Xray Diffraction and Absorption

Total Page:16

File Type:pdf, Size:1020Kb

Xray Diffraction and Absorption Xray Di®raction and Absorption Experiment XDA University of Florida | Department of Physics PHY4803L | Advanced Physics Laboratory Objective cesses simultaneously produce xrays. First, the deceleration of beam electrons from colli- The di®raction of xrays from single crystals sions with the target produce a broad contin- and powdered crystalline samples will be in- uum of radiation called bremsstrahlung (brak- vestigated along with the emission and absorp- ing radiation) having a short wavelength limit tion of xrays by high Z metals. The di®rac- that arises because the energy of the photon tion patterns show sharp maxima (peaks) at hc=¸ can be no larger than the kinetic energy characteristic angles that depend on the wave- of the electron. Second, beam electrons can length of the xrays and the structure of the knock atomic electrons in the target out of in- crystal. A Geiger-MÄullertube is used to de- ner shells. When electrons from higher shells tect the intensity of the di®racted xrays versus fall into the vacant inner shells, a series of dis- scattering angle. Crystal properties are deter- crete xrays lines characteristic of the target mined from the angular position and intensity material are emitted. of the peaks. In our machine, which has a copper target, only two emission lines are of appreciable in- References tensity. Copper K® xrays (¸ = 0:1542 nm) Generally look in the QC481 and QD945 sec- are produced when an n = 2 electron makes tions. a transition to a vacancy in the n = 1 shell. A weaker K¯ xray with a shorter wavelength A. H. Compton and S. K. Allison, Xrays in (¸ = 0:1392 nm) occurs when the vacancy is Theory and Experiment ¯lled by an n = 3 electron. The reverse process of xray absorption by C. Kittel, Introduction to Solid State Physics an atom also occurs if the xray has either B. D. Cullity, Elements of Xray Di®raction an energy exactly equal to the energy di®er- ence between an energy level occupied by an Teltron manual, The Production, Properties, atomic electron and a vacant upper energy and Uses of Xrays level, or an energy su±cient to eject the atomic electron (ionization). For the xray energies Xray Emission and Absorption and metals considered in this experiment, the ionization of a K-shell electron is the domi- When an electron beam of energy around nant mechanism when the xray energy is high 20 kV strikes a metal target, two di®erent pro- enough, which leads to a complete absorption XDA 1 XDA 2 Advanced Physics Laboratory JODVVÃGRPH [UD\ÃWXEH 2θθθ θθθ θθθ d θθθ ÃPPÃVOLW &XÃDQRGH VDPSOH WDEOH FOXWFK d sin θθθ VFULEH SODWH OLQH FU\VWDO *0ÃWXEH θ GHWHFWRU Figure 1: The ray reflected from the second plane ÃPPÃVOLW DUP must travel an extra distance 2d sin θ. ÃPPÃVOLW of the initial xray photon and the ejection of 1 θ an electron|a process known as the photoelec- tric e®ect). If an xray does not have enough energy to cause a transition or to ionize an Figure 2: The xray di®raction apparatus. atom, the only available energy loss mecha- nism is Compton scattering. Constructive interference of the reflected waves occurs when this distance is an integral of the wavelength. The Bragg condition for The Xray Di®ractometer the angles of the di®raction peaks is thus: Thus, the spectrum of xrays from an xray n¸ = 2d sin θ (1) tube consists of the discrete lines superim- posed on the bremsstrahlung continuum. This where n is an integer called the order of di®rac- spectrum can be analyzed in much the same tion. Note also that the lattice planes, i.e., the way that a visible spectrum is analyzed using crystal, must be properly oriented for the re- a grating. Because xrays have much smaller flection to occur. This aspect of xray di®rac- wavelengths than visible light, the grating tion is sometimes used to orient single crystals spacing must be much smaller. A single crys- and determine crystal axes. tal with its regularly spaced, parallel planes Our apparatus is shown schematically in of atoms is often used as a grating for xray Fig. 2. The xrays from the tube are collimated spectroscopy. to a ¯ne beam (thick line) and reflect from the The incident xray wave is reflected spec- crystal placed on the sample table. The de- ularly (mirror-like) as it leaves the crystal tector, a Geiger-MÄuller(GM) tube, is placed planes, but most of the wave energy continues behind collimating slits on the detector arm through to subsequent planes where additional which can be placed at various scattering an- reflected waves are produced. Then, as shown gles 2θ. In order to obey the Bragg condition, in the ray diagram of Fig. 1 where the plane the crystal must rotate to an angle θ when the spacing is denoted d, the path length di®er- detector is at an angle 2θ. This θ : 2θ relation- ence for waves reflected from successive planes ship is maintained by gears under the sample is 2d sin θ. Note that the scattering angle (the table. angle between the original and outgoing rays) Assuming d is known (from tables of crystal is 2θ. spacings), the wavelength ¸ of xrays detected February 12, 2007 Xray Di®raction and Absorption XDA 3 at a scattering angle 2θ can be obtained from Eq. 1. Powder Di®raction An ideal crystal is an in¯nite, 3-dimensional, periodic array of identical structural units. The periodic array is called the lattice. Each y point in this array is called a lattice point. ( y The structural unit|a grouping of atoms or ( molecules|attached to each lattice point is y ( called the basis and is identical in composi- tion, arrangement, and orientation. A crystal thus consists of a basis of atoms at each lattice Figure 3: The simple cubic lattice points (dots) point. This can be expressed: and connecting lines showing the cubic structure. lattice + basis = crystal (2) points at the same positions as those of the The general theoretical treatment for the sc lattice but it has additional lattice points determination of the di®racted xrays|their at the center of each unit square (cube face) angles and intensities|was ¯rst derived by de¯ned by the grid. Laue. Starting with Huygens' principal, it in- volves constructions such as the Fourier trans- A primitive unit cell is a volume contain- form of the crystal's electron distribution and ing a single lattice point that when suitably develops the concept of the reciprocal lattice. arrayed at each lattice point completely ¯lls The interested student is encouraged to ex- all space. The number of atoms in a primi- plore the Laue treatment. (See Introduction to tive unit cell is thus equal to the number of Solid State Physics, by Charles Kittel.) How- atoms in the basis. (There are many ways of ever, we will only explore crystals that can be choosing a primitive unit cell.) The primitive described with a cubic lattice for which a sim- unit cell for the sc lattice is most conveniently pler treatment is su±cient. taken as a cube of side a0. a0 is called the There are three types of cubic lattices: lattice spacing or lattice constant. the simple cubic (sc), the body-centered cu- The bcc and fcc primitive unit cells (rhom- bic (bcc) and the face-centered cubic (fcc). bohedra) will not be used. Instead, bcc and The simple cubic has lattice points equally fcc crystals will be treated using the sc lat- spaced on a three dimensional Cartesian grid tice and sc unit cell (which would then not be as shown by the dots in Fig. 3. As a viewing primitive). aid the lattice points are connected by lines A crystal is completely described by speci- showing the cubic nature of the lattice. fying the lattice (sc, bcc, or fcc) and the po- The body-centered cubic lattice has lattice sition of each atom in the basis relative to a points at the same positions as those of the single lattice point. For the sc lattice, the basis sc lattice and additional lattice points at the atom positions are speci¯ed by their relative center of each unit cube de¯ned by the grid. Cartesian coordinates (u; v; w) within the sc The face-centered cubic lattice also has lattice unit cell. u, v, and w are given in units of the February 12, 2007 XDA 4 Advanced Physics Laboratory lattice spacing a0, so that, for example, the turns out that the spacings for all possible lat- body-centered position would be described by tice planes in the sc lattice can be represented the relative coordinates (u; v; w) = ( 1 ; 1 ; 1 ). by 2 2 2 a When a sc lattice is used to describe a bcc d(hkl) = np 0 (3) or fcc crystal, one still speci¯es the position h2 + k2 + l2 of atoms using relative coordinates (u; v; w). where hkl are integers{called the Miller in- But all atoms within the sc unit cell must be dices and n is an integer. Together with Eq. 1 given|including the extra basis atoms that this leads to the Bragg scattering relation giv- would occur at the body-centered or face- ing the angular position of the Bragg peaks centered positions, respectively. 2a ¸ = p 0 sin θ: (4) If the unit cell is taken so that its corners h2 + k2 + l2 are at lattice points, each corner lattice point The Miller indices are used to classify the is shared among the eight cells that meet at possible reflections as shown in Fig.
Recommended publications
  • Classical and Modern Diffraction Theory
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3701993/frontmatter.pdf by guest on 29 September 2021 Classical and Modern Diffraction Theory Edited by Kamill Klem-Musatov Henning C. Hoeber Tijmen Jan Moser Michael A. Pelissier SEG Geophysics Reprint Series No. 29 Sergey Fomel, managing editor Evgeny Landa, volume editor Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3701993/frontmatter.pdf by guest on 29 September 2021 Society of Exploration Geophysicists 8801 S. Yale, Ste. 500 Tulsa, OK 74137-3575 U.S.A. # 2016 by Society of Exploration Geophysicists All rights reserved. This book or parts hereof may not be reproduced in any form without permission in writing from the publisher. Published 2016 Printed in the United States of America ISBN 978-1-931830-00-6 (Series) ISBN 978-1-56080-322-5 (Volume) Library of Congress Control Number: 2015951229 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3701993/frontmatter.pdf by guest on 29 September 2021 Dedication We dedicate this volume to the memory Dr. Kamill Klem-Musatov. In reading this volume, you will find that the history of diffraction We worked with Kamill over a period of several years to compile theory was filled with many controversies and feuds as new theories this volume. This volume was virtually ready for publication when came to displace or revise previous ones. Kamill Klem-Musatov’s Kamill passed away. He is greatly missed. new theory also met opposition; he paid a great personal price in Kamill’s role in Classical and Modern Diffraction Theory goes putting forth his theory for the seismic diffraction forward problem.
    [Show full text]
  • Intensity of Double-Slit Pattern • Three Or More Slits
    • Intensity of double-slit pattern • Three or more slits Practice: Chapter 37, problems 13, 14, 17, 19, 21 Screen at ∞ θ d Path difference Δr = d sin θ zero intensity at d sinθ = (m ± ½ ) λ, m = 0, ± 1, ± 2, … max. intensity at d sinθ = m λ, m = 0, ± 1, ± 2, … 1 Questions: -what is the intensity of the double-slit pattern at an arbitrary position? -What about three slits? four? five? Find the intensity of the double-slit interference pattern as a function of position on the screen. Two waves: E1 = E0 sin(ωt) E2 = E0 sin(ωt + φ) where φ =2π (d sin θ )/λ , and θ gives the position. Steps: Find resultant amplitude, ER ; then intensities obey where I0 is the intensity of each individual wave. 2 Trigonometry: sin a + sin b = 2 cos [(a-b)/2] sin [(a+b)/2] E1 + E2 = E0 [sin(ωt) + sin(ωt + φ)] = 2 E0 cos (φ / 2) cos (ωt + φ / 2)] Resultant amplitude ER = 2 E0 cos (φ / 2) Resultant intensity, (a function of position θ on the screen) I position - fringes are wide, with fuzzy edges - equally spaced (in sin θ) - equal brightness (but we have ignored diffraction) 3 With only one slit open, the intensity in the centre of the screen is 100 W/m 2. With both (identical) slits open together, the intensity at locations of constructive interference will be a) zero b) 100 W/m2 c) 200 W/m2 d) 400 W/m2 How does this compare with shining two laser pointers on the same spot? θ θ sin d = d Δr1 d θ sin d = 2d θ Δr2 sin = 3d Δr3 Total, 4 The total field is where φ = 2π (d sinθ )/λ •When d sinθ = 0, λ , 2λ, ..
    [Show full text]
  • Light and Matter Diffraction from the Unified Viewpoint of Feynman's
    European J of Physics Education Volume 8 Issue 2 1309-7202 Arlego & Fanaro Light and Matter Diffraction from the Unified Viewpoint of Feynman’s Sum of All Paths Marcelo Arlego* Maria de los Angeles Fanaro** Universidad Nacional del Centro de la Provincia de Buenos Aires CONICET, Argentine *[email protected] **[email protected] (Received: 05.04.2018, Accepted: 22.05.2017) Abstract In this work, we present a pedagogical strategy to describe the diffraction phenomenon based on a didactic adaptation of the Feynman’s path integrals method, which uses only high school mathematics. The advantage of our approach is that it allows to describe the diffraction in a fully quantum context, where superposition and probabilistic aspects emerge naturally. Our method is based on a time-independent formulation, which allows modelling the phenomenon in geometric terms and trajectories in real space, which is an advantage from the didactic point of view. A distinctive aspect of our work is the description of the series of transformations and didactic transpositions of the fundamental equations that give rise to a common quantum framework for light and matter. This is something that is usually masked by the common use, and that to our knowledge has not been emphasized enough in a unified way. Finally, the role of the superposition of non-classical paths and their didactic potential are briefly mentioned. Keywords: quantum mechanics, light and matter diffraction, Feynman’s Sum of all Paths, high education INTRODUCTION This work promotes the teaching of quantum mechanics at the basic level of secondary school, where the students have not the necessary mathematics to deal with canonical models that uses Schrodinger equation.
    [Show full text]
  • The Path Integral Approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV
    The Path Integral approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV Riccardo Rattazzi May 25, 2009 2 Contents 1 The path integral formalism 5 1.1 Introducingthepathintegrals. 5 1.1.1 Thedoubleslitexperiment . 5 1.1.2 An intuitive approach to the path integral formalism . .. 6 1.1.3 Thepathintegralformulation. 8 1.1.4 From the Schr¨oedinger approach to the path integral . .. 12 1.2 Thepropertiesofthepathintegrals . 14 1.2.1 Pathintegralsandstateevolution . 14 1.2.2 The path integral computation for a free particle . 17 1.3 Pathintegralsasdeterminants . 19 1.3.1 Gaussianintegrals . 19 1.3.2 GaussianPathIntegrals . 20 1.3.3 O(ℏ) corrections to Gaussian approximation . 22 1.3.4 Quadratic lagrangians and the harmonic oscillator . .. 23 1.4 Operatormatrixelements . 27 1.4.1 Thetime-orderedproductofoperators . 27 2 Functional and Euclidean methods 31 2.1 Functionalmethod .......................... 31 2.2 EuclideanPathIntegral . 32 2.2.1 Statisticalmechanics. 34 2.3 Perturbationtheory . .. .. .. .. .. .. .. .. .. .. 35 2.3.1 Euclidean n-pointcorrelators . 35 2.3.2 Thermal n-pointcorrelators. 36 2.3.3 Euclidean correlators by functional derivatives . ... 38 0 0 2.3.4 Computing KE[J] and Z [J] ................ 39 2.3.5 Free n-pointcorrelators . 41 2.3.6 The anharmonic oscillator and Feynman diagrams . 43 3 The semiclassical approximation 49 3.1 Thesemiclassicalpropagator . 50 3.1.1 VanVleck-Pauli-Morette formula . 54 3.1.2 MathematicalAppendix1 . 56 3.1.3 MathematicalAppendix2 . 56 3.2 Thefixedenergypropagator. 57 3.2.1 General properties of the fixed energy propagator . 57 3.2.2 Semiclassical computation of K(E)............. 61 3.2.3 Two applications: reflection and tunneling through a barrier 64 3 4 CONTENTS 3.2.4 On the phase of the prefactor of K(xf ,tf ; xi,ti) ....
    [Show full text]
  • Simple Cubic Lattice
    Chem 253, UC, Berkeley What we will see in XRD of simple cubic, BCC, FCC? Position Intensity Chem 253, UC, Berkeley Structure Factor: adds up all scattered X-ray from each lattice points in crystal n iKd j Sk e j1 K ha kb lc d j x a y b z c 2 I(hkl) Sk 1 Chem 253, UC, Berkeley X-ray scattered from each primitive cell interfere constructively when: eiKR 1 2d sin n For n-atom basis: sum up the X-ray scattered from the whole basis Chem 253, UC, Berkeley ' k d k d di R j ' K k k Phase difference: K (di d j ) The amplitude of the two rays differ: eiK(di d j ) 2 Chem 253, UC, Berkeley The amplitude of the rays scattered at d1, d2, d3…. are in the ratios : eiKd j The net ray scattered by the entire cell: n iKd j Sk e j1 2 I(hkl) Sk Chem 253, UC, Berkeley For simple cubic: (0,0,0) iK0 Sk e 1 3 Chem 253, UC, Berkeley For BCC: (0,0,0), (1/2, ½, ½)…. Two point basis 1 2 iK ( x y z ) iKd j iK0 2 Sk e e e j1 1 ei (hk l) 1 (1)hkl S=2, when h+k+l even S=0, when h+k+l odd, systematical absence Chem 253, UC, Berkeley For BCC: (0,0,0), (1/2, ½, ½)…. Two point basis S=2, when h+k+l even S=0, when h+k+l odd, systematical absence (100): destructive (200): constructive 4 Chem 253, UC, Berkeley Observable diffraction peaks h2 k 2 l 2 Ratio SC: 1,2,3,4,5,6,8,9,10,11,12.
    [Show full text]
  • Diffraction-Free Beams in Fractional Schrödinger Equation Yiqi Zhang1, Hua Zhong1, Milivoj R
    www.nature.com/scientificreports OPEN Diffraction-free beams in fractional Schrödinger equation Yiqi Zhang1, Hua Zhong1, Milivoj R. Belić2, Noor Ahmed1, Yanpeng Zhang1 & Min Xiao3,4 We investigate the propagation of one-dimensional and two-dimensional (1D, 2D) Gaussian beams in Received: 14 December 2015 the fractional Schrödinger equation (FSE) without a potential, analytically and numerically. Without Accepted: 11 March 2016 chirp, a 1D Gaussian beam splits into two nondiffracting Gaussian beams during propagation, while a 2D Published: 21 April 2016 Gaussian beam undergoes conical diffraction. When a Gaussian beam carries linear chirp, the 1D beam deflects along the trajectoriesz = ±2(x − x0), which are independent of the chirp. In the case of 2D Gaussian beam, the propagation is also deflected, but the trajectories align along the diffraction cone z =+2 xy22 and the direction is determined by the chirp. Both 1D and 2D Gaussian beams are diffractionless and display uniform propagation. The nondiffracting property discovered in this model applies to other beams as well. Based on the nondiffracting and splitting properties, we introduce the Talbot effect of diffractionless beams in FSE. Fractional effects, such as fractional quantum Hall effect1, fractional Talbot effect2, fractional Josephson effect3 and other effects coming from the fractional Schrödinger equation (FSE)4, introduce seminal phenomena in and open new areas of physics. FSE, developed by Laskin5–7, is a generalization of the Schrödinger equation (SE) that contains fractional Laplacian instead of the usual one, which describes the behavior of particles with fractional spin8. This generalization produces nonlocal features in the wave function. In the last decade, research on FSE was very intensive9–17.
    [Show full text]
  • The Doubling of the Degrees of Freedom in Quantum Dissipative Systems, and the Semantic Information Notion and Measure in Biosemiotics †
    Proceedings The Doubling of the Degrees of Freedom in Quantum Dissipative Systems, and the Semantic † Information Notion and Measure in Biosemiotics Gianfranco Basti 1,*, Antonio Capolupo 2,3 and GiuseppeVitiello 2 1 Faculty of Philosophy, Pontifical Lateran University, 00120 Vatican City, Italy 2 Department of Physics “E:R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; [email protected] (A.C.); [email protected] (G.V.) 3 Istituto Nazionale di Fisica Nucleare (INFN), Gruppo Collegato di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy * Correspondence: [email protected]; Tel.: +39-339-576-0314 † Conference Theoretical Information Studies (TIS), Berkeley, CA, USA, 2–6 June 2019. Published: 11 May 2020 Keywords: semantic information; non-equilibrium thermodynamics; quantum field theory 1. The Semantic Information Issue and Non-Equilibrium Thermodynamics In the recent history of the effort for defining a suitable notion and measure of semantic information, starting points are: the “syntactic” notion and measure of information H of Claude Shannon in the mathematical theory of communications (MTC) [1]; and the “semantic” notion and measure of information content or informativeness of Rudolph Carnap and Yehoshua Bar-Hillel [2], based on Carnap’s theory of intensional modal logic [3]. The relationship between H and the notion and measure of entropy S in Gibbs’ statistical mechanics (SM) and then in Boltzmann’s thermodynamics is a classical one, because they share the same mathematical form. We emphasize that Shannon’s information measure is the information associated to an event in quantum mechanics (QM) [4]. Indeed, in the classical limit, i.e., whenever the classical notion of probability applies, S is equivalent to the QM definition of entropy given by John Von Neumann.
    [Show full text]
  • Chapter 14 Interference and Diffraction
    Chapter 14 Interference and Diffraction 14.1 Superposition of Waves.................................................................................... 14-2 14.2 Young’s Double-Slit Experiment ..................................................................... 14-4 Example 14.1: Double-Slit Experiment................................................................ 14-7 14.3 Intensity Distribution ........................................................................................ 14-8 Example 14.2: Intensity of Three-Slit Interference ............................................ 14-11 14.4 Diffraction....................................................................................................... 14-13 14.5 Single-Slit Diffraction..................................................................................... 14-13 Example 14.3: Single-Slit Diffraction ................................................................ 14-15 14.6 Intensity of Single-Slit Diffraction ................................................................. 14-16 14.7 Intensity of Double-Slit Diffraction Patterns.................................................. 14-19 14.8 Diffraction Grating ......................................................................................... 14-20 14.9 Summary......................................................................................................... 14-22 14.10 Appendix: Computing the Total Electric Field............................................. 14-23 14.11 Solved Problems ..........................................................................................
    [Show full text]
  • Optical Solitons and Vortices in Fractional Media: a Mini-Review of Recent Results
    hv photonics Review Optical Solitons and Vortices in Fractional Media: A Mini-Review of Recent Results Boris A. Malomed 1,2 1 Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv P.O. Box 39040, Israel; [email protected] 2 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile Abstract: The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schrödinger equation (NLSE) including fractional one-dimensional or two-dimensional diffraction and cubic or cubic-quintic nonlinear terms, as well as linear potentials. The fractional diffraction is represented by fractional- order spatial derivatives of the Riesz type, defined in terms of the direct and inverse Fourier transform. In this form, it can be realized by spatial-domain light propagation in optical setups with a specially devised combination of mirrors, lenses, and phase masks. The results presented in the article were chiefly obtained in a numerical form. Some analytical findings are included too, in particular, for fast moving solitons and the results produced by the variational approximation. Moreover, dissipative solitons are briefly considered, which are governed by the fractional complex Ginzburg–Landau equation. Keywords: fractional diffraction; nonlinear Schrödinger equation; soliton stability; collapse; symmetry breaking; complex Ginzburg–Landau equation; vortex necklaces dissipative solitons Citation: Malomed, B.A. Optical 1. Introduction and the Basic Models Solitons and Vortices in Fractional Nonlinear Schrödinger equations (NLSEs) give rise to soliton families in a great num- Media: A Mini-Review of Recent ber of realizations [1–8] , many of which originate in optics.
    [Show full text]
  • Diffraction of Collinear Correlated Photon Pairs by an Ultrasonic Wave
    Diffraction of collinear correlated photon pairs by an ultrasonic wave Piotr Kwiek University of Gdansk, Institute of Experimental Physics, Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail address: [email protected] The phenomenon of collinear correlated photon pairs diffraction by an ultrasonic wave is investigated for Bragg incidence. A BBO crystal was used for producing collinear correlated photon pairs via type-I spontaneous parametric down-conversion (SPDC I-type). It is shown experimentally that the Bragg angle for photon pairs diffraction is identical to the one corresponding to single photons diffraction. The numbers of single photons and photon pairs counts in discrete diffraction orders were measured as functions of the Raman-Nath parameter. Similarly, the number of coincidence photon counts in separate diffraction orders was also investigated. What is more, simple analytical formulas are derived which perfectly describe experimentally obtained data. OCIS codes: (050.1940) Diffraction; (230.1040) Acousto-optical devices; (230.4110) Modulators; (270.4180) Multiphoton processes. 1. Introduction Acousto-optic devices are commonly used to modify properties of optical beams such as amplitude or intensity, phase, frequency, polarization and direction of propagation [1, 2]. Depending on which property of light is manipulated, one can name intensity modulators, phase modulators, frequency modulators, polarization modulators and spatial light modulators. Acousto- optic devices were also employed in experimental investigations devoted to photon pairs or entangled photon pairs [3-8]. Here, in most cases, acousto-optic modulators altered, at a time, parameters of just one of the photons of a given pair. Only the works of the group of Zeilinger [7] and Kwiek [8] considered simultaneous photon pairs interaction with an ultrasonic wave.
    [Show full text]
  • Physics 116 Diffraction and Resolution
    Physics 116 Session 25 Diffraction and resolution Nov 10, 2011 R. J. Wilkes Email: [email protected] Announcements • Posted exam score = (6 pts x number correct) + 10 pts • Scores for all 3 midterm exams will be normalized to a common average to minimize differences • Class average final grade will be 2.9 • Only your 2 best exam scores are used • Of course, if you get a perfect score on everything (exams, homeworks, quizzes), you get a 4.0, regardless of which exam was dropped! • Don’t forget: UW is closed tomorrow – no class!! Lecture Schedule (up to exam 3) Today 3 Diffraction • Everyday experience: light “gets around corners” – Shadows are not usually sharp-edged – Analogy: you can hear sound waves around the corner of a building, even if source of sound is not in your line of sight • Apply Huygens’ Principle to a single narrow slit – Picture tells us two things: 1. Spherical wavelets - some light will SLIT spherical wavelets be seen at large angles to axis MASK 2. Light from different parts of slit area will interfere plane wave So we expect to see fringes on a distant screen, including some at large angles: This kind of interference is called DIFFRACTION We see diffraction effects near any obstacle, IF we look closely enough (on a scale comparable to light wavelengths) Diffraction effects • Also see diffraction around knife-edge, needle point, etc – Shadow of knife or needle is sharp-edged only if you don’t look too closely (and use coherent or at least “monochromatic” light) –On a microscopic scale you see diffraction fringe
    [Show full text]
  • Chapter 5: Interference and Diffraction
    Physics 341 Experiment 5 Page 5-1 Chapter 5: Interference and Diffraction 5.1 Introduction Interference and diffraction are common phenomena intrinsic to wave propagation. Interference refers to the effects caused by the coherent addition of wave amplitudes that travel different paths. If such waves are in phase, the light intensity is enhanced; conversely if they are out of phase, the light is attenuated. Diffraction is the result of wave propagation that spreads a beam of light from a straight linear path. The origin of the two phenomena is, in any case, exactly the same. The following experiments are arranged in order of increasing complexity. This may blur the distinction in your mind between the two phenomena of interference and diffraction. That’s not entirely a bad idea, as they are so closely related. Figure 5.1 “Snapshot” of a wave Figure 5.2 The amplitude of two waves, 180o out of phase. For most of the following exercises, you will observe diffraction and interference patterns generated by a He-Ne laser beam incident on a variety of targets. These come in two forms: 2” x 2” squares such as 35-mm mounted film transparencies and rotating plastic disks imprinted with a number of selectable patterns. These are listed with dimensions in Table 5.1 and Table 5.2 below. The laser operating wavelength is 632.8 nm. With these numbers, you can compare experimental observations with theoretical estimates. A list of targets is given in Table 5.1 Note that most of the photographic targets are available as complementary pairs of positive and negative, i.e., where the positive target is transparent, the negative one is opaque and vice-versa.
    [Show full text]