Molecular Orbitals . 64 4.5.5 Basis Set Projection . 65 4.5.6 Examples . 66 4.6 Converging SCF Calculations . 68 4.6.1 Introduction . ..
Recommended publications
  • MODELLER 10.1 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.1, r12156 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/03/12 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • Correlation.Pdf
    INTRODUCTION TO THE ELECTRONIC CORRELATION PROBLEM PAUL E.S. WORMER Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands Contents 1 Introduction 2 2 Rayleigh-SchrÄodinger perturbation theory 4 3 M¿ller-Plesset perturbation theory 7 4 Diagrammatic perturbation theory 9 5 Unlinked clusters 14 6 Convergence of MP perturbation theory 17 7 Second quantization 18 8 Coupled cluster Ansatz 21 9 Coupled cluster equations 26 9.1 Exact CC equations . 26 9.2 The CCD equations . 30 9.3 CC theory versus MP theory . 32 9.4 CCSD(T) . 33 A Hartree-Fock, Slater-Condon, Brillouin 34 B Exponential structure of the wavefunction 37 C Bibliography 40 1 1 Introduction These are notes for a six hour lecture series on the electronic correlation problem, given by the author at a Dutch national winterschool in 1999. The main purpose of this course was to give some theoretical background on the M¿ller-Plesset and coupled cluster methods. Both computational methods are available in many quantum chemical \black box" programs. The audi- ence consisted of graduate students, mostly with an undergraduate chemistry education and doing research in theoretical chemistry. A basic knowledge of quantum mechanics and quantum chemistry is pre- supposed. In particular a knowledge of Slater determinants, Slater-Condon rules and Hartree-Fock theory is a prerequisite of understanding the following notes. In Appendix A this theory is reviewed briefly. Because of time limitations hardly any proofs are given, the theory is sketchily outlined. No attempt is made to integrate out the spin, the theory is formulated in terms of spin-orbitals only.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • GROMACS: Fast, Flexible, and Free
    GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs.
    [Show full text]
  • Open Data, Open Source, and Open Standards in Chemistry: the Blue Obelisk Five Years On" Journal of Cheminformatics Vol
    Oral Roberts University Digital Showcase College of Science and Engineering Faculty College of Science and Engineering Research and Scholarship 10-14-2011 Open Data, Open Source, and Open Standards in Chemistry: The lueB Obelisk five years on Andrew Lang Noel M. O'Boyle Rajarshi Guha National Institutes of Health Egon Willighagen Maastricht University Samuel Adams See next page for additional authors Follow this and additional works at: http://digitalshowcase.oru.edu/cose_pub Part of the Chemistry Commons Recommended Citation Andrew Lang, Noel M O'Boyle, Rajarshi Guha, Egon Willighagen, et al.. "Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on" Journal of Cheminformatics Vol. 3 Iss. 37 (2011) Available at: http://works.bepress.com/andrew-sid-lang/ 19/ This Article is brought to you for free and open access by the College of Science and Engineering at Digital Showcase. It has been accepted for inclusion in College of Science and Engineering Faculty Research and Scholarship by an authorized administrator of Digital Showcase. For more information, please contact [email protected]. Authors Andrew Lang, Noel M. O'Boyle, Rajarshi Guha, Egon Willighagen, Samuel Adams, Jonathan Alvarsson, Jean- Claude Bradley, Igor Filippov, Robert M. Hanson, Marcus D. Hanwell, Geoffrey R. Hutchison, Craig A. James, Nina Jeliazkova, Karol M. Langner, David C. Lonie, Daniel M. Lowe, Jerome Pansanel, Dmitry Pavlov, Ola Spjuth, Christoph Steinbeck, Adam L. Tenderholt, Kevin J. Theisen, and Peter Murray-Rust This article is available at Digital Showcase: http://digitalshowcase.oru.edu/cose_pub/34 Oral Roberts University From the SelectedWorks of Andrew Lang October 14, 2011 Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on Andrew Lang Noel M O'Boyle Rajarshi Guha, National Institutes of Health Egon Willighagen, Maastricht University Samuel Adams, et al.
    [Show full text]
  • The Alexandria Library, a Quantum-Chemical Database of Molecular Properties for Force field Development 9 2017 Received: October 1 1 1 Mohammad M
    www.nature.com/scientificdata OPEN Data Descriptor: The Alexandria library, a quantum-chemical database of molecular properties for force field development 9 2017 Received: October 1 1 1 Mohammad M. Ghahremanpour , Paul J. van Maaren & David van der Spoel Accepted: 19 February 2018 Published: 10 April 2018 Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules. Design Type(s) data integration objective • molecular physical property analysis objective Measurement Type(s) physicochemical characterization Technology Type(s) Computational Chemistry Factor Type(s) Sample Characteristic(s) 1 Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden. Correspondence and requests for materials should be addressed to D.v.d.S. (email: [email protected]).
    [Show full text]
  • Effective Hamiltonians Derived from Equation-Of-Motion Coupled-Cluster
    Effective Hamiltonians derived from equation-of-motion coupled-cluster wave-functions: Theory and application to the Hubbard and Heisenberg Hamiltonians Pavel Pokhilkoa and Anna I. Krylova a Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 Effective Hamiltonians, which are commonly used for fitting experimental observ- ables, provide a coarse-grained representation of exact many-electron states obtained in quantum chemistry calculations; however, the mapping between the two is not triv- ial. In this contribution, we apply Bloch's formalism to equation-of-motion coupled- cluster (EOM-CC) wave functions to rigorously derive effective Hamiltonians in the Bloch's and des Cloizeaux's forms. We report the key equations and illustrate the theory by examples of systems with electronic states of covalent and ionic characters. We show that the Hubbard and Heisenberg Hamiltonians are extracted directly from the so-obtained effective Hamiltonians. By making quantitative connections between many-body states and simple models, the approach also facilitates the analysis of the correlated wave functions. Artifacts affecting the quality of electronic structure calculations such as spin contamination are also discussed. I. INTRODUCTION Coarse graining is commonly used in computational chemistry and physics. It is ex- ploited in a number of classic models serving as a foundation of modern solid-state physics: tight binding[1, 2], Drude{Sommerfeld's model[3{5], Hubbard's [6] and Heisenberg's[7{9] Hamiltonians. These models explain macroscopic properties of materials through effective interactions whose strengths are treated as model parameters. The values of these pa- rameters are determined either from more sophisticated theoretical models or by fitting to experimental observables.
    [Show full text]
  • A Web-Based 3D Molecular Structure Editor and Visualizer Platform
    Mohebifar and Sajadi J Cheminform (2015) 7:56 DOI 10.1186/s13321-015-0101-7 SOFTWARE Open Access Chemozart: a web‑based 3D molecular structure editor and visualizer platform Mohamad Mohebifar* and Fatemehsadat Sajadi Abstract Background: Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimen- sional structures of molecules. Results: With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user- friendly interface is composed. More than 30 packages are used to compose this application which adds enough flex- ibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Conclusions: Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (applica- tion programming interface). JavaScript libraries which allow creation of web pages containing interactive three- dimensional molecular structures has also been made available.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Bornologically Isomorphic Representations of Tensor Distributions
    Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products.
    [Show full text]
  • Getting Started in Jmol
    Getting Started in Jmol Part of the Jmol Training Guide from the MSOE Center for BioMolecular Modeling Interactive version available at http://cbm.msoe.edu/teachingResources/jmol/jmolTraining/started.html Introduction Physical models of proteins are powerful tools that can be used synergistically with computer visualizations to explore protein structure and function. Although it is interesting to explore models and visualizations created by others, it is much more engaging to create your own! At the MSOE Center for BioMolecular Modeling we use the molecular visualization program Jmol to explore protein and molecular structures in fully interactive 3-dimensional displays. Jmol a free, open source molecular visualization program used by students, educators and researchers internationally. The Jmol Training Guide from the MSOE Center for BioMolecular Modeling will provide the tools needed to create molecular renderings, physical models using 3-D printing technologies, as well as Jmol animations for online tutorials or electronic posters. Examples of Proteins in Jmol Jmol allows users to rotate proteins and molecular structures in a fully interactive 3-dimensional display. Some sample proteins designed with Jmol are shown to the right. Hemoglobin Proteins Insulin Proteins Green Fluorescent safely carry oxygen in the help regulate sugar in Proteins create blood. the bloodstream. bioluminescence in animals like jellyfish. Downloading Jmol Jmol Can be Used in Two Ways: 1. As an independent program on a desktop - Jmol can be downloaded to run on your desktop like any other program. It uses a Java platform and therefore functions equally well in a PC or Mac environment. 2. As a web application - Jmol has a web-based version (oftern refered to as "JSmol") that runs on a JavaScript platform and therefore functions equally well on all HTML5 compatible browsers such as Firefox, Internet Explorer, Safari and Chrome.
    [Show full text]
  • Solution: the First Element of the Dual Basis Is the Linear Function Α
    Homework assignment 7 pp. 105 3 Exercise 2. Let B = f®1; ®2; ®3g be the basis for C defined by ®1 = (1; 0; ¡1) ®2 = (1; 1; 1) ®3 = (2; 2; 0): Find the dual basis of B. Solution: ¤ The first element of the dual basis is the linear function ®1 such ¤ ¤ ¤ that ®1(®1) = 1; ®1(®2) = 0 and ®1(®3) = 0. To describe such a function more explicitly we need to find its values on the standard basis vectors e1, e2 and e3. To do this express e1; e2; e3 through ®1; ®2; ®3 (refer to the solution of Exercise 1 pp. 54-55 from Homework 6). For each i = 1; 2; 3 you will find the numbers ai; bi; ci such that e1 = ai®1 + bi®2 + ci®3 (i.e. the coordinates of ei relative to the ¤ ¤ ¤ basis ®1; ®2; ®3). Then by linearity of ®1 we get that ®1(ei) = ai. Then ®2(ei) = bi, ¤ and ®3(ei) = ci. This is the answer. It can also be reformulated as follows. If P is the transition matrix from the standard basis e1; e2; e3 to ®1; ®2; ®3, i.e. ¡1 t (®1; ®2; ®3) = (e1; e2; e3)P , then (P ) is the transition matrix from the dual basis ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡1 t e1; e2; e3 to the dual basis ®1; ®2; a3, i.e. (®1; ®2; a3) = (e1; e2; e3)(P ) . Note that this problem is basically the change of coordinates problem: e.g. ¤ 3 the value of ®1 on the vector v 2 C is the first coordinate of v relative to the basis ®1; ®2; ®3.
    [Show full text]