Micromelum Minutum Click on Images to Enlarge

Total Page:16

File Type:pdf, Size:1020Kb

Micromelum Minutum Click on Images to Enlarge Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Micromelum minutum Click on images to enlarge Family Rutaceae Scientific Name Micromelum minutum (G.Forst.) Wight & Arn. Wight, R. & Arnott, G.A.W. (1834) Prodromus Florae Peninsulae Indiae Orientalis : 448. Common name Flowers and buds. Copyright CSIRO Lime Berry; Micromelum Stem Usually grows into a small tree not exceeding 30 cm dbh but also flowers and fruits as a shrub. Leaves Oil dots visible with a lens. Leaflet blades about 4.5-15 x 1.5-6 cm, unequal-sided at the base. Domatia are Leaves and Flowers. Copyright CSIRO foveoles. Flowers Calyx lobes short, about 0.1-0.2 mm long. Petals about 2.5-3 mm long. Stamens ten, dimorphic, five long and five short. Disk small, confined to an area beneath the ovary. Fruit Fruits ovoid-ellipsoid, about 9 x 7 mm. Seeds about 6-7 x 4-5 mm. Testa smooth, translucent. Cotyledons Fruit. Copyright Stanley Breeden green, folded many times, oil dots numerous, readily visible with a lens. Seedlings Cotyledons glabrous, cordate to reniform, about 18-19 x 21-23 mm, apex rounded often notched. Oil dots visible to the naked eye. First leaf usually trifoliolate sometimes compound with 5 leaflets, oil dots conspicuous. At the tenth leaf stage: leaflet blades slightly hairy on the upper surface, unequal-sided at the base; oil dots numerous, visible to the naked eye; margin of the leaflets slightly sinuate; compound leaf petiole and rhachis clothed in short, prostrate hairs. Seed germination time 10 to 41 days. Distribution and Ecology Occurs in WA, NT, CYP, NEQ, CEQ and southwards to north-eastern New South Wales. Altitudinal range from Fruit, side views and cross section. Copyright W. T. Cooper sea level to 600 m. Grows as an understory tree in monsoon forest, dry rain forest, beach forest and well developed rain forest. Also occurs in Malesia, New Caledonia and Fiji. Natural History & Notes Food plant for the larval stages of the Orchard, Canopus and Capanens Butterflies. Common & Waterhouse (1981). This species may have medicinal properties. Leaf and stem material of this species was active against some tumors. Collins et al. (1990). This species has been used medicinally in Malaysia and Indonesia. Cribb (1981). Leaves, flowers & fruit. Copyright CSIRO Shrub (woody or herbaceous, 1-6 m tall) X Tree X Synonyms Limonia minuta G.Forst., Prodr. : 33(1786), Type: Friendly Islands, Forster; holo: BM. Micromelum glabrescens Benth., Hookers Journal of Botany 2: 212(1843). Micromelum pubescens var. glabrescens (Benth.) Oliv., Journal of Proceedings of the Linnean Society, Botany 5, 2nd Suppl. : 40(1861). RFK Code 875 CC-BY Australian Tropical Herbarium unless otherwise indicated in the images. Scale bar 10mm. Copyright CSIRO Cotyledon stage, epigeal germination. Copyright CSIRO 10th leaf stage. Copyright CSIRO.
Recommended publications
  • Bennett's Ash (Flindersia Bennettiana) a Young Tree on LHS Blue 9 Fairway
    Bennett's Ash (Flindersia bennettiana) A young tree on LHS Blue 9 fairway. Black Apple (Pouteria australis) A tree (pJW) on LHS Gold 7 fairway, with close-up of leaves & flowers below. Black Plum (Diospyros australis) A young tree on pathway between Red 3 & 4, with close-up of leaves below. Black Wattle (Acacia concurrens) A tree on RHS Red 6 fairway, with close-up of flowers below. Blackwood (Acacia melanoxylon) A small tree on RHS Red 8 men's tee-block, flowering variously but this time in late Spring. Blue Quandong (Elaeocarpus angustifolius) A tree behind the Gold 7 green, with close- up of flowers below. Blueberry Ash (Elaeocarpus reticulatus) A small group of trees between Red 1 and 2. Blush Walnut (Beilschmiedia obtusifolia) A young tree on the pathway between Red 3 and 4. Bottle Tree (Brachychiton rupestris) Two transplanted trees on RHS Green 9 at top of hill. Brisbane Wattle (Acacia fimbriata) A small tree on the LHS Red 1 fairway. Broad-leaved Paperbark (Melaleuca quinquenervia) A small group of trees on the RHS Blue 2 fairway, with flower close-up below. Broad-leaved Paperbark (Melaleuca viridiflora) A small group of trees on the RHS Blue 2 fairway, with flower close-up below. Brown Kurrajong (Commersonia bartramia) A small group behind the Red 5 men's tee-block, with flower close-up below. Brown Myrtle (Backhousia leptopetala) A young tree planted on the LHS of Red 9 pathway, with flower/fruit close-up below. Brown Tamarind (Castanospora alphandii) A tree planted on the RHS of Red 9 women's tee-block, with flower & leaves close-up below.
    [Show full text]
  • P020110307527551165137.Pdf
    CONTENT 1.MESSAGE FROM DIRECTOR …………………………………………………………………………………………………………………………………………………… 03 2.ORGANIZATION STRUCTURE …………………………………………………………………………………………………………………………………………………… 05 3.HIGHLIGHTS OF ACHIEVEMENTS …………………………………………………………………………………………………………………………………………… 06 Coexistence of Conserve and Research----“The Germplasm Bank of Wild Species ” services biodiversity protection and socio-economic development ………………………………………………………………………………………………………………………………………………… 06 The Structure, Activity and New Drug Pre-Clinical Research of Monoterpene Indole Alkaloids ………………………………………… 09 Anti-Cancer Constituents in the Herb Medicine-Shengma (Cimicifuga L) ……………………………………………………………………………… 10 Floristic Study on the Seed Plants of Yaoshan Mountain in Northeast Yunnan …………………………………………………………………… 11 Higher Fungi Resources and Chemical Composition in Alpine and Sub-alpine Regions in Southwest China ……………………… 12 Research Progress on Natural Tobacco Mosaic Virus (TMV) Inhibitors…………………………………………………………………………………… 13 Predicting Global Change through Reconstruction Research of Paleoclimate………………………………………………………………………… 14 Chemical Composition of a traditional Chinese medicine-Swertia mileensis……………………………………………………………………………… 15 Mountain Ecosystem Research has Made New Progress ………………………………………………………………………………………………………… 16 Plant Cyclic Peptide has Made Important Progress ………………………………………………………………………………………………………………… 17 Progresses in Computational Chemistry Research ………………………………………………………………………………………………………………… 18 New Progress in the Total Synthesis of Natural Products ………………………………………………………………………………………………………
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae Permalink https://escholarship.org/uc/item/1904r6x3 Author Siebert Wooldridge, Toni Jean Publication Date 2016 Supplemental Material https://escholarship.org/uc/item/1904r6x3#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions.
    [Show full text]
  • Natural History of Fiji's Endemic Swallowtail Butterfly, Papilio Schmeltzi
    32 TROP. LEPID. RES., 23(1): 32-38, 2013 CHANDRA ET AL.: Life history of Papilio schmeltzi NATURAL HISTORY OF FIJI’S ENDEMIC SWALLOWTAIL BUTTERFLY, PAPILIO SCHMELTZI (HERRICH-SCHAEFFER) Visheshni Chandra1, Uma R. Khurma1 and Takashi A. Inoue2 1School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Private Bag, Suva, Fiji. Correspondance: [email protected]; 2Japanese National Institute of Agrobiological Sciences, Ôwashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan Abstract - The wild population of Papilio schmeltzi (Herrich-Schaeffer) in the Fiji Islands is very small. Successful rearing methods should be established prior to any attempts to increase numbers of the natural population. Therefore, we studied the biology of this species. Papilio schmeltzi was reared on Micromelum minutum. Three generations were reared during the period from mid April 2008 to end of November 2008, and hence we estimate that in nature P. schmeltzi may have up to eight generations in a single year. Key words: Papilio schmeltzi, Micromelum minutum, life cycle, larval host plant, developmental duration, morphological characters, captive breeding INTRODUCTION MATERIALS AND METHODS Most of the Asia-Pacific swallowtail butterflies P. schmeltzi was reared in a screened enclosure from mid (Lepidopera: Papilionidae) belonging to the genus Papilio are April 2008 to end of November 2008. The enclosure was widely distributed in the tropics (e.g. Asia, Papua New Guinea, designed to provide conditions as close to its natural habitat as Australia, New Caledonia, Vanuatu, Solomon Islands, Fiji and possible and was located in an open area at the University of Samoa).
    [Show full text]
  • Northern Territory NT Page 1 of 204 21-Jan-11 Species List for NRM Region Northern Territory, Northern Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Micromelum Minutum Wight & Arn
    Borneo Journal of Pharmacy http://journal.umpalangkaraya.ac.id/index.php/bjop/article/view/898 Vol 2 Issue 2 November 2019 DOI: https://doi.org/10.33084/bjop.v2i2.898 Page 55 – 62 e-ISSN: 2621-4814 Simplicia and Extracts Standardization from Jualing Leaves (Micromelum minutum Wight & Arn.) from South Kalimantan Sutomo* 1,2 Abstract Herwina Dita Lestari 1 Jualing (Micromelum minutum Wight & Arn.) is a plant from South Arnida 1 Kalimantan that has the potential to be developed as natural medicine. This study aims to establish standardization which includes specific Agung Sriyono 3 and non-specific parameters of M. minutum leaf simplicia and extracts from three growing locations, namely Banua Botanical Garden, Sultan Adam Forest Park, and Forest Areas with Specific Objects of Rantau, 1 Department of Pharmacy, Universitas South Kalimantan. The method of setting standardization parameters Lambung Mangkurat, Banjarbaru, refers to the Indonesian Herbal Pharmacopoeia and General Standard South Kalimantan, Indonesia Extracts Parameters. Organoleptic standardization of simplicia is brownish-green, has a distinctive odor, has a bitter and slightly spicy 2 Center for Study of Natural Medicine, taste. Microscopic observations showed the presence of stomata, cell Universitas Lambung Mangkurat, walls, cytoplasm, calcium oxalate crystals, upper epidermis, palisade Banjarbaru, South Kalimantan, tissue, spongy tissue, cortex, xylem, phloem, lower epidermis, and Indonesia trichomes. Water content test showed the results of 21.9-22.07%; ethanol extract content of 12.87-13.17%; drying losses 4.64-4.84%; total 3 The Research and Development ash content of 6.04-6.14%; acid insoluble ash content 1.13-1.19%; Pb Agency of the Banua Botanical Gardens, levels of 0.022-0.025 mg/kg; Cd levels of 0.017-0.020 mg/kg; and Hg South Kalimantan, Banjarbaru, South levels <0.0004 mg/kg.
    [Show full text]
  • Phylogenetic Relationships of the Aurantioideae (Rutaceae)
    ARTICLE IN PRESS Organisms, Diversity & Evolution 9 (2009) 52–68 www.elsevier.de/ode Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF Cynthia M. Morton Section of Botany, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA Received 9 June 2008; accepted 6 November 2008 Abstract The tribes and subtribes of Aurantioideae, an economically important subfamily of the Rutaceae, have a controversial taxonomic history because a phylogenetic framework has been lacking. In order to construct an evolutionary history and evaluate the most recent classification system [Swingle and Reece 1967. The botany of Citrus and its wild relatives, in: The Citrus Industry, vol. 1, History, World Distribution, Botany, and Varieties. University of California, Berkeley, pp. 190–430], one nuclear and three noncoding chloroplast genes were sequenced and analyzed phylogenetically along with selected non-molecular characters. Taxa representing tribes Citreae and Clauseneae and their six subtribes were sampled. In all analyses Aurantioideae is monophyletic. The majority-rule consensus tree from the combined analysis indicates that the two tribes are not monophyletic. The combined topology is not congruent with the widely used classification of Aurantioideae by Swingle and Reece (1967). The tribes and subtribes are in need of revision. r 2008 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Aurantioideae; Citreae; Clauseneae; Rutaceae; ITS; atpB-rbcL spacer Introduction containing pulp vesicles. The leaves and fruits have schizolysigenous oil glands that release an aroma when The Aurantioideae (this is the correct name for touched, and the flowers are typically white and ‘Citroideae’ or ‘Limonoideae’) are one of seven sub- fragrant.
    [Show full text]
  • Circumscription of Murraya and Merrillia (Sapindales: Rutaceae: Aurantioideae) and Susceptibility of Species and Forms to Huanglongbing
    CIRCUMSCRIPTION OF MURRAYA AND MERRILLIA (SAPINDALES: RUTACEAE: AURANTIOIDEAE) AND SUSCEPTIBILITY OF SPECIES AND FORMS TO HUANGLONGBING Student: Nguyen Huy Chung Principal Supervisor: Professor G Andrew C Beattie, University of Western Sydney Co-supervisors: Associate Professor Paul Holford, University of Western Sydney Dr Anthony M Haigh, University of Western Sydney Professor David J Mabberley, Royal Botanic Garden, Kew Dr Peter H Weston, National Herbarium of New South Wales Date of submission: 31 August 2011 Declaration The work reported in this thesis is the result of my own experiments and has not been submitted in any form for another degree or diploma at any university or institute of tertiary education. Nguyen Huy Chung 31 August 2011 i Acknowledgements I would first and foremost like to thank my supervisors, Professor Andrew Beattie, Associate Professor Paul Holford, Dr Tony Haigh, Professor David Mabberley and Dr Peter Weston for their generous guidance, academic and financial support. My research required collection of pressed specimens and DNA of Murraya from within Australia and overseas. I could not have done this without generous assistance from many people. I am thankful to Associate Professor Paul Holford and Ms Inggit Puji Astuti (Bogor Botanic Garden, Indonesia) who accompanied me during the collection of samples in Indonesia; to Mr Nguyen Huy Quang (Cuc Phuong National Park) and Mr Nguyen Thanh Binh (Southern Fruit Research Institute), who travelled with me during collecting trips in the southern Việt Nam and to Cuc Phuong National Park in northern Việt Nam; to Dr Paul Forster (Brisbane Botanic Garden) who accompanied me during the collection of samples in Brisbane; and to Mr Simon Goodwin who accompanied me during the collection samples in the Royal Botanic Garden, Sydney; to Dr Cen Yijing (South China Agricultural University) who travelled with Prof Beattie to collect specimens from Yingde, in Guangdong.
    [Show full text]
  • Indian Species of Rutaceae-Aurantieae
    Mededeelingen ’s Rijks Herbarium Leiden. No. 69. Notes on the Dutch Indian species of Rutaceae-Aurantieae. (Revisio Aurantiacearum - V.) Tyôzaburô Tanaka Taihoku Imperial University (Contribution from the Horticultural Institute No. 2) Since BLUME’S fundamental work of the flora of Dutch India was published, many of Rutaceae-Aurantieae were made later additions genera and species of by authors, varieties of the whole but no attempt has been made to enumerate the species and based the herbarium materials. The author has had an group upon up-to-date opportunity lately to make a tour through Europe, and on this occasion collections solved of principal herbaria were examined. Many pending questions were by added the old investigating type specimens, and a number of new types were to of the the issue of articles list. Before publishing a complete record study, separate of principally geographic standing is now in progress, and this paper forms one of of this series. The following is a tentative list species of Rutaceae-Aurantieae now with certain new definitely recorded from Dutch East Indies, exception of species From form British which are now under investigation. convenience, plants possesions Borneo in Bismark Solomon Islands and in and New Guinea, Archipelago, Portuguese this his cordial Timor are included in enumeration. The author expresses gratitude of to Dr. Goethart and Dr. Henrard of the Rijks Herbarium Leiden, and Prof. Went, Prof. Pulle and Mr. Lanjouw of the University of Utrecht for offering facility and help in executing his work at their institutions. Micromelum diversifolium MIQ. in Ann. Mus. Bot. Lugd. Bat.
    [Show full text]
  • The Vascular Plants of the Horne and Wallis Islands' HAROLD ST
    The Vascular Plants of the Horne and Wallis Islands' HAROLD ST. JOHN2 AND ALBERT C. SMITHs ABSTRACT: Recent botanical collections by H. S. McKee and Douglas E. Yen, together with the few available records from published papers, have been collated into a checklist of the known vascular plants of the Horne and Wallis Islands. Of 248 species here listed, 170 appear to be indigenous. Many of these are widespread, but 45 of them are limited to the Fijian Region (New Hebrides to Samoa) . Of the four known endemic species, Elatostema yenii St. John and Peperomia fllttmaensis St. John are herewith proposed as new, and a new combination in the fern genus Tbelypteris, by G. Brownlie, is included. THE HORNE AND WALLIS ISLANDS, forming Alofi, and Uvea, and it seems pertinent to bring the French Protectorat des Iles Wallis et Futuna, together the available data on the vascular plants lie to the northeast of Fiji, due west of Samoa, of the area. In the present treatment all the and due east of Rotuma. The Horne Islands in­ specimens obtained by McKee and Yen are clude Futuna (with about 25 square miles) and cited, and we also include as many Burrows Alofi (with about 11 square miles) , lying some specimens as could be located in the herbarium 150 miles northeast of Vanua Levu and about of the Bishop Museum. We have also listed 100 miles southwest of Uvea. Both Futuna and several species for which no herbarium vouch­ Alofi are high islands with fringing coral reefs; ers are at hand. These latter records are included the former attains an elevation of about 760 m on the basis of apparently reliable reports of in Mt.
    [Show full text]
  • Micromelum Minutum (G.Forst.) Wight & Arn
    Australian Tropical Rainforest Plants - Online edition Micromelum minutum (G.Forst.) Wight & Arn. Family: Rutaceae Wight, R. & Arnott, G.A.W. (1834) Prodromus Florae Peninsulae Indiae Orientalis : 448. Common name: Lime Berry; Micromelum Stem Usually grows into a small tree not exceeding 30 cm dbh but also flowers and fruits as a shrub. Leaves Oil dots visible with a lens. Leaflet blades about 4.5-15 x 1.5-6 cm, unequal-sided at the base. Domatia are foveoles. Flowers Calyx lobes short, about 0.1-0.2 mm long. Petals about 2.5-3 mm long. Stamens ten, dimorphic, five long and five short. Disk small, confined to an area beneath the ovary. Flowers and buds. © CSIRO Fruit Fruits ovoid-ellipsoid, about 9 x 7 mm. Seeds about 6-7 x 4-5 mm. Testa smooth, translucent. Cotyledons green, folded many times, oil dots numerous, readily visible with a lens. Seedlings Cotyledons glabrous, cordate to reniform, about 18-19 x 21-23 mm, apex rounded often notched. Oil dots visible to the naked eye. First leaf usually trifoliolate sometimes compound with 5 leaflets, oil dots conspicuous. At the tenth leaf stage: leaflet blades slightly hairy on the upper surface, unequal- Leaves and Flowers. © CSIRO sided at the base; oil dots numerous, visible to the naked eye; margin of the leaflets slightly sinuate; compound leaf petiole and rhachis clothed in short, prostrate hairs. Seed germination time 10 to 41 days. Distribution and Ecology Occurs in WA, NT, CYP, NEQ, CEQ and southwards to north-eastern New South Wales. Altitudinal range from sea level to 600 m.
    [Show full text]