Patterns and Rates of Ecological Diversification Among Neotropical Cichlid Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Patterns and Rates of Ecological Diversification Among Neotropical Cichlid Fishes Patterns and rates of ecological diversification among Neotropical cichlid fishes by Edward D. Burress A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 5, 2017 Keywords: adaptive radiation, morphology, parallel evolution pharyngeal jaw, phylogeny, speciation Copyright 2017 by Edward D. Burress Approved by Jonathan W. Armbruster, Chair, Professor of Biological Sciences and Curator of Fishes Jason E. Bond, Professor and Department Chair of Biological Sciences Jack W. Feminella, Professor and Associate Dean of Academic Affairs in the College of Sciences and Mathematics F. Stephen Dobson, Professor Abstract The rapid rise of phenotypic diversity and corresponding ecological roles is an emblematic pattern of cichlid evolution, particularly within clades of the East African Great Lakes. Herein, I evaluate the phenotypic and ecological diversification of Neotropical cichlids through time and among clades using a combination of geometric morphometrics, dietary analysis, and comparative phylogenetic methods. I found that the shape of the lower pharyngeal jaw (LPJ), which is part of a major phenotypic innovation among cichlids (i.e., pharyngognathy), is correlated with dietary patterns among Neotropical cichlids. The evolution of trophic roles such as molluscivory, algivory, and piscivory were associated with modifications in LPJ shape and tooth types. Additionally, LPJ shape evolution was correlated with body shape evolution among Neotropical cichlids; however, this pattern was driven by one of the major lineages (the Heroini) in which the evolution of these traits were highly correlated. This discrepancy among major clades may have arisen due to changes in the adaptive landscape as the Heroini colonized Middle America. Indeed, I detected diversity dependent evolution of LPJ shape following the colonization of Middle America, but not following the colonization of South America. Therefore, dissimilar evolutionary and ecological opportunities provided by the subsequent colonization of South and Middle America likely elicited different constraints during their diversification. Ecosystem-scale colonization events have been similarly important events throughout the evolutionary history of some lineages. I found that following the colonization the Paraná and Uruguay Rivers, distantly related pike cichlids (Crenicichla) diversified in situ and in ii parallel into similar novel ecomorphs associated with trophic specializations, namely molluscivory, crevice feedings, and periphyton grazing. These results indicate that phenotypic and ecological diversity among Neotropical cichlids has varied dramatically among clades, through time, and in response to ecological opportunities provided by the colonization of new environments. iii Acknowledgments I’m grateful and forever in debt to my past academic advisors for guiding me toward what ultimately manifested in this work. Stewart Skeate fostered my initial fascination in nature and exploration. Sue Hart nurtured a warm-hearted outlook on the daunting path through academia. James Carson introduced me to statistics. Michael M. Gangloff provided continual insight and support in my endeavors. Lynn Siefferman let me wonder and dream, provided guidance in life and work, and fostered strength and focus in all things. My current advisor, Jonathan Armbruster, provided resources, a conducive environment, and intellectual freedom to pursue my academic interests. My committee, Jason Bond, Jack Feminella, and Steve Dobson, provided their vast insight on science and life. Many colleagues have contributed to the work and ideas herein, including (in no particular order) Milton Tan, Lubomír Piálek, Oldřich Říčan, Jorge R. Casciotta, Adriana Almirón, Alejandro Duarte, Marcelo Loureiro, and Jordan M. Holcomb. I’m grateful to Kid Cudi and Bon Iver for making music that got me through many late hours in the museum. Many researchers, perhaps mostly unknown to them, have greatly cultivated my interests and motivated much of my own work, including Peter Wainwright, Katie Wagner, Ole Seehausen, Kirk Winemiller, Hernán López‐Fernández, Dolph Schluter, Axel Meyer, Jonathan Losos, and Karel Liem. Many friends, lab mates, and colleagues have played intricate and irreplaceable roles in my professional and/or social life, including (in no particular order) Malorie Hayes, Mark and Heather Stuart, Carrie Klase, Taylor Fraychak, Milton Tan, Carla Stout, Shobnom Ferdous, Erin O’Reily, Jessica Gilpin, and Dave Werneke. My wife, Pamela iv Burress, which I met during my time at Auburn, has been supportive, loving, and understanding throughout my work and has made these years special. Lastly, my parents, Edward and Robin Burress, have always been supportive of my journey through all the bumps and turns. v Table of Contents Abstract ......................................................................................................................................... ii Acknowledgments........................................................................................................................ iv List of Tables ............................................................................................................................. viii List of Figures .............................................................................................................................. ix General Introduction ................................................................................................................... 1 References ....................................................................................................................... 3 Chapter 1. Ecological diversification associated with the pharyngeal jaw diversity of Neotropical cichlid fishes ............................................................................................................................... 6 Abstract ........................................................................................................................... 6 Introduction ..................................................................................................................... 7 Methods ........................................................................................................................... 9 Results ........................................................................................................................... 13 Discussion ..................................................................................................................... 16 References ..................................................................................................................... 23 Chapter 2. Pharyngeal jaw evolution and trophic niche filling after the colonization of the Americas by cichlid fishes ........................................................................................................ 44 Abstract ......................................................................................................................... 44 Introduction ................................................................................................................... 45 Methods ......................................................................................................................... 48 vi Results ........................................................................................................................... 53 Discussion ..................................................................................................................... 57 References ..................................................................................................................... 63 Chapter 3. Body and pharyngeal jaw shape evolution are correlated across the Neotropical cichlid phylogeny ...................................................................................................................... 82 Abstract ......................................................................................................................... 82 Introduction ................................................................................................................... 83 Methods ......................................................................................................................... 86 Results ........................................................................................................................... 90 Discussion ..................................................................................................................... 93 References ..................................................................................................................... 98 Chapter 4. Island- and lake-like parallel adaptive radiations replicated in rivers ................... 114 Abstract ....................................................................................................................... 114 Introduction ................................................................................................................. 114 Methods ....................................................................................................................... 117 Results ......................................................................................................................... 122 Discussion ..................................................................................................................
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Royal Peacock Bass (Cichla Intermedia) Ecological Risk Screening Summary
    Royal Peacock Bass (Cichla intermedia) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, May 2018 Web Version, 9/7/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela. Probably occurs in Colombia.” Status in the United States This species has not been reported as introduced or established in the United States. This species is present in the aquarium trade in the United States, for example: From Bluegrass Aquatics (2018): “Intermedia Peacock Bass Cichlid REGULAR $232.48” “Intermedia Peacock Bass Cichlid REGULAR Cichla Intermedia Known as the "Royal" peacock by American anglers.” 1 Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Cichla Species Cichla intermedia Machado-Allison, 1971” “Taxonomic Status: Current Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2018): “[…] range 28 - ? cm Max length: 55.0 cm TL male/unsexed; [IGFA 2001]; max. published weight: 3,000 g [IGFA 2001].” Environment From Froese and Pauly (2018): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela.
    [Show full text]
  • Pandolfi, Matías. 2005
    Tesis Doctoral Caracterización de las variantes de GnRH y las gonadotrofinas en Cichlasoma dimerus (Teleostei, Perciformes) y su relación con la diferenciación sexual Pandolfi, Matías 2005 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Pandolfi, Matías. (2005). Caracterización de las variantes de GnRH y las gonadotrofinas en Cichlasoma dimerus (Teleostei, Perciformes) y su relación con la diferenciación sexual. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Pandolfi, Matías. "Caracterización de las variantes de GnRH y las gonadotrofinas en Cichlasoma dimerus (Teleostei, Perciformes) y su relación con la diferenciación sexual". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2005. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Universidad de Buenos Aires, Argentina Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental “Caracterización de las variantes de GnRH y las gonadotrofinas en Cichlasoma dimerus (Teleostei, Perciformes) y su relación con la diferenciación sexual” Trabajo de Tesis presentado para optar por el título de Doctor de la Universidad de Buenos Aires Autor: Lic.
    [Show full text]
  • Two New Species of Australoheros (Teleostei: Cichlidae), with Notes on Diversity of the Genus and Biogeography of the Río De La Plata Basin
    Zootaxa 2982: 1–26 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Two new species of Australoheros (Teleostei: Cichlidae), with notes on diversity of the genus and biogeography of the Río de la Plata basin OLDŘICH ŘÍČAN1, LUBOMÍR PIÁLEK1, ADRIANA ALMIRÓN2 & JORGE CASCIOTTA2 1Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic. E-mail: [email protected], [email protected] 2División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, UNLP, Paseo del Bosque, 1900 La Plata, Argentina. E-mail: [email protected], [email protected] Abstract Two new species of Australoheros Říčan and Kullander are described. Australoheros ykeregua sp. nov. is described from the tributaries of the río Uruguay in Misiones province, Argentina. Australoheros angiru sp. nov. is described from the tributaries of the upper rio Uruguai and middle rio Iguaçu in Brazil. The two new species are not closely related, A. yke- regua is the sister species of A. forquilha Říčan and Kullander, while A. angiru is the sister species of A. minuano Říčan and Kullander. The diversity of the genus Australoheros is reviewed using morphological and molecular phylogenetic analyses. These analyses suggest that the described species diversity of the genus in the coastal drainages of SE Brazil is overestimated and that many described species are best undestood as representing cases of intraspecific variation. The dis- tribution patterns of Australoheros species in the Uruguay and Iguazú river drainages point to historical connections be- tween today isolated river drainages (the lower río Iguazú with the arroyo Urugua–í, and the middle rio Iguaçu with the upper rio Uruguai).
    [Show full text]
  • 33 Abstract Dna Barcoding, Phylogenetic Diversity
    DNA BARCODING, PHYLOGENETIC DIVERSITY STUDIES OF ETROPLUS SURATENSIS FISH FROM POORANANKUPPAM BRACKISH WATER, PUDUCHERRY Sachithanandam V.1, Mohan P.M.1, Muruganandam N.2, Chaaithanya I.K.2, Arun Kumar P3, Siva Sankar R3 1 ijcrr Department of Ocean Studies and Marine Biology, Pondicherry University, Vol 04 issue 08 Andaman 2Regional Medical Research Centre (ICMR), Andaman Category: Research 3Department of Ecology and Environmental Sciences, Pondicherry University, Received on:29/01/12 Puducherry Revised on:16/02/12 E-mail of Corresponding Author: [email protected] Accepted on:03/03/12 ABSTRACT Etroplus suratensis is known for the high commercial value fish available in South India. The identification of the species of this fish cumbersome and inaccurate in different life stages of the fish. Therefore, DNA sequence of cytochrome Oxidase subunit I gene was analysed for the species identification and phylogenetic relationship of the species. The average genetic distance of conspecifics species value was found to be 0.005%. The present work suggests that COI sequence provides sufficient information on phylogenetic and evolutionary relationship to distinguish the Etroplus suratensis species, the brackish waters species of pearl spots, unambiguously. Further, this work revealed that every species having individual genetic distances depended upon the environmental stress and water quality, which play an important role for its minor morphometric variations. Therefore, it was concluded that a DNA COI barcoding tool can be used for fish identification by non technical personnel (other than taxonomist). ____________________________________________________________________________________ Keywords: DNA barcoding, COI, brackish of more than US$ 3/kg2. These fish is available water, Pooranankuppam and Etroplus suratensis throughout the year.
    [Show full text]
  • A New Colorful Species of Geophagus (Teleostei: Cichlidae), Endemic to the Rio Aripuanã in the Amazon Basin of Brazil
    Neotropical Ichthyology, 12(4): 737-746, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20140038 A new colorful species of Geophagus (Teleostei: Cichlidae), endemic to the rio Aripuanã in the Amazon basin of Brazil Gabriel C. Deprá1, Sven O. Kullander2, Carla S. Pavanelli1,3 and Weferson J. da Graça4 Geophagus mirabilis, new species, is endemic to the rio Aripuanã drainage upstream from Dardanelos/Andorinhas falls. The new species is distinguished from all other species of the genus by the presence of one to five large black spots arranged longitudinally along the middle of the flank, in addition to the black midlateral spot that is characteristic of species in the genus and by a pattern of iridescent spots and lines on the head in living specimens. It is further distinguished from all congeneric species, except G. camopiensis and G. crocatus, by the presence of seven (vs. eight or more) scale rows in the circumpeduncular series below the lateral line (7 in G. crocatus; 7-9 in G. camopiensis). Including the new species, five cichlids and 11 fish species in total are known only from the upper rio Aripuanã, and 15 fish species in total are known only from the rio Aripuanã drainage. Geophagus mirabilis, espécie nova, é endêmica da drenagem do rio Aripuanã, a montante das quedas de Dardanelos/ Andorinhas. A espécie nova se distingue de todas as outras espécies do gênero pela presença de uma a cinco manchas pretas grandes distribuídas longitudinalmente ao longo do meio do flanco, em adição à mancha preta no meio do flanco característica das espécies do gênero, e por um padrão de pontos e linhas iridescentes sobre a cabeça em espécimes vivos.
    [Show full text]
  • Apistogramma Ortegai (Teleostei: Cichlidae), a New Species of Cichlid Fish from the Ampyiacu River in the Peruvian Amazon Basin
    Zootaxa 3869 (4): 409–419 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3869.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:CB38DF91-EC70-4B17-9B9A-18C949431C1D Apistogramma ortegai (Teleostei: Cichlidae), a new species of cichlid fish from the Ampyiacu River in the Peruvian Amazon basin RICARDO BRITZKE1, CLAUDIO OLIVEIRA1 & SVEN O. KULLANDER2 1Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Rubião Jr. s/n. CEP 18618-970. Botucatu, SP, Brazil. E-mail: [email protected] 2Department of Zoology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden Abstract Apistogramma ortegai, new species, is described from small streams tributaries of the Ampiyacu River near Pebas, in east- ern Peru. It belongs to the Apistogramma regani species group and is distinguished from all other species of Apistogramma by the combination of contiguous caudal spot to bar 7, presence of abdominal stripes, short dorsal-fin lappets in both sexes, absence of vertical stripes on the caudal fin, and reduced number of predorsal and prepelvic scales. Key words: Geophaginae, Geophagini, Amazonia, Freshwater, Morphology, Taxonomy Resumen Apistogramma ortegai, nueva especie, es descrita desde pequeños tributario del rio Ampiyacu cerca de Pebas, en el este del Perú. Pertenece al grupo de especies de A. regani y es distinguido de todas las otras especies de Apistograma por la combinación de la barra 7 conectada con una mancha en la aleta caudal, presencia de líneas abdominales, membranas de la aleta dorsal cortas en ambos sexos, ausencia de líneas verticales en la aleta caudal, y reducido número de escamas pre- dorsales y prepélvicas.
    [Show full text]
  • Taxonomic Re-Evaluation of the Non-Native Cichlid in Portuguese Drainages
    Taxonomic re-evaluation of the non- native cichlid in Portuguese drainages João Carecho1, Flávia Baduy2, Pedro M. Guerreiro2, João L. Saraiva2, Filipee Ribeiro3, Ana Veríssimo44,5* 1. Instituto de Ciências Biomédicas Abel Salazar, Universidade do Poorrto, Porto, Portugal 2. CCMAR, Centre for Marine Sciences, Universidade do Algarve, 8005-139 Faro, Por- tugal 3. MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal 4. CIBIO - Research Centre in Biodiversity and Genetic Resources, Caampus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal 5. Virginia Institute of Marine Science, College of William and Mary,, Route 1208, Greate Road, Gloucester Point VA 23062, USA * correspondence to [email protected] SUUMMARY A non-native cichlid fish firstly repo rted in Portugal in 1940 was originally identified as Cichlasoma facetum (Jenyns 1842) based on specimens reported from “Praia de Mira" (Vouga drainage, northwestern Portugal). Currently, the species is known only from three southern Portuguese river drainages, namely Sado, Arade and Gua- diana, and no other record has been made from Praia de Mira or the Vouga drainage since the original record. The genus Cichlasoma has since suffered major taxonomic revisions: C. facetum has been conssidered a species-complex and proposed as the new genus Australoheros, including many species. Given the currennt taxonomic re- arrangement of the C. facetum species group, we performed a taxonomic re- evaluation of species identity of this non-native cichlid in Portuguese drainages us- ing morphological and molecular analyses. Morphological data coollected on speci- mens sampled in the Sado river drainages confirmed the identification as Australo- heros facetus.
    [Show full text]
  • Andinoacara Coeruleopunctatus (Cichlidae)
    Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 780169, 12 pages doi:10.1155/2012/780169 Research Article Phylogeographic Diversity of the Lower Central American Cichlid Andinoacara coeruleopunctatus (Cichlidae) S. Shawn McCafferty,1 Andrew Martin,2 and Eldredge Bermingham3 1 Biology Department, Wheaton College, 26 East Main Street, Norton, MA 02766, USA 2 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA 3 Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Panama Correspondence should be addressed to S. Shawn McCafferty, smccaff[email protected] Received 15 February 2012; Accepted 29 June 2012 Academic Editor: R. Craig Albertson Copyright © 2012 S. Shawn McCafferty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It is well appreciated that historical and ecological processes are important determinates of freshwater biogeographic assemblages. Phylogeography can potentially lend important insights into the relative contribution of historical processes in biogeography. How- ever, the extent that phylogeography reflects historical patterns of drainage connection may depend in large part on the dispersal capability of the species. Here, we test the hypothesis that due to their relatively greater dispersal capabilities, the neotropical cichlid species Andinoacara coeruleopunctatus will display a phylogeographic pattern that differs from previously described biogeographic assemblages in this important region. Based on an analysis of 318 individuals using mtDNA ATPase 6/8 sequence and restriction fragment length polymorphism data, we found eight distinct clades that are closely associated with biogeographic patterns.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
    www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families.
    [Show full text]
  • Rapid Evolution and Selection Inferred from the Transcriptomes of Sympatric Crater Lake Cichlid Fishes
    Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes K. R. ELMER, S. FAN, H. M. GUNTER, J. C. JONES, S. BOEKHOFF, S. KURAKU and A. MEYER Lehrstuhl fUr Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitiitstrasse 10, 78457 Konstanz, Germany Abstract Crater lakes provide a natural laboratory to study speciation of cichlid fishes by ecological divergence. Up to now, there has been a dearth of transcriptomic and genomic information that would aid in understanding the molecular basis of the phenotypic differentiation between young species. We used next-generation sequencing (Roche 454 massively parallel pyrosequencing) to characterize the diversity of expressed sequence tags between ecologically divergent, endemic and sympatric species of cichlid fishes from crater lake Apoyo, Nicaragua: benthic Amphilophus astorquii and limnetic Amphilophus zaliosus. We obtained 24174 A. astorquii and 21382 A. zaliosus high­ quality expressed sequence tag contigs, of which 13 106 pairs are orthologous between species. Based on the ratio of non synonymous to synonymous substitutions, we identified six sequences exhibiting signals of strong diversifying selection (KalKs > 1). These included genes involved in biosynthesis, metabolic processes and development. This transcriptome sequence variation may be reflective of natural selection acting on the genomes of these young, sympatric sister species. Based on Ks ratios and p-distances between 3'-untranslated regions (UTRs) calibrated to previously published species divergence times, we estimated a neutral transcriptome-wide substitutional mutation rate of ~1.25 x 10-6 per site per year. We conclude that next-generation sequencing technologies allow us to infer natural selection acting to diversify the genomes of young species, such as crater lake cichlids, with much greater scope than previously possible.
    [Show full text]